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Abstract

In this thesis we consider a minimal residual/least-squares approach for the solution
of an abstract operator equation. In particular, the first objective is to apply a
least-squares method in combination with a space-time discretization scheme for the
solution of parabolic evolution equations. Moreover, a second objective is to consider
the approach for the simulation of electric machines.

In order to take into account the different types of partial differential equations
(PDEs) we present in a first step an abstract minimal residual framework together
with a complete stability and a priori error analysis. Furthermore, it is shown that
under a saturation assumption the method obtains an efficient and reliable error
indicator, which can be used to drive an adaptive refinement scheme.

In a second step, we apply the least-squares framework together with a space-time
discretization scheme to several parabolic PDEs, including the heat equation, the
convection-diffusion equation and a heat equation with nonlinear reaction term. Sev-
eral numerical examples are presented confirming our theoretical findings. In addition
to that we use the inbuilt error estimator in an adaptive refinement scheme resulting
in space-time meshes which are completely unstructured with respect to space and
time.

Finally, we apply the method to the simulation of an electric machine. Here we
consider a two-dimensional spatial domain and different models, including the mag-
netostatic approximation, a quasistatic approximation and the eddy current problem.
In the latter two models we exploit a space-time discretization in order to consider
the movement of the rotor within the mesh. Numerical examples are presented which
demonstrate the correctness of the proposed method.



Zusammenfassung

In dieser Arbeit betrachten wir die Methode der kleinsten Fehlerquadrate zur Lösung
einer abstrakten Operatorgleichung. Einerseits liegt der Schwerpunkt auf der Anwen-
dung der Methode in Kombination mit einem Raum-Zeit Diskretisierungsverfahren
zur Lösung parabolischer partieller Differentialgleichungen. Zum anderen soll dieser
Ansatz für die Berechnung elektromagnetischer Felder am Elektromotor eingesetzt
werden.

Um die dabei auftretenden partiellen Differentialgleichungen mit dem selben Zugang
behandeln zu können, wird zunächst ein abstraktes Konzept vorgestellt. Im Rahmen
dieses Konzepts wird eine vollständige Stabilitäts-und Fehleranalyse durchgeführt.
Mithilfe einer Saturationsannahme wird gezeigt, dass diese Methode einen Fehler-
schätzer besitzt. Dieser kann in einem adaptiven Verfahren zur Netzverfeinerung
verwendet werden.

Als nächstes wird die Anwendung dieser Methode auf parabolische Evolutionspro-
bleme demonstriert. Dabei wird ein Raum-Zeit Diskretisierungsverfahren verwendet.
Insbesondere werden die Wärmeleitungsgleichung, die Konvektions- und Diffusions-
gleichung und eine Wärmeleitungsgleichung mit nichtlinearem Reaktionsterm behan-
delt. Die theoretischen Ergebnisse werden durch numerische Beispiele bestätigt und
der eingebaute Fehlerschätzer wird in einem adaptiven Verfahren zur Netzverfeine-
rung verwendet. Damit ergeben sich völlig unstrukturierte Zerlegungen des Gebietes
in Raum und Zeit.

Abschließend wird dieser Ansatz für die Berechnung elektromagnetischer Felder am
Elektromotor diskutiert. Als physikalisches Modell der Maschine werden die Glei-
chungen der Magnetostatik, eine quasistatische Erweiterung dieses Modells und das
Wirbelstromproblem betrachtet. In den beiden letztgenannten Modellen erlaubt uns
eine Raum-Zeit Diskretisierung die Bewegung des Rotors in der Triangulierung des
Raum-Zeit Zylinders abzubilden. Numerische Beispiele zeigen eine korrekte Berech-
nung des magnetischen Feldes.
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1 Introduction

Many phenomena in engineering science and natural science are described in terms of
partial differential equations (PDEs). Prominent examples are Maxwell’s equations
to model electromagnetic phenomena, Stokes and Navier-Stokes equations to model
fluid problems, the heat equation to model heat transfer problems or the equations
of elasticity to model structural mechanical problems, just to mention a few. For the
numerical solution of PDEs different numerical schemes like e.g., finite volume [86],
finite difference [86], boundary elements [156] or finite elements [45] are used. We
focus in this thesis on the latter approach. The finite element method (FEM) has been
established as the standard numerical method for the solution of PDEs describing
physical fields, see [102]. For an efficient and accurate numerical simulation adaptive
finite elements are of great interest. One reason for this is as mentioned in [170] that
the overall accuracy of the numerical solution deteriorates in the presence of local
singularities. A remedy for this problem is to refine the mesh around the singularity.
However, the question is how to detect the regions which have to be refined. Another
reason is that one is interested in reliable estimates for the accuracy of the computed
numerical solution since a priori error estimates only provide information about the
asymptotic behaviour of the error [170]. The tool to address both issues are local
error indicators which can be determined a posteriori from the numerical solution
and the given data. In general the local error indicators are used in an adaptive
algorithm which has the form, cf. [37],

SOLVE→ ESTIMATE→ MARK→ REFINE. (1.1)

In more detail this means that first the PDE is solved, and then a local error indicator
is used to estimate the error. Well-known error estimators are e.g. residual based
error estimators [11], hierachical based error estimators [14], estimators based on the
gradient recovery technique [181] or goal oriented error estimators [13], just to name
a few. Afterwards the elements are selected according to some marking strategy.
Possible strategies are e.g. the Dörfler marking strategy [58] or a bulk criterion like
the maximum marking strategy, see [73, 129]. The marked elements are then refined
via e.g. a bisection algorithm [9, 121, 163, 167] or red-green-blue refinement [34, 73].
In literature this is also referred to as h-adaptivity, since it locally decreases the mesh
size h, cf. [146]. For more information about adaptive finite element methods we
refer the interested reader to the textbooks [4, 13, 139, 171]. A natural question
which arises is whether the numerical solutions computed from the adaptive scheme
in (1.1) converge to the true solution. We refer to the work [37] which describes

1



2 1 Introduction

an axiomatic framework to prove optimal rates for adaptive finite element methods
which builds upon the earlier works [20, 58, 128, 162] as mentioned in [146].

Least-squares methods

In this thesis we focus on least-squares or minimal residual finite element methods
[21]. These kinds of methods obtain an inbuilt error estimator. The idea behind these
methods is to exploit the connection of finite element methods and energy minimiza-
tion principles, cf. [21]. For elliptic problems this connection is given e.g. in terms
of the Rayleigh-Ritz principle, where one seeks for a minimizer to an unconstrained
quadratic convex functional. The functional describes the energy and is given via the
variational formulation. In order to generalize this idea to arbitrary PDEs one con-
siders an artificial energy, namely the energy induced by the residual of the PDE, cf.
[21]. To put this in a more mathematical context, we consider Hilbert spaces X, Y ,
a given right-hand side f ∈ Y ∗ in the dual of Y and a linear operator B : X → Y ∗,
which is assumed to be an isomorphism and given in terms of the partial differential
equation. The standard finite element method is based on an operator equation,
where one seeks for u ∈ X such that

Bu = f in Y ∗. (1.2)

In a least-squares method one considers the equivalent minimization problem

u = arg min
w∈X

1

2
‖Bw − f‖2

Y ∗ . (1.3)

The least-squares method seems at first glance challenging as the residual is measured
in a dual norm and hence cannot be computed locally to define an error estimator.
Furthermore, it is mentionend in [21] that a least-squares finite element method
obtained from (1.3) should also be practical. This means that the finite element
spaces used in a discretization scheme for (1.3) should not be more difficult to work
with than those normally encountered in typical Galerkin or mixed Galerkin methods
for (1.2). Also, the finite element matrices and the right-hand side in the least-squares
method should be easily computable. Therefore, one common approach is to rewrite
the differential operator B : X → Y ∗ by a first order system operator B : U → V ,
where V is a space with L2-regularity. This is usually referred to as first order system
least-squares (FOSLS) methods, see e.g. [32]. This method has been extensively
studied, see e.g., the textbook [21] for an overview of basic results on least-squares
finite element methods or the works [2, 17] which deal with adaptivity in the context
of FOSLS and the references given therein. FOSLS methods for parabolic equations
are considered in e.g. [72, 81, 119, 120]. A subclass of the FOSLS familiy are so-
called constrained first order system least-squares methods (CFOSLS). We mention
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the works [3, 132, 147, 172]. However, the reformulation of the PDE as a first order
system comes with the fact that one has to assume that the right-hand side f has
L2-regularity. This may be in practical applications not the space of interest and is to
some extent unnatural as right-hand sides of partial differential equations are usually
considered in Sobolev spaces with negative order, cf. [106]. Although there are some
workarounds, see [70, 71], where a FOSLS method with a load in a Sobolev space
with negative order is analyzed by replacing the source term with its finite element
approximation, we will for the mentioned reasons consider in this thesis a different
approach. We prefer to stay in the norm induced by the operator B. In order to get
a practical method we use the Riesz operator A : Y → Y ∗ to lift the abstract norm in
Y ∗ to a norm in Y , which can be evaluated locally on each finite element. This setting
allows us to derive a unified framework, which can be applied to various PDEs. This
approach has been studied in e.g. [6, 164] in the context of parabolic equations, [46]
in connection with convection-diffusion equations, [28, 36, 54, 51, 52, 53] in case of
Discontinuous Petrov Galerkin (DPG) methods or [47, 127], just to name a few.

Space-time methods

Of particular interest in this thesis are space-time discretization schemes which are
used for the numerical solution of time-dependent partial differential equations. As
mentioned in e.g. [118, 146, 175], the standard procedures for the numerical solu-
tion of time-dependent problems are the vertical method of lines and the horizontal
method of lines or Rothe’s method, see [142, 166]. In the vertical method of lines one
first discretizes with respect to the spatial variables with e.g. a finite element method.
The semidiscretization in space leads to a system of ordinary differential equations
which can be solved via some time stepping scheme, see [87, 88] for an overview about
time-stepping schemes. In Rothe’s method one performs the two semidiscretizations
steps the other way round. This means first one performs a discretization with respect
to time with some time stepping scheme. The resulting boundary value problems are
then discretized e.g. by means of a finite element method. The fast solution of such
semidiscretization schemes lead to the so called parallel-in-time methods. A good
overview over the history of such methods is given by Gander, see [74].

We will focus on space-time methods where time is treated just like an additional
spatial variable. This approach has gained a lot of interest recently and an overview
about recent advances is given in [161, 113]. A classification of space-time methods
can also be found in [146, 175]. A full space-time method has the advantage that it
allows for adaptivity with respect to space and time simultaneously, see e.g., [159, 160]
for a space-time method in the sense of [157], [72] in case of a FOSLS method or [110]
for a space-time finite element method based on upwind stabilization. Moreover, the
handling of moving domains, where the movement is a priori known, is easier as



4 1 Introduction

a moving spatial d-dimensional domain viewed in the d + 1-dimensional space-time
cylinder is just a picture, i.e., it can be meshed using standard tools. This fact is
exploited in [77, 78, 83] in case of a rotating electric motor. In addition to that
it is more flexible with respect to parallelization in space and time as it overcomes
the sequential behaviour of the standard semidiscretizations schemes. Also in the
context of optimal control problems constrained by time-dependent PDEs full space-
time discretizations are of interest as they allow for a simultaneous solution of the
forward and backward problem at once, see e.g., [16, 111, 112] for a related approach.
This is in contrast to time stepping schemes which require to first step forward in
time and then step backward in time, see also [118]. The treatment of a time-
dependent PDE on a d + 1-dimensional domain comes with the fact that a global
linear system must be solved at once, which also increases the memory demand, see
also [146, 175]. Therefore, fast solvers and preconditioning are essential which are
not within the scope of thesis, see e.g., [75, 114] for related approaches in case of
space-time tensor-product meshes.

Objective and outline of the thesis

The objective of this thesis is to combine the least-squares/minimal residual method
with a fully unstructured space-time discretization scheme in the spirit of [157]. More-
over, a second objective is to apply the minimal residual method for the simulation
of electric machines based on the Maxwell system. Here we will consider the mag-
netostatic approximation, i.e., a time-independent problem, as well as a quasistatic
approximation and the eddy current problem, i.e., time-dependent problems. In the
latter two models, a space-time discretization enables us to consider the movement
of the rotor within the mesh. In order to account for the different PDEs, we will
present an abstract unified least-squares approach based on [106]. This framework
can be applied to various linear and nonlinear PDEs.

The remainder of this thesis is organized as follows: In Chapter 2 we introduce the
required function spaces, repeat basic functional analytic results on the solvability of
abstract operator equations and recall basic notions on finite element discretizations.
In Chapter 3 we present an abstract least-squares framework for linear problems
including a full stability and error analysis. Furthermore, we show that the inbuilt
error estimator is efficient and reliable. We also discuss an extension to nonlinear
problems. In Chapter 4 we apply the abstract theory to the heat equation, to a
convection-diffusion equation and to a semilinear parabolic equation, which has the
form of the Schlögl model, see e.g., [39, 151]. For the heat equation we also present
a comparison to the FOSLS method introduced by Führer and Karkulik in [72].
Finally, in Chapter 5 we demonstrate the application of the least-squares method for
the simulation of an electric machine.



2 Preliminaries

In this chapter we introduce the required function spaces and recall some well-known
results on the existence and uniqueness of solutions of variational formulations, which
we will use throughout this thesis.

Throughout the whole thesis we consider Ω ⊂ Rd, d = 1, 2, 3 to be a domain (open,
connected, non-empty), which is bounded and its boundary Γ := ∂Ω is Lipschitz, see
[156, Def. 2.1]. Further, let T > 0 be a given final time horizon. The corresponding
space-time cylinder is then denoted by Q := Ω × (0, T ) with the boundaries Σ :=
∂Ω× (0, T ), Σ0 := Ω× {0} and ΣT := Ω× (0, T ) such that ∂Q = Σ ∪ Σ0 ∪ ΣT .

2.1 Function spaces

We give a brief introduction to the function spaces used in this thesis. For a more
detailed presentation we refer to classical textbooks like e.g., [1, 24, 66, 123, 180]. A
good source for spaces used in variational formulations for space-time methods is the
thesis [175] and the references given therein.

2.1.1 Sobolev spaces

Let d ∈ N := {1, 2, 3 . . . }. We call a vector α ∈ Nd
0 with components αi ∈ N0 :=

{0, 1, 2, 3, . . . } multi index. The length |α| and the factorial α! are given as

|α| :=
d∑
i=1

αi, α! := α1!α2!...αd!.

For x ∈ Ω we write
xα := xα1

1 x
α2
2 ...x

αd
d

and for a smooth function u : Ω→ R the notation Dαu means

Dαu(x) :=
∂|α|

∂xα1
1 ∂x

α2
2 ...∂x

αd
d

u(x).

For k ∈ N0 the space of k times continuously differentiable functions reads

Ck(Ω) = {u : Ω→ R : Dαu ∈ C(Ω), for all |α| ≤ k},

5



6 2 Preliminaries

and the corresponding norm is

‖u‖Ck(Ω) :=
∑
|α|≤k

sup
x∈Ω
|Dαu(x)|.

Note that for k = 0, C(Ω) := C0(Ω) corresponds to the space of continuous functions.
The space of inifinitely often differentiable functions is given by

C∞(Ω) :=
⋂
k≥0

Ck(Ω).

For a function u : Ω→ R the support is defined as

suppu := {x ∈ Ω : u(x) 6= 0}

and the space of infinitely often differentiable functions with compact support reads

C∞0 (Ω) := {u ∈ C∞(Ω) : suppu b Ω}.

For 1 ≤ p <∞ we define the space of p-integrable functions as

Lp(Ω) :=

{
u : Ω→ R measurable :

∫
Ω

|u(x)|pdx <∞
}

and for p =∞ we have

L∞(Ω) :=

{
u : Ω→ R measurable : ess sup

x∈Ω
|u(x)| <∞

}
.

We call the factor space

Lp(Ω) := Lp(Ω)/ ∼, u ∼ v :⇔ u = v almost everywhere (a.e.)

Lebesgue space of p-integrable functions. Equipped with the norms

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|pdx
) 1

p

, 1 ≤ p <∞,

‖u‖L∞(Ω) := ess sup
x∈Ω

|u(x)|

it can be shown, see e.g. [1, Thm. 2.16], [24, Thm. 1.1.8], that these spaces are
Banach spaces. For p = 2 one can even show that the space L2(Ω) is a Hilbert space
with respect to the inner product

〈u, v〉L2(Ω) :=

∫
Ω

u(x)v(x) dx

for u, v ∈ L2(Ω), see [1, Cor. 2.18]. Further we denote with Lploc(Ω) the Lebesgue
space of functions, which are p-integrable on each compact set K ⊂ Ω, i.e.,

Lploc(Ω) = {u : Ω→ R measurable : u ∈ Lp(K) ∀K ⊂ Ω compact} .

For the introduction of Sobolev spaces we need the concept of a weak derivative.
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Definition 2.1 (cf. [1, 1.62, p.21], [24, Def. 1.2.4], [156, Def. 2.3]). Let u ∈ L1
loc(Ω)

and α ∈ Nd
0 be a multi index. We say that u admits a weak derivative of order α if

there exists a function v ∈ L1
loc(Ω) satisfying∫

Ω

v(x)ϕ(x) dx = (−1)|α|
∫

Ω

u(x)Dαϕ(x) dx for all ϕ ∈ C∞0 (Ω).

If such a function v exists, we write Dαu := v.

Now, we can for p ≥ 1 and k ∈ N0 define the Sobolev spaces

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k} ,

W k,p
0 (Ω) := C∞0 (Ω)

‖·‖
Wk,p(Ω)

(2.1)

with the corresponding norms

‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

 1
p

for 1 ≤ p <∞,

‖u‖Wk,∞(Ω) := max
0≤|α|≤k

‖Dαu‖L∞(Ω),

and the seminorms

|u|Wk,p(Ω) :=

∑
|α|=k

‖Dαu‖pLp(Ω)

 1
p

for 1 ≤ p <∞,

|u|Wk,∞(Ω) := max
|α|=k
‖Dαu‖L∞(Ω).

It holds that (W k,p(Ω), ‖ · ‖Wk,p(Ω)) is a Banach space, see [24, Thm. 1.3.2], [1, Thm.
3.3] and that C∞(Ω)∩W k,p(Ω) is dense in W k,p(Ω), see [24, Thm. 1.3.4] which goes
back to Meyers and Serin [126]. Note that we have the inclusion [1, p. 60]

W k,p
0 (Ω) ⊂ W k,p(Ω) ⊂ Lp(Ω).

Moreover, we have by [1, Thm. 3.6] that W k,p(Ω) is separable if 1 ≤ p < ∞, and
uniformly convex as well as reflexive if 1 < p <∞. For p = 2 we use the notation

Hk(Ω) := W k,2(Ω), Hk
0 (Ω) := W k,2

0 (Ω)

which are separable Hilbert spaces with inner product

〈u, v〉Hk(Ω) :=
∑

0≤|α|≤k

〈Dαu,Dαv〉L2(Ω) (2.2)
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for u, v ∈ Hk(Ω). The definition of the Sobolev spaces (2.1) can be extended to
0 < s ∈ R. For this we write s = k + σ, where k ∈ N0 and σ ∈ (0, 1). Then we can
define the spaces

W s,p(Ω) :=
{
u ∈ W k,p(Ω) : |u|W s,p <∞

}
,

W s,p
0 (Ω) := C∞0 (Ω)

‖·‖Ws,p(Ω)
(2.3)

with the corresponding norm

‖u‖W s,p =
(
‖u‖p

Wk,p + |u|pW s,p(Ω)

) 1
p
,

where
|u|pW s,p(Ω) :=

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|d+pσ
dxdy

denotes the Sobolev-Slobodeckii seminorm, see [123, p.74]. Again we use for p = 2
the notation

Hs(Ω) := W s,2(Ω), Hs
0(Ω) := W s,2

0 (Ω),

which are Hilbert spaces with the inner product (2.2) for s = k ∈ N0 and

〈u, v〉Hs(Ω) := 〈u, v〉Hk(Ω) +
∑
|α|=k

∫
Ω

∫
Ω

(Dαu(x)−Dαu(y))(Dαv(x)−Dαv(y))

|x− y|d+2σ
dxdy

for s = k + σ with k ∈ N0 and σ ∈ (0, 1). For s > 0 we define, see e.g. [64, Def.
B47], the space H−s(Ω) as dual space of Hs

0(Ω) equipped with the norm

‖f‖H−s(Ω) := sup
06=v∈Hs

0(Ω)

〈f, v〉Ω
‖v‖Hs(Ω)

,

where 〈·, ·〉Ω denotes the duality paring as the extension of the L2-inner product. Of
special interest in our analysis will be the space H1

0 (Ω). In this space there holds due
to the assumptions on the domain Ω the Poincaré inequality, see [64, Lem. B.61],
i.e., there exists a constant cp > 0 such that

‖u‖L2(Ω) ≤ cp‖∇u‖[L2(Ω)]d for all u ∈ H1
0 (Ω). (2.4)

As a consequence we have that

‖u‖H1
0 (Ω) := ‖∇u‖[L2(Ω)]d =

√∑
|α|=1

‖Dαu‖2
L2(Ω)

defines an equivalent norm on H1
0 (Ω), which we will frequently use. Note that instead

of the vector valued space [L2(Ω)]
d we will for better readability simply write L2(Ω)

in the following as it is clear from the context that it has to be understood as a vector
valued space. Further we have the inclusion, see e.g. [66, Sec. 5.9.1, p. 299]

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω).
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2.1.2 Bochner spaces

For the analysis of the differential operators given by parabolic evolution equations
we use the concept of Bochner Sobolev spaces. Here a function u : Q→ R, (x, t) 7→
u(x, t) is considered as a function of t with values in a Banach space X, i.e., t 7→
u(t, ·) ∈ X. For the definition of these spaces we proceed similar as in Section 2.1.1.

Let (X, ‖ · ‖X) be a Banach space. For p ∈ [1,∞) we define the space of p-integrable
vector valued functions as

Lp(0, T ;X) :=

{
u : (0, T )→ X measurable :

∫ T

0

‖u(t)‖pX dt <∞
}

and for p =∞

L∞(0, T ;X) :=

{
u : (0, T )→ X measurable : ess sup

t∈(0,T )

‖u(t)‖X <∞

}
.

We call the factor space

Lp(0, T ;X) := Lp(0, T ;X)/ ∼, u ∼ v :⇔ u = v a.e.

Bochner space of p-integrable functions. If we equip these spaces with the norms

‖u‖Lp(0,T ;X) :=

(∫ T

0

‖u(t)‖pX dt

) 1
p

, 1 ≤ p <∞,

‖u‖L∞(0,T ;X) := ess sup
t∈(0,T )

‖u(t)‖X

one can show that they are Banach spaces, see [176, Prop. 23.2, Problem 23.12],
[143, Satz 1.24]. For a reflexive Banach space X, 1 ≤ p < ∞ and q > 0 such that
1
p

+ 1
q

= 1, the mapping

R : Lq(0, T ;X∗)→ (Lp(0, T ;X))∗

〈Ru, v〉 :=

∫ T

0

〈u(t), v(t)〉X∗×X dt for all v ∈ Lp(0, T ;X)

is an isometric isomorphism, see e.g. [143, Satz 1.30]. Hence, we can identify the
dual (Lp(0, T ;X))∗ with Lq(0, T ;X∗). Moreover, there holds, see [143, Bsp. 1.26]

Lp(Q) = Lp(0, T ;Lp(Ω)).

We denote with Lploc(0, T ;X) the Bochner space of functions, which are p-integrable
on each compact set K ⊂ (0, T ). Similar as for the classical Sobolev spaces we need
the concept of a weak derivative to define the Bochner Sobolev spaces.
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Definition 2.2 (cf. [66, Sec. 5.9.2, p. 301], [48, Def. 4.17]). Let (X, ‖ · ‖) be a
Banach space and u ∈ L1

loc(0, T ;X). We say the function u obtains a weak derivative
of order j if there exists a function v ∈ L1

loc(0, T ;X) such that∫ T

0

v(t)ϕ(t) dt = (−1)j
∫ T

0

u(t)∂jtϕ(t) for all ϕ ∈ C∞0 (0, T ).

If such a function v exists we write ∂jtu := v.

Now, we can define the Bochner Sobolev spaces

W k,p(0, T ;X) :=
{
u ∈ Lp(0, T ;X) : ∂jtu ∈ Lp(0, T ;X) for 0 ≤ j ≤ k

}
.

For our analysis it is sufficient to consider the space W 1,p(0, T ;X). One can show
that this space is a Banach space for p ≥ 1 with respect to the norm

‖u‖W 1,p(0,T ;X) :=
(
‖u‖pLp(0,T ;X) + ‖∂tu‖pLp(0,T ;X)

) 1
p
,

cf. [8, p. 3], [48, Thm. 5.2], [66, Sec. 5.9.2, p. 203]. For p = 2 we use the notation

Hk(0, T ;X) := W k,2(0, T ;X).

For 1 ≤ p ≤ ∞ we have that W 1,p(0, T ;X) is continuously embedded into the space
C([0, T ] ;X), i.e., W 1,p(0, T ;X) ⊂ C([0, T ] ;X) and there exists a constant C > 0
such that

‖u‖C([0,T ];X) ≤ C‖u‖W 1,p(0,T ;X),

see [66, Sec. 5.9.2, Thm.2]. Here C([0, T ] ;X) denotes the space of continuous func-
tions on the intervall [0, T ] with values in the Banach space X which is equipped
with the norm

‖u‖C([0,T ];X) := max
t∈[0,T ]

‖u(t)‖X .

This result ensures that initial condtions u(0) and terminal conditions u(T ) are well-
defined. We use the notations

W 1,p
0, (0, T ;X) :=

{
u ∈ W 1,p(0, T ;X) : u(0) = 0 in X

}
,

W 1,p
,0 (0, T ;X) :=

{
u ∈ W 1,p(0, T ;X) : u(T ) = 0 in X

}
to indicate spaces with zero initial or terminal conditions, respectively. Of particular
interest in our analysis are the spaces

L2(0, T ;H1
0 (Ω)) and W (Q) := L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)).
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The Bochner space L2(0, T ;H1
0 (Ω)) allows the characterization, see [154, p. 196, p.

204], [175, p. 23]

L2(0, T ;H1
0 (Ω)) =

{
u ∈ L2(Q) : ∇xu ∈ L2(Q), u|Σ = 0

}
. (2.5)

Moreover, it is a Hilbert space with respect to the inner product

〈p, q〉L2(0,T ;H1
0 (Ω)) :=

∫ T

0

〈p(t), q(t)〉H1
0 (Ω)dt

=

∫ T

0

∫
Ω

∇xp(x, t) · ∇xq(x, t) dxdt = 〈∇xp,∇xq〉L2(Q)

for all p, q ∈ L2(0, T ;H1
0 (Ω)), see [175]. Note that the second to last equality is due

to (2.5). The dual space (L2(0, T ;H1
0 (Ω)))∗ is identified with L2(0, T ;H−1(Ω)) and

there holds due to (2.4) the Poincaré inequality

‖u‖L2(Q) ≤ cp‖∇xu‖L2(Q) for all u ∈ L2(0, T ;H1
0 (Ω)). (2.6)

The space W (Q) in more detail reads

W (Q) =
{
u ∈ L2(0, T ;H1

0 (Ω)) : ∂tu ∈ L2(0, T ;H−1(Ω))
}
.

It is a Hilbert space with inner product, see [175], cf. [49, Chap. XVIII, §1, Prop.6]

〈u, v〉W (Q) := 〈u, v〉L2(0,T ;H1
0 (Ω)) +

∫ T

0

〈∂tu(t), ∂tv(t)〉H−1(Ω) dt

and the corresponding norm reads

‖u‖W (Q) =
(
‖∇xu‖2

L2(Q) + ‖∂tu‖2
L2(0,T ;H−1(Ω))

) 1
2
.

Further we have thatW (Q) is continuously embedded into the space C([0, T ] ;L2(Ω)),
see [66, Thm. 3, p. 303], [143, Lem. 2.44], which means that initial and terminal
conditions are well-defined and there holds the integration by parts formula [143,
Lem. 2.44]∫ T

0

〈∂tu(t), v(t)〉H−1(Ω)×H1
0 (Ω) dt

= 〈u(T ), v(T )〉L2(Ω) − 〈u(0), v(0)〉L2(Ω) −
∫ T

0

〈u(t), ∂tv(t)〉H1
0 (Ω)×H−1(Ω) dt

Finally, by [66, Thm. 3, p.303] the mapping t 7→ ‖u(t)‖2
L2(Ω) is absolutely continuous

and for the derivative we obtain

d

dt
‖u(t)‖2

L2(Ω) = 2〈∂tu(t), u(t)〉H−1(Ω)×H1
0 (Ω) for a.e. t ∈ (0, T ).
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2.2 Variational methods

In this section we recall some well-known results on the solvability of abstract oper-
ator equations. We start with the Lemma of Lax-Milgam.

Lemma 2.3 (Lax-Milgram). Let V be a Hilbert space, let A : V → V ∗ be linear and
let f ∈ V ∗. Further, assume A : V → V ∗ to be bounded and elliptic, i.e., there exist
constants cA1 , cA2 > 0 such that

〈Au, v〉V ∗×V ≤ cA2 ‖u‖V ‖v‖V , 〈Au, u〉V ∗×V ≥ cA1 ‖u‖2
V

for all u, v ∈ V . Then, the variational problem:

Find u ∈ V : 〈Au, v〉V ∗×V = 〈f, v〉V ∗×V ∀v ∈ V,

has a unique solution. For the unique solution u ∈ V there holds the a priori estimate

‖u‖V ≤
1

cA1
‖f‖V ∗ .

Proof. A proof can be found in [64, Lemma 2.2].

An important property of elliptic operators is that they can be used to define equiv-
alent norms.

Lemma 2.4. Let (V, 〈., .〉V ) be a Hilbert space and A : V → V ∗ be a linear, bounded,
self-adjoint and elliptic operator. Then, for all u, v ∈ V

〈u, v〉A := 〈Au, v〉V ∗×V

defines an inner product on V and

‖u‖A :=
√
〈u, u〉A =

√
〈Au, u〉V ∗×V

defines an equivalent norm to ‖.‖V which satisfies√
cA1 ‖u‖V ≤ ‖u‖A ≤

√
cA2 ‖u‖V for all u ∈ V.

Proof. A proof can be found in [118, Lem. 2.10].

The next theorem generalizes the Lemma of Lax-Milgram.
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Theorem 2.5 (Banach-Nečas-Babuška). Let X be a Banach space and Y be a
reflexive Banach space. Further, let f ∈ Y ∗ and B : X → Y ∗ be linear and bounded,
i.e., there exists a constant cB2 > 0 such that

‖Bu‖Y ∗ ≤ cB2 ‖u‖X ∀u ∈ X.

The variational problem:

Find u ∈ X : 〈Bu, v〉Y ∗×Y = 〈f, v〉Y ∗×Y ∀v ∈ Y,

has a unique solution if and only if the conditions

BNB 1

∃ cB1 > 0 : inf
06=u∈X

sup
06=v∈Y

〈Bu, v〉Y ∗×Y
‖u‖X‖v‖Y

≥ cB1 ,

BNB 2
∀v ∈ Y, ( ∀u ∈ X, 〈Bu, v〉Y ∗×Y = 0 )⇒ v = 0,

are fulfilled. Moreover, for the unique solution u ∈ X there holds the a priori estimate

‖u‖X ≤
1

cB1
‖f‖Y ∗ .

Proof. A proof can be found in [64, Theorem 2.6].

Remark 2.6. The condition (BNB 1) ensures that the operator B is bounded from
below, i.e., it is injective, and its range is closed, cf. [64, Lem. A.39, Cor. A.45]
and [134, p. 440]. The condition (BNB 2) gives surjectivity of B, i.e., ran(B) = Y ∗,
see [64, Cor. A.45, Cor. A.46]. A slightly generalized version of Thm. 2.5 can
be found e.g. in [134, Thm. 6.6.1]. There if and only if is replaced by if and the
condition (BNB 2) is exchanged by the assumption that f ∈ ran(B). This means that
f ∈ ker(B∗)⊥ due to the Closed Range Theorem, see e.g. [134, Thm. 5.17.3]. Hence,
this leads to a compatibility condition on f which reads

〈f, q〉H = 0 for all q ∈ ker(B∗).

The next theorem gives an existence and uniqueness result for the solution of abstract
saddle point systems.

Theorem 2.7 ([64, cf. Thm. 2.34]). Let X, Y be two reflexive Banach spaces
and f ∈ Y ∗, g ∈ X∗ be two given right-hand sides. Further, let A : Y → Y ∗,
B : X → Y ∗ be linear and bounded operators. The saddle point system which seeks
for (u, p) ∈ X × Y such that

〈Ap, q〉Y ∗×Y + 〈Bu, q〉Y ∗×Y = 〈f, q〉Y ∗×Y for all q ∈ Y,
〈B∗p, v〉X∗×X = 〈g, v〉X∗×X for all v ∈ X

(2.7)

has a unique solution if and only if the conditions
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(i)

∃ cA1 > 0 : inf
06=p∈ker(B∗)

sup
06=q∈ker(B∗)

〈Ap, q〉Y ∗×Y
‖p‖Y ‖q‖Y

≥ cA1 ,

(ii)
∀q ∈ ker(B∗), (∀p ∈ ker(B∗), 〈Ap, q〉Y ∗×Y = 0)⇒ q = 0,

(iii)

∃cB1 > 0 : inf
06=u∈X

sup
06=q∈Y

〈Bu, q〉Y ∗×Y
‖u‖X‖q‖Y

≥ cB1

hold true. Moreover, for the unique solution (u, p) ∈ X × Y there hold the a priori
estimates

‖p‖Y ≤
1

cA1
‖f‖Y ∗ +

1

cB1

(
1 +

cA2
cA1

)
‖g‖X∗ ,

‖u‖X ≤
1

cB1

(
1 +

cA2
cA1

)
‖f‖Y ∗ +

cB2
[cB1 ]2

(
1 +

cA2
cA1

)
‖g‖X∗ .

Remark 2.8. The conditions (i) and (ii) in Theorem 2.7 ensure that the operator
A is an isomorphism on ker(B∗). The condition (iii) on B ensures that the adjoint
operator B∗ is surjective, see [64, Lemma A.39, Theorem A.56]. If the operator
A : Y → Y ∗ is Y-elliptic conditions (i) and (ii) are clearly fulfilled, see also [64,
Rem. 2.35]

The next theorem is on the solvability of abstract evolution equations. For this, we
first need the definition of an evolution triple which is also known as Gelfand triple.

Definition 2.9 ([176, Def. 23.11]). The triple (V,H, V ∗) is called an evolution triple
if

(i) (V, ‖ · ‖V ) is a real separable and reflexive Banach space,

(ii) (H, (·, ·)H) is a real separable Hilbert space,

(iii) the embedding V ↪→ H is dense and continuous, i.e., V ⊂ H, V ‖.‖H = H and
there exists a c > 0 such that ‖x‖H ≤ c‖x‖V for all x ∈ V .

An example for such a triple is given by means of the spaces (H1
0 (Ω), L2(Ω), H−1(Ω)),

see e.g. [176, Def. 23.11] or [143, p. 89]. Now, we are in a position to state the
following Theorem.
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Theorem 2.10. Let the triple (V,H, V ∗) be an evolution triple and the operator A :
L2(0, T ;V )→ L2(0, T ;V ∗) be linear. Further, assume that A is bounded and elliptic,
i.e., there exist constants cA1 , cA2 > 0 such that

|〈Au, v〉| ≤ cA2 ‖u‖L2(0,T ;V )‖v‖L2(0,T ;V ),

〈Au, u〉 ≥ cA1 ‖u‖2
L2(0,T ;V )

for all u, v ∈ L2(0, T ;V ), where 〈., .〉 denotes the duality pairing. Suppose furthermore
that F ∈ L2(0, T ;V ∗) and u0 ∈ H. Then, the initial value problem

∂tu+ Au = F in L2(0, T ;V ∗), u(0) = u0,

has a unique solution u ∈ L2(0, T ;V ) with weak derivative ∂tu ∈ L2(0, T ;V ∗).

Proof. A proof can be found for instance in [64, Theorem 6.6] or [176, Theorem 23A,
Corollary 23.24].

We will also deal with nonlinear operator equations. In order to investigate such
equations we state the following result which goes back to Zarantonello [177, pp.
503], [178, pp. 174].

Theorem 2.11 ([177, Thm. 25B]). Let (V, (·, ·)V ) be a real Hilbert space, f ∈ V ∗
and B : V → V ∗ a nonlinear operator which is strongly monotone and Lipschitz
continuous, i.e., there are numbers cB1 > 0 and cB2 > 0 such that for all u, v ∈ V

〈B(u)−B(v), u− v〉V ∗×V ≥ cB1 ‖u− v‖2
V

and
‖B(u)−B(v)‖V ∗ ≤ cB2 ‖u− v‖V .

Then the nonlinear operator equation

B(u) = f in V ∗

has a unique solution, which depends continuously on f . More precisely, it follows
from B(uj) = fj, j = 1, 2 that

‖u1 − u2‖V ≤
1

cB1
‖f1 − f2‖V ∗

and the inverse operator B−1 : V ∗ → V is Lipschitz continuous with constant 1
cB1
.
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2.3 Discretization

In order to solve the operator equations and the related variational formulations
numerically we use the finite element method (FEM). The idea of the finite element
method is to consider conforming finite dimensional subspaces of the trial and test
spaces which can be spanned in terms of basis functions with local support. The
aim of this section is to recall some basic notions of finite element discretizations,
introduce the finite element spaces and state some approximation properties of these
spaces which we will use throughout the thesis. For a more detailed presentation we
refer to [15, 24, 45, 60, 156]. In order to cover discretizations for a spatial bounded
Lipschitz domain Ω ⊂ Rd with d = 1, 2, 3 as well as for a space-time cylinder Q =
Ω × (0, T ) ⊂ Rd+1 we consider a domain D ⊂ Rn for n = 1, 2, 3, 4. In addition to
that we consider domains D whose boundary is polygonal for n = 2, or polyhedral
for n = 3 or polychoral for n = 4.

We start with the definition of an n-dimensional simplex τ ⊂ Rn.

Definition 2.12 ([60, cf. Def. 3.11]). Let the points z1, ..., zn+1 ∈ Rn be given such
that the vectors (zj − z1)n+1

j=2 are linearly independent. The interior of the convex hull
τ = (conv{z1, ..., zn+1})◦ is called a (non-degenerate) n-dimensional simplex in Rn.
The corner points z1, ..., zn are called nodes or vertices of τ . For r ∈ {0, ..., n−1} and
z̃1, ..., z̃r+1 ∈ {z1, ..., zn+1} such that the vectors (z̃j − z̃1)r+1

j=2 are linearly independent
we call τ̃ = (conv{z̃1, ..., z̃r+1})◦ r-dimensional face of τ .

The n-dimensional simplex τ ⊂ Rn is an interval for n = 1, a triangle for n = 2,
a tetrahedron for n = 3 or a pentatope [130] for n = 4. We call a decomposition
Th := {τ1, ..., τN} of the domain D ⊂ Rn into nonoverlapping simplicial elements
τ` ⊂ Rn a triangulation or mesh, i.e.,

D =
N⋃
`=1

τ ` and τ` ∩ τk = ∅ for k 6= `.

Further we call a triangulation admissible if for two simplicial elements τk, τ` ∈ Th
with k 6= ` we have either

τ k ∩ τ ` = ∅ or τ ` ∩ τ k = S,

where S is an n − j-dimensional face of τk and τ` with j = 1, ..., n. This means in
an admissible triangulation two neighboring simplicial elements join either a node
(n = 1, 2, 3, 4), an edge (n = 2, 3, 4), a triangle (n = 3, 4) or a tetrahedron (n = 4),
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i.e., we avoid hanging nodes, see e.g. [156]. We use M̃ to denote the number of
vertices {xi}M̃i=1 of a triangulation. For an element τ ∈ Th we denote with

hτ := |τ |
1
n =

(∫
τ

dx

) 1
n

the local mesh size. The global maximal and minimal mesh sizes are given as

h := hmax,Th := max
τ∈Th

hτ and hmin,Th := min
τ∈Th

hτ .

In addition to that we define the diameter of an element τ ∈ Th as

dτ := sup
x,y∈τ
|x− y|,

which coincides with the longest edge of the element and

rτ := sup
x∈τ
{r > 0 : Br(x) ⊂ τ}

which is the radius of the largest ball that can be inscribed in τ . We say that a
family of admissible triangulations (Th)h∈I is shape regular, see [156], if there exists
a constant cF > 0 independent of Th such that

dτ ≤ cF rτ for all τ ∈ Th and h ∈ I.

We say that a family of admissible triangulations (Th)h∈I is globally quasi-uniform if
there exists a constant cG > 1 independent of h such that

hmax,Th
hmin,Th

≤ cG for all h ∈ I.

Moreover, (Th)h∈I is locally quasi-uniform if there exists a constant cL > 0 indepen-
dent of h such that

hτ`
hτj
≤ cL,

for all neighboring elements τ ` ∩ τ j 6= ∅ in Th and for all h ∈ I. Now, we are in a
position to define the finite element spaces which we use throughout the thesis. For
this let Th be an admissible triangulation of D. The space of globally continuous and
piecewise polynomial functions of order k is defined as

Skh(Th) :=
{
vh ∈ C(D) : vh|τ ∈ Pk(τ) for all τ ∈ Th

}
, (2.8)

where Pk(τ) denotes the set of all polynomials up to order k, i.e.,

Pk(τ) :=

p : τ → R : p(x) =
∑

α∈Nn0 , |α|≤k

cαx
α, cα ∈ R

 .
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Sometimes we will also use the notation Skh(D) for the space defined in (2.8). Of
particular interest in our considerations is the space S1

h(Th) of piecewise linear finite
elements. This space allows the representation

S1
h(Th) = span{ϕi}M̃i=1 ⊂ H1(D),

where ϕi are the usual nodal basis functions satisfying ϕi(xk) = δik. Note that the
dimension of this space is equal to the number of vertices of the triangulation Th.
For n = 1, 2, 3 one can show the following approximation property.

Theorem 2.13 ([156, Thm. 9.10]). Let u ∈ Hs(Th) with s ∈ [σ, 2] and σ = 0, 1.
Then there holds the approximation property

inf
vh∈S1

h(Th)
‖u− vh‖Hσ(Th) ≤ chs−σ|u|Hs(Th). (2.9)

Remark 2.14. The approximation property (2.9) is also valid for n = 4, see e.g.
[118, Thm. 2.35]. However, for the proof one needs to construct a quasi-interpolation
operator since the nodal interpolation operator is not a well-defined operator for func-
tions in H2(D) with D ⊂ R4.



3 Least-squares/minimal residual method

In this chapter we aim to derive a least-squares method for the solution of an abstract
operator equation Bu = f . In particular, we consider the Hilbert spaces X, Y , a
given right-hand side f ∈ Y ∗ and an abstract operator B : X → Y ∗ which in practical
applications is given in terms of a partial differential operator. Then, we seek for
u ∈ X which solves

Bu = f in Y ∗. (3.1)

The usual way to treat (3.1) is to consider some conforming, finite dimensional sub-
spaces XH ⊂ X and Yh ⊂ Y and to solve the Galerkin-Petrov variational formula-
tion

〈BuH , qh〉H = 〈f, qh〉H for all qh ∈ Yh, (3.2)

where 〈., .〉H denotes the dual paring. Existence and uniqueness of (3.2) is based on a
discrete inf-sup condition as well as dim(XH) = dim(Yh), see Theorem 2.5. However,
the choice dim(XH) = dim(Yh) is in certain applications too restrictive. Therefore,
we are interested in an alternative solution method which comes along without the
latter condition on the discrete spaces since this will enlarge the set of possible stable
pairs (XH , Yh), cf. [118]. For this reason we consider a minimal residual method for
the solution of (3.1). This method looks for a minimizer u ∈ X to the quadratic
functional

J (w) =
1

2
‖Bw − f‖2

Y ∗ . (3.3)

From (3.3) it can be seen that the residual is measured with respect to the natural
norm given by the mapping properties of B. However, in many applications the norm
on Y ∗ is a norm in a Sobolev space with a negative exponent, and therefore one may
ask how to deal with this norm. We will address this question in Section 3.1, where
we will also derive the minimal residual method and show that its solution is on the
continuous level equivalent to the solution of the operator equation (3.1). Further,
we will discuss its discretization and show a priori error estimates. The fact that the
method is well-posed for dim(XH) 6= dim(Yh) enables us to show that this method
gives rise to an efficient and reliable a posteriori error indicator, which can be used
to drive an adaptive refinement scheme. Moreover, at several points we will highlight
the connection to a Petrov-Galerkin method with optimal test space [52], as this will
give us some fruitful insights on the choice of the test space Yh. In Section 3.2 we
will extend the approach to the solution of nonlinear operator equations. We will
discuss a formal derivation of the method as well as possible solution methods.

19
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For the presentation of the results in the linear case we will follow the lines in [106].
However, there are several papers which already deal with a similar approach, see
e.g., [46, 47, 127] in case of minimal residual methods, [6] in case of linear parabolic
evolution equations, [36, 52, 84, 85] for DPG methods. For a least-squares method in
the context of boundary element methods we refer the interested reader to [158] for
elliptic problems as well as to [93] for the wave equation in a space-time setting.

3.1 An abstract framework for linear problems

Throughout this section we let X ⊂ H ⊂ X∗ and Y ⊂ H ⊂ Y ∗ be Gelfand triples
of Hilbert spaces, where X∗, Y ∗ denote the dual spaces of X and Y with respect to
H with the duality pairing 〈f, q〉H for f ∈ Y ∗ and q ∈ Y . Further, we consider an
operator A : Y → Y ∗ which we assume to be linear, bounded, self-adjoint and Y-
elliptic. With this it immediately follows by Lemma 2.4 that the operator A implies
a norm in Y . In what follows we will use the induced norm by the operator A, i.e.,

‖q‖Y :=
√
〈Aq, q〉H for all q ∈ Y.

Moreover, in order to derive a least-squares method for the abstract operator equation
(3.1) we introduce some assumptions on the operator B : X → Y ∗.

Assumption 3.1. We assume that the operator B fulfills the following conditions:

(i) B is linear and bounded, i.e., there exists a constant cB2 > 0 such that

‖Bv‖Y ∗ ≤ cB2 ‖v‖X

for all v ∈ X.

(ii) B satisfies an inf-sup condition, i.e., there exists a constant cB1 > 0 such that

sup
06=q∈Y

〈Bv, q〉H
‖q‖Y

≥ cB1 ‖v‖X (3.4)

for all v ∈ X.

(iii) B is surjective.
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3.1.1 Solvability analysis

In view of the Assumptions 3.1 an application of Theorem 2.5 gives that B : X → Y ∗

is an isomorphism and that the operator equation (3.1) obtains a unique solution
u ∈ X. For the derivation of a minimal residual method we use the following repre-
sentation of the dual norm

‖f‖Y ∗ := sup
06=q∈Y

〈f, q〉H
‖q‖Y

. (3.5)

Lemma 3.2 ([106, Lem. 2.1]). For the dual norm (3.5) there holds

‖f‖Y ∗ =
√
〈A−1f, f〉H for all f ∈ Y. (3.6)

Proof. Let f ∈ Y ∗ and consider pf ∈ Y as the unique solution of the variational
problem

〈Apf , q〉H = 〈f, q〉H ∀q ∈ Y.
This means pf = A−1f and using Lemma 2.3 it holds that ‖pf‖Y ≤ ‖f‖Y ∗ . Now, we
can estimate 〈

A−1f, f
〉
H

= 〈pf , f〉H ≤ ‖pf‖Y ‖f‖Y ∗ ≤ ‖f‖
2
Y ∗ .

On the other hand we have

‖f‖Y ∗ = sup
06=q∈Y

〈f, q〉H
‖q‖Y

= sup
06=q∈Y

〈Apf , q〉H
‖q‖Y

≤ ‖pf‖Y = ‖A−1f‖Y =
√
〈f, A−1f〉H .

Combining the estimates we get

‖f‖Y ∗ =
√
〈A−1f, f〉H = ‖pf‖Y .

Remark 3.3. In literature the operator A : Y → Y ∗ is called Riesz operator and
pf ∈ Y is called Riesz representative of f ∈ Y ∗. Further, the equality ‖f‖Y ∗ =
‖Apf‖Y ∗ = ‖pf‖Y = ‖A−1f‖Y tells us that the Riesz operator is an isometry which
is a well-known property of this operator, see e.g., [25, Thm. 5.5], [143, Satz 10.3].

Now, we are in a position to consider the quadratic functional (3.3). We first note
that due to Lemma 3.2 we can write

J (w) =
1

2
‖Bw − f‖Y ∗ =

1

2

〈
A−1(Bw − f), Bw − f

〉
H

=
1

2

〈
B∗A−1Bw,w

〉
H
−
〈
B∗A−1f, w

〉
H

+
1

2

〈
A−1f, f

〉
H
.
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A necessary condition for a minimizer to the quadratic functional is that it needs to
satisfy the first-order optimality system, which in this case reads

0 = DJ (w)(v) =
d

dt
J (w + tv)

∣∣∣∣
t=0

=
〈
B∗A−1(Bw − f), v

〉
H

for all v ∈ X. This means a candidate u ∈ X for the minimizer of the quadratic
functional has to solve

Su := B∗A−1Bu = B∗A−1f in X∗. (3.7)

In the following we will collect some properties of the operator S. This will help us
to state existence and uniqueness results to the solution of (3.7).

Lemma 3.4 ([106, Lem. 2.2]). The operator S := B∗A−1B : X → X∗ is bounded
and elliptic, i.e.,

‖Su‖X∗ ≤ cS2 ‖u‖X , 〈Su, u〉H ≥ cS1 ‖u‖2
X for all u ∈ X,

where cS2 = [cB2 ]2, cS1 = [cB1 ]2.

Proof. Let u ∈ X. Then, using that A−1 is an isometry, see Remark 3.3, and that B
is bounded we obtain

‖Su‖X∗ = sup
06=v∈X

〈Su, v〉H
‖v‖X

= sup
06=v∈X

〈A−1Bu,Bv〉H
‖v‖X

≤ sup
06=v∈X

‖A−1Bu‖Y ‖Bv‖Y ∗
‖v‖X

= sup
06=v∈X

‖Bu‖Y ∗‖Bv‖Y ∗
‖v‖X

≤ [cB2 ]2‖u‖X .

In order to prove that S : X → X∗ is X-elliptic we define pu = A−1Bu ∈ Y . With
this we get

〈Su, u〉H =
〈
A−1Bu,Bu

〉
H

= 〈pu, Apu〉H = ‖pu‖2
Y .

Moreover, using the inf-sup condition (3.4) of the operator B, we obtain

cB1 ‖u‖X ≤ sup
0 6=q∈Y

〈Bu, q〉H
‖q‖Y

= sup
06=q∈Y

〈Apu, q〉H
‖q‖Y

≤ ‖pu‖Y ,

i.e.,
〈Su, u〉H = ‖pu‖2

Y ≥ [cB1 ]2‖u‖2
X .

Remark 3.5. Since the operator S : X → X∗ is elliptic it immediately follows from
Lemma 2.4 that

‖v‖S :=
√
〈Sv, v〉H =

√
〈A−1Bv,Bv〉H = ‖Bv‖Y ∗

defines an equivalent norm on X satisfying

cB1 ‖v‖X ≤ ‖v‖S ≤ cB2 ‖v‖X for all v ∈ X.
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The properties of the operator S ensure that the first-order optimality system (3.7) is
uniquely solvable due to the Lemma of Lax-Milgram, see Lemma 2.3. Using [179, Sec.
2.2, Thm. 2.A] the solution u ∈ X to (3.7) is indeed a minimizer to the quadratic
functional (3.3) since for the second directional derivative we have

D2J (u)(v) =
d2

dt2
J (u+ tv)

∣∣∣∣
t=0

= 〈Sv, v〉H > 0 ∀v ∈ X \ {0}, (3.8)

due to the ellipticity of S. The following theorem summarizes our findings so far and
draws the connection between solving the operator equation (3.1) and looking for a
minimizer to the quadratic functional (3.3).

Theorem 3.6. Let A : Y → Y ∗ be linear, bounded, self-adjoint and Y-elliptic. Let
B : X → Y ∗ be linear, bounded, satisfying an inf-sup condition and surjective.
Further, let f ∈ Y ∗ be a given right-hand side. Then, the following statements hold
true:

(i) The problem: Find u ∈ X such that Bu = f in Y ∗ has a unique solution.

(ii) The problem: J (w) = 1
2
‖Bw − f‖2

Y ∗ → min! has a unique solution.

(iii) Statements (i) and (ii) are equivalent and obtain the same solution.

Proof. It remains to prove (iii). Let u ∈ X be a solution to (i), i.e., Bu = f
in Y ∗. Then, u ∈ X is also a solution to the first-order optimality system since
B∗A−1(Bu− f) = 0 in X∗. Moreover, the second order directional derivative (3.8) is
positive and hence u is minimizer, i.e., solves (ii). For the other direction we assume
u ∈ X to be a solution to (ii). Then, u ∈ X solves the first-order optimality system
B∗A−1(Bu− f) = 0 in X∗. Using that the operators A : Y → Y ∗ and B : X → Y ∗

are isomorphisms due to the assumptions it has to hold Bu = f in Y ∗, i.e., u ∈ X
solves (i).

Remark 3.7. Theorem 3.6 states that one can consider the equivalent minimization
problem for the solution of an operator equation. While the corresponding variational
formulation of the operator equation can be of Petrov-Galerkin type the resulting
operator S of the first-order optimality system will always be an elliptic operator,
i.e., the corresponding variational formulation will be of Galerkin-Bubnov type.

Remark 3.8. The first-order optimality system (3.7) is sometimes called the normal
equation, cf. [21, p. 52]. In our case this equation also involves the operator A−1.

In the following we will deal with the first-order optimality system (3.7) in more
detail. The Galerkin-Bubnov variational formulation is to find u ∈ X such that

〈Su, v〉H =
〈
B∗A−1f, v

〉
H

(3.9)

is satisfied for all v ∈ X.
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Remark 3.9. Note that (3.9) can also be viewed as a Petrov-Galerkin variational
formulation with optimal test space. Indeed, choosing Y opt := A−1B(X) the varia-
tional formulation (3.9) reads to find u ∈ X sucht that

〈Bu, q〉H = 〈f, q〉H for all q ∈ Y opt. (3.10)

This point of view is taken e.g. in [36, 52, 53, 84].

Since the operator S = B∗A−1B involves the operator A−1 which in practical appli-
cations is hard to compute we introduce an additional variable p := A−1(f − Bu).
This is the Riesz representative of the residual. Now, (3.7) can be rewritten as a
mixed system, which reads to find (u, p) ∈ X × Y such

Ap+Bu = f in Y ∗, B∗p = 0 in X∗. (3.11)

The related variational formulation is to find (u, p) ∈ X × Y such that

〈Ap, q〉H + 〈Bu, q〉H = 〈f, q〉H , 〈p,Bv〉H = 0 (3.12)

for all (v, q) ∈ X × Y . Note that by construction it holds that p ≡ 0, since p ∈
ker(B∗) = ran(B)⊥ = {0}.

3.1.2 Discretization

For the discretization of the mixed system (3.12) we consider conforming finite di-
mensional subspaces XH = span{ϕi}MX

i=1 ⊂ X and Yh = span{ψj}MY
j=1 ⊂ Y . The

discrete variational formulation of (3.12) is then to find (uH , ph) ∈ XH × Yh such
that

〈Aph, qh〉H + 〈BuH , qh〉H = 〈f, qh〉H , 〈ph, Bvh〉H = 0, (3.13)

for all (vH , qh) ∈ XH × Yh. Using the Galerkin isomorphism uH ↔ u ∈ RMX and
ph ↔ p ∈ RMY the variational formulation (3.13) has an equivalent representation as
a linear system of algebraic equations which reads(

Ah Bh

B>h

)(
p
u

)
=

(
f
0

)
, (3.14)

where, for i, j = 1, . . . ,MY and k = 1, . . . ,MX ,

Ah[j, i] = 〈Aψi, ψj〉H , Bh[j, k] = 〈Bϕk, ψj〉H , fj = 〈f, ψj〉H .

For the unique solvability of (3.13) and hence (3.14) we assume in the following the
discrete inf-sup condition

cS‖vH‖X ≤ sup
06=qh∈Yh

〈BvH , qh〉H
‖qh‖Y

for all vH ∈ XH , (3.15)
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with a constant cS > 0, see Theorem 2.7. In order to derive an error estimate we
consider the equivalent Schur complement system of (3.14). Using p = A−1

h (f−Bhu)
we obtain the discrete Schur complement system

Shu := B>h A
−1
h Bhu = B>h A

−1
h f. (3.16)

In the following we collect some properties of the Schur complement matrix Sh.

Lemma 3.10. Assume the discrete inf-sup stability condition (3.15) to be satisfied.
Then the Schur complement matrix Sh = B>h A

−1
h Bh is positive definite and there hold

the norm equivalence inequalities

[cS]2 ‖vH‖2
X ≤ (Shv, v) ≤ [cB2 ]2‖vH‖2

X (3.17)

for all v ∈ RMX ↔ vH ∈ XH .

Proof. For vH ∈ XH ↔ v ∈ RMX we introduce p
v

:= A−1
h Bhv ∈ RMY ↔ pvHh ∈ Yh,

which solves
〈ApvHh, qh〉H = 〈BvH , qh〉H for all qh ∈ Yh.

Thus, we obtain

(Shv, v) = (A−1
h Bhv,Bhv) = (p

v
, Bhv) = (Ahpv, pv) = ‖pvHh‖2

Y

The discrete inf-sup stability condition (3.15) implies

cS‖vH‖X ≤ sup
06=qh∈Yh

〈BvH , qh〉H
‖qh‖Y

= sup
0 6=qh∈Yh

〈ApvHh, qh〉H
‖qh‖Y

≤ ‖pvHh‖Y ,

and hence,
c2
S‖vH‖2

X ≤ ‖pvHh‖2
Y = (Shv, v).

For the upper estimate we note that

‖pvHh‖Y ≤ cB2 ‖vH‖X ,

and therefore the inequality

(Shv, v) = ‖pvHh‖2
Y ≤ [cB2 ]2‖vH‖2

X

follows.

Now, we are in a position to prove the following best approximation result, see also
[6, Thm. 2.1].
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Lemma 3.11. Assume the discrete inf-sup stability condition (3.15). Then, the Schur
complement system (3.16) admits a unique solution u ∈ RMX ↔ uH ∈ XH with the
a priori estimate

‖uH‖X ≤
1

cS
‖f‖Y ∗ . (3.18)

Moreover, the error estimate

‖u− uH‖X ≤
cB2
cS

inf
vH∈XH

‖u− vH‖X , (3.19)

holds true, where u ∈ X solves (3.9).

Proof. The unique solvability of (3.16) follows since the matrix Sh is positive definite,
see Lemma 3.10. For the a priori estimate we consider

(Shu, u) = (B>h A
−1
h f, u) = (A−1

h f,Bhu) ≤ ‖f‖A−1
h
‖Bhu‖A−1

h
.

If we use
‖Bhu‖2

A−1
h

= (A−1
h Bhu,Bhu) = (Shu, u),

we obtain the estimate

(Shu, u) ≤ ‖f‖2
A−1
h

= (A−1
h f, f) = (Ahpf , pf ) = 〈Apfh, pfh〉H ,

where p
f
∈ RMY ↔ pfh ∈ Yh solves

〈Apfh, qh〉H = 〈f, qh〉H for all qh ∈ Yh.

Since ‖pfh‖Y ≤ ‖f‖Y ∗ and using (3.17) we finally obtain the estimate

c2
S‖uH‖2

X ≤ (Shu, u) ≤ ‖f‖2
Y ∗ ,

which gives the a priori estimate. In order to prove the best approximation result
we define the Galerkin projection GH : X → XH , u 7→ uH = GHu which maps an
arbitrary element u ∈ X via f = Bu ∈ Y ∗ to a solution uH ∈ XH ↔ u ∈ RMX

of (3.16). The mapping GH is linear due to the linearity of the involved operators.
Furthermore, an application of the a priori estimate (3.18) and the fact that Bu = f
gives

‖GHu‖X = ‖uH‖X ≤
1

cS
‖f‖Y ∗ =

1

cS
‖Bu‖Y ∗ ≤

cB2
cS
‖u‖X ,

i.e., GH is bounded. In addition to that GH is indeed a projection. To see this we
consider wH := GHuH . By defintion of the mapping GH it holds that wH ∈ XH ↔
w ∈ RMX solves (3.16) for the right-hand side f = BuH ↔ f = Bhu ∈ RMY , i.e.,

Shw = B>h A
−1
h f = B>h A

−1
h Bhu = Shu.
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Now, using that the Schur complement matrix is invertible we obtain w = u, which
gives GHuH = uH and hence

G2
Hu = GH(GHu) = GHuH = uH ,

i.e., GH is a projection. Finally, using GHvH = vH , ‖I −GH‖X→X = ‖GH‖X→X , see
[173, Lem. 5] and the boundedness of GH we obtain the estimate

‖u− uH‖X = ‖(I −GH)u‖X = ‖(I −GH)(u− vH)‖X
≤ ‖I −GH‖X→X‖u− vH‖X = ‖GH‖X→X‖u− vH‖X

≤ cB2
cS
‖u− vH‖X .

Since vH ∈ XH was arbitrary the assertion follows.

3.1.3 A posteriori error estimator

So far, we have seen that a minimizer u ∈ X to (3.3) can be computed from the first-
order optimality system (3.7) and that this system obtains the representation as the
saddle point system (3.11), when introducing the Riesz representative of the residual
p = A−1(f −Bu). While in the continuous setting we have p ≡ 0, the discrete mixed
variational formulation (3.13) gives ph ∈ Yh ↔ p = A−1

h (f−Bhu) 6= 0 as the Galerkin
matrix Bh is in general not invertible, cf. [106]. This is a consequence of the fact
that we only need injectivity on the discrete level for the operator B, see the discrete
inf-sup condition (3.15), in order to get well-posedness of (3.13), see Theorem 2.7.
Therefore, the Galerkin matrix Bh is in general a rectangular matrix as dim(XH) 6=
dim(Yh). In this sense, the minimal residual approach for the solution of Bu = f gives
us on the discrete level more flexibility in the choice of stable pairs (XH , Yh) than a
standard Galerkin-Petrov scheme where one has to enforce dim(XH) = dim(Yh) in
order to get solvability. However, we introduce some additional unknowns which in
terms of computational costs can be seen as a disadvantage, cf. [118]. But, in the
following we will show that the additional unknown ph can be used to define an error
estimator for the true error ‖u − uH‖X . This has also been demonstrated, e.g., in
[36, Thm. 2.1] or [127, Prop. 3.8]

Lemma 3.12 ([106, Lem. 2.5]). Let (uH , ph) ∈ XH × Yh be the unique solution of
(3.13). Then, there holds the efficiency estimate

‖ph‖Y ≤ cB2 ‖u− uH‖X . (3.20)

Proof. We subtract (3.13) from (3.12) for q = qh ∈ Yh ⊂ Y and v = vH ∈ XH ⊂ X
to obtain the Galerkin orthogonalities

〈A(p− ph), qh〉H + 〈B(u− uH), qh〉H = 0, 〈p− ph, BvH〉H = 0 (3.21)
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for (vH , qh) ∈ XH × Yh. Since p ≡ 0 they boil down to

〈Aph, qh〉H = 〈B(u− uH), qh〉H , 〈BvH , ph〉H = 0

for all (vH , qh) ∈ XH × Yh. Testing with qh = ph ∈ Yh gives

‖ph‖2
Y = 〈Aph, ph〉H = 〈B(u− uH), ph〉H ≤ cB2 ‖u− uH‖X‖ph‖Y ,

from which we conclude the result.

In order to prove a reliability estimate we make use of the fact, see e.g. [28, Rem.
2.1], [127, Thm. 3.7], [164, Prop. 5.1], that the discrete inf-sup stability condition
(3.15) implies the existence of a Fortin projector [23, 68].

Lemma 3.13. Assume the discrete inf-sup stability condition (3.15). Then, there
exists a mapping Πh : Y → Yh, satisfying

〈r − Πhr, BvH〉H = 0 for all vH ∈ XH , ‖Πhr‖Y ≤
cB2
cS
‖r‖Y for all r ∈ Y. (3.22)

Proof. The mapping can be constructed when defining Πh : Y → Yh, r 7→ Πhr, as
the second component of the solution (wH , rh) ∈ XH × Yh of the variational problem

〈Arh, qh〉H − 〈BwH , qh〉H = 0, 〈rh, BvH〉H = 〈r, BvH〉H

for all (vH , qh) ∈ XH × Yh. This mixed system reads in terms of algebraic equations
as

Ahr −Bhw = 0, B>h r = g,

where g[i] = 〈r, Bϕi〉, i = 1, ...,MX . The unique solvability of this system follows
since the associated Schur complement system Shw = g admits a unique solution
due to Lemma 3.10. Therefore, the mapping is well-defined and fulfills the condition
〈r − Πhr, BvH〉H = 0, for all vH ∈ XH . Moreover, we have

‖rh‖2
Y = 〈Arh, rh〉H = 〈BwH , rh〉H = 〈BwH , r〉H ≤ cB2 ‖wH‖X‖r‖Y .

When using the discrete inf-sup condition (3.15) we obtain

cS‖wH‖X ≤ sup
06=qh∈Y

〈BwH , qh〉H
‖qh‖Y

= sup
06=qh∈Yh

〈Arh, qh〉H
‖qh‖Y

≤ ‖rh‖Y .

Finally, combining the latter two estimates we get

‖rh‖Y ≤
cB2
cS
‖r‖Y ,

which finishes the proof.
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Now, we can prove a reliability estimate for ph ∈ Yh, see [36, cf. Thm. 2.1] in the
context of DPG methods.

Lemma 3.14. Let (uH , ph) ∈ XH ×Yh be the unique solution to (3.13) and let u ∈ X
be the unique solution to (3.1). Then, ph ∈ Yh is reliable modulo the data oscillation
term osc(f) = ‖f ◦ (I − Πh)‖Y ∗, i.e., it satisfies

‖u− uH‖X ≤
1

cS

cB2
cB1
‖ph‖Y +

1

cB1
osc(f) . (3.23)

Proof. Using the inf-sup condition (3.4) and the properties of the Fortin projector
(3.22) we obtain

cB1 ‖u− uH‖X ≤ sup
06=q∈Y

〈B(u− uH), q〉H
‖q‖Y

= sup
06=q∈Y

〈B(u− uH), q − Πhq〉H + 〈B(u− uH),Πhq〉H
‖q‖Y

= sup
06=q∈Y

〈Bu, q − Πhq〉H + 〈Aph,Πhq〉H
‖q‖Y

= sup
06=q∈Y

〈f, q − Πhq〉H + 〈Aph,Πhq〉H
‖q‖Y

≤ osc(f) +
cB2
cS
‖ph‖Y ,

which gives the assertion.

As pointed out in [36, Thm. 2.1, Rem. 2.6], [127, Rem. 3.9] for the data oscillation
term it holds

osc(f) = sup
06=q∈Y

〈f, (I − Πh)q〉H
‖q‖Y

= sup
06=q∈Y

〈Bu, (I − Πh)q〉H
‖q‖Y

= sup
06=q∈Y

〈B(u− vH), (I − Πh)q〉H
‖q‖Y

≤ cB2 ‖I − Πh‖Y→Y ‖u− vH‖X ,

i.e., with ‖I − Πh‖Y→Y = ‖Πh‖Y→Y , see again [173, Lem. 5] and (3.22) we get

osc(f) ≤ [cB2 ]2

cS
inf

vH∈XH
‖u− vH‖X .

This means the data oscillation term is at least of the same order as the true error
‖u − uH‖X . However, for sufficiently smooth data we can expect that the data
oscillation term is of higher order than ‖u − uH‖X , in particular when using trial
and test spaces which are defined with respect to different polynomial degrees of the
involved basis functions, see [36]. In this case the error indicator ph is asymptotically
reliable.
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In what follows we will give an alternative proof for the reliability estimate, which
follows the lines [106]. This is motivated by the paper [59] which states that small
data oscillations imply a so-called saturation assumption. Furthermore, it draws a
connection to the hierarchical error estimators, in particular the well-known h − h

2

estimator, see e.g., [37, 67]. To prove a reliability estimate in this context it is
necessary to introduce an additional ansatz space X̄H ⊂ X which satisfies XH ⊂ X̄H .
For this trial space we assume the discrete inf-sup stability condition

c̄S‖v̄H‖X ≤ sup
06=qh∈Yh

〈Bv̄H , qh〉H
‖qh‖Y

for all v̄H ∈ X̄H , (3.24)

with a constant c̄S > 0. Due to XH ⊂ X̄H it holds that (3.24) implies the discrete
inf-sup stability condition (3.15). In addition to that we consider (ūH , p̄h) ∈ X̄H×Yh
as the unique solution to the variational formulation

〈Ap̄h, qh〉H + 〈BūH , qh〉H = 〈f, qh〉H , 〈p̄h, Bv̄H〉H = 0 (3.25)

for all (v̄H , qh) ∈ X̄H × Yh. Now, we are able to prove the following estimate.

Lemma 3.15 (cf. [106, Lem. 2.6]). Let (uH , ph) ∈ XH × Yh and (ūH , p̄h) ∈ X̄H × Yh
be the unique solutions of the Galerkin variational formulations (3.13) and (3.25),
respectively. Assume the saturation assumption

‖u− ūH‖X ≤ η ‖u− uH‖X for some η ∈ (0, 1). (3.26)

Then the error estimator ‖ph‖Y is reliable, satisfying

‖u− uH‖X ≤
1

1− η
1

c̄S
‖ph‖Y . (3.27)

Proof. When subtracting the Galerkin variational formulation (3.25) from (3.13) we
obtain the Galerkin orthogonality

〈B(ūH − uH), qh〉H = 〈A(ph − p̄h), qh〉H for all qh ∈ Yh. (3.28)

Since ūH − uH ∈ X̄H we conclude from the discrete inf-sup stability condition (3.24)

c̄S‖ūH − uH‖X ≤ sup
06=qh∈Yh

〈B(ūH − uH), qh〉H
‖qh‖Y

= sup
06=qh∈Yh

〈A(ph − p̄h), qh〉H
‖qh‖Y

≤ ‖ph − p̄h‖Y .

Further, by the second equation in (3.25) we have that 〈p̄h, B(ūH − uH)〉H = 0. With
this and the Galerkin orthogonality (3.28) we can estimate

‖ph − p̄h‖2
Y = 〈A(ph − p̄h), ph − p̄h〉H = 〈B(ūH − uH), ph − p̄h〉H

= 〈B(ūH − uH), ph〉H = 〈A(ph − p̄h), ph〉H ≤ ‖ph − p̄h‖Y ‖ph‖Y ,
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i.e.,
‖ph − p̄h‖Y ≤ ‖ph‖Y .

Hence, we obtain

‖ūH − uH‖X ≤
1

c̄S
‖ph − p̄h‖Y ≤

1

c̄S
‖ph‖Y ,

Finally, using the triangle inequality and the saturation assumption (3.26) we get

‖u− uH‖X ≤ ‖u− ūH‖X + ‖ūH − uH‖X ≤ η‖u− uH‖X +
1

c̄S
‖ph‖Y

from which the assertion follows.

Since XH ⊂ X̄H we expect that the solution ūH will be a better approximation to the
true solution u ∈ X than uH ∈ XH . The saturation assumption (3.26) is a condition
which quantifies how much better this approximation is, cf. [4, p. 88]. However, as
pointed out in [118, Rem. 5.9] it is hard to verify that such a condition is fulfilled
for explicit examples, see also [38].

3.1.4 On the choice of the test space Yh

In this subsection we want to address the question on how large do we have to choose
Yh such that the discrete inf-sup condition (3.15) holds.

Let us consider the variational formulation (3.9). The discrete variational formulation
is to find ūH ∈ XH such that

〈SūH , vH〉H =
〈
B∗A−1f, vH

〉
H

for all vH ∈ XH . (3.29)

Obviously, (3.29) admits a unique solution due to the ellipticity of S, see Lemma 3.4.
As pointed out in e.g. [52, 84] it can be viewed as an ideal Petrov-Galerkin method
which seeks for ūH ∈ XH satisfying

〈BūH , qH〉H = 〈f, qH〉H for all qH ∈ Y opt
H := T (XH) := A−1B(XH),

where Y opt
H is called optimal test space and T : X → Y is called trial-to-test operator.

The choice Yh = Y opt
H yields immediately the discrete inf-sup condition since

sup
06=qh∈Y optH

〈BvH , qh〉H
‖qh‖Y

≥ 〈BvH , A
−1BvH〉H

‖A−1BvH‖Y
=
〈SvH , vH〉H
‖vH‖S

= ‖vH‖S ≥ cB1 ‖vH‖X .

However, the optimal test space is in general not realizable as the trial-to-test opera-
tor T does not allow for a direct evaluation. Hence, ūH is in general not computable.
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From the Schur complement system (3.16) we infer that the computable solution
uH ∈ XH satisfies

〈BuH , qh〉H = 〈f, qh〉H for all qh ∈ Y prac
H := PhY

opt
H ⊂ Yh, (3.30)

where Ph : Y → Yh denotes the orthogonal projection. This means the solution uH is
computed with respect to a practical realization Y prac

H ⊂ Yh of the optimal test space,
which is the orthogonal projection of the optimal test space Y opt

H onto Yh. Note that
(3.30) is also called practical Petrov-Galerkin method, see e.g. [85].

Remark 3.16. In [52] it is shown how to construct optimal test functions for the
practical Petrov-Galerkin method (3.30) in a Discontinuous Galerkin (DG) setting.
An analysis of the DPG method in case of the Poisson equation can be found in
[51, 53, 85]. In these references an ultraweak formulation based on a first-order
reformulation of the Poisson equation as well as a primal formulation without a
first-order reformulation are discussed. We use the saddle point formulation (3.13)
which is equivalent to (3.30), see e.g. [28, Prop. 2.2]. The saddle point formulation
involves the trial space XH and the test space Yh and not explicitly the practical
optimal test space Y prac

H . Moreover, we will use a Continuous Galerkin (CG) method
for the discretization. Note that this approach was also followed by [46].

A first insight into the connection between the optimal testspace Y opt
H and the test

space Yh gives the following result.

Theorem 3.17. Assume the discrete inf-sup condition (3.15). Then there holds

inf
qh∈Yh

‖p̄− qh‖Y ≤

√
1−

(
cS
cB2

)2

‖p̄‖Y for all p̄ ∈ Y opt
H (3.31)

Proof. First note that an element p̄ ∈ Y opt
H can be associated with an element vH ∈

XH via p̄ = A−1BvH . Now, we can define p̄h ∈ Yh as the unique solution to the
variational problem

〈Ap̄h, qh〉H = 〈BvH , qh〉H = 〈Ap̄, qh〉H for all qh ∈ Yh
satisfying the orthogonality relation

‖p̄− p̄h‖2
Y = ‖p̄‖2

Y − ‖p̄h‖2
Y .

Note that p̄h ∈ Y prac
H . Now, we can estimate

‖p̄h‖2
Y = 〈Ap̄h, p̄h〉H =

(
〈Ap̄h, p̄h〉H
‖p̄h‖Y

)2

=

(
sup

06=qh∈Yh

〈Ap̄h, qh〉H
‖qh‖Y

)2

=

(
sup

06=qh∈Yh

〈BvH , qh〉H
‖qh‖Y

)2

≥ c2
S‖vH‖2

X ≥
(
cS
cB2

)2

‖vH‖2
S =

(
cS
cB2

)2

‖p̄‖2
Y .
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With this we obtain

‖p̄− p̄h‖2
Y ≤

(
1−

(
cS
cB2

)2
)
‖p̄‖2

Y

Finally, using
inf
qh∈Yh

‖p̄− qh‖Y ≤ ‖p̄− p̄h‖Y

gives the desired result.

Remark 3.18. A slightly stronger statement is proven in [28, Prop. 2.5]. There it
is shown that in (3.31) even equality holds.

The assertion of Theorem 3.17 can be also reversed in the sense that for given space
XH it gives us an abstract condition on how rich the test space Yh in comparison
to the optimal test space Y opt

H has to be in order to fulfill a discrete inf-sup stability
condition.

Theorem 3.19 ([106, Thm. 2.7]). For a given finite element space XH ⊂ X let
Y opt
H = A−1B(XH) be the associated optimal test space. Further, let Yh ⊂ Y such

that
inf
qh∈Yh

‖p̄− qh‖Y ≤ δ‖p̄‖Y for all p̄ ∈ Y opt
H (3.32)

is satisfied for some δ ∈ (0, 1). Then, there holds the discrete inf-sup stability condi-
tion

cB1
√

(1− δ2)‖vH‖X ≤ sup
06=qh∈Yh

〈BvH , qh〉H
‖qh‖Y

for all vH ∈ XH . (3.33)

Proof. First note that an arbitrary element vH ∈ XH can be uniquely identified with
an element p̄ ∈ Y opt

H via p̄ = A−1BvH since the involved operators are isomorphisms.
Then we can compute

‖vH‖2
S = ‖p̄‖2

Y .

In addition to that we define p̄h ∈ Yh as unique solution of the Galerkin variational
formulation

〈Ap̄h, qh〉H = 〈BvH , qh〉H = 〈Ap̄, qh〉H for all qh ∈ Yh,

satisfying the bound
‖p̄h‖Y ≤ ‖p̄‖Y ,

Cea’s lemma,
‖p̄− p̄h‖Y ≤ inf

qh∈Yh
‖p̄− qh‖Y ,

and the orthogonality relation

‖p̄‖2
Y = ‖p̄h‖2

Y + ‖p̄− p̄h‖2
Y .
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Then, from (3.32) we obtain

‖p̄− p̄h‖Y ≤ δ‖p̄‖Y .

Hence, we can write(
sup

06=qh∈Yh

〈BvH , qh〉H
‖qh‖Y

)2

=

(
sup

06=qh∈Yh

〈Ap̄h, qh〉H
‖qh‖Y

)2

=

(
〈Ap̄h, p̄h〉H
‖p̄h‖Y

)2

= ‖p̄h‖2
Y = ‖p̄‖2

Y − ‖p̄− p̄h‖
2
Y

≥ (1− δ2)‖p̄‖2
Y

= (1− δ2)‖vH‖2
S

implying the inf-sup stability condition (3.33).

3.1.5 Discretization dependent norm for the ansatz space

As pointed out in [106], in some applications, e.g., when considering space-time finite
elements for parabolic evolution equations as in [157], it might be useful to define
a discretization dependent norm ‖.‖X,h on X in order to establish a discrete inf-sup
condition. So in this subsection we will show that the main results of the least-squares
framework are still valid. Again, we will follow the presentation in [106].

Let ‖.‖X,h : X → R define a norm on X which satisfies ‖v‖X,h ≤ ‖v‖X for all v ∈ X
and which is asymptotically equivalent to the original norm on X, i.e., ‖·‖X,h → ‖·‖X
as h→ 0. Assume that

c̃S‖vH‖X,h ≤ sup
06=qh∈Yh

〈BvH , qh〉H
‖qh‖Y

for all vH ∈ XH . (3.34)

Then the following stability and error estimate holds.

Lemma 3.20 ([106, cf. Lem. 2.8]). Assume the discrete inf-sup stability condition
(3.34). Then the Schur complement matrix Sh = B>h A

−1
h Bh is positive definite and

there hold the inequalities

[c̃S]2‖vH‖2
X,h ≤ (Shv, v) ≤ [cB2 ]2‖vH‖2

X (3.35)

for all v ∈ RMX ↔ vH ∈ XH . Furthermore, the Schur complement system (3.16)
as well as the mixed system (3.13) admit a unique solution and there holds the error
estimate

‖u− uH‖X,h ≤
cB2
c̃S

inf
vH∈XH

‖u− vH‖X . (3.36)
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Proof. The proof of the inequalities (3.35) follows the lines of the proof of Lemma
3.10 replacing the discrete inf-sup stability condition (3.15) with (3.34). This ensures
the unique solvability of (3.16), (3.13), respectively, since ‖.‖X,h defines a norm on
XH ⊂ X. The proof of the error estimate works in the same way as demonstrated
in Lemma 3.11, using (3.35) instead of (3.17).

In order to show that the error indicator is efficient and reliable, we can proceed
similar as in Section 3.1.3. We consider an additional ansatz space X̄H ⊂ X, which
satisfies XH ⊂ X̄H . For this trial space we assume the discrete inf-sup stability
condition

c̄S‖v̄H‖X,h ≤ sup
06=qh∈Yh

〈Bv̄H , qh〉H
‖qh‖Y

for all v̄H ∈ X̄H , (3.37)

with a constant c̄S > 0. Note that (3.37) implies the discrete inf-sup stability condi-
tion (3.34). Now, we can provide the following result.

Lemma 3.21. Let u ∈ X be the unique solution to (3.1), (uH , ph) ∈ XH × Yh be
the unique solution to (3.13) and (ūH , p̄h) be the unique solution to the variational
formulation (3.25). Further, assume that the operator B is also bounded with respect
to the discrete norm ‖ · ‖X,h, i.e.,

〈Bv, qh〉H ≤ cB2 ‖v‖X,h‖qh‖Y ∀v ∈ X, ∀qh ∈ Yh, (3.38)

and the saturation assumption

‖u− ūH‖X,h ≤ η‖u− uH‖X,h for some η ∈ (0, 1). (3.39)

Then there hold the inequalities

1

cB2
‖ph‖Y ≤ ‖u− uH‖X,h ≤

1

1− η
1

c̄S
‖ph‖Y ,

i.e., the error indicator ph is efficient and reliable.

Proof. The efficiency estimate can be proven in the same way as in Lemma 3.12 using
(3.38), i.e.,

‖ph‖2
Y = 〈Aph, ph〉H = 〈B(u− uH), ph〉H
≤ cB2 ‖u− uH‖X,h‖ph‖Y ,

from which the first inequality follows. For the reliability estimate we can follow
the lines of the proof of Lemma 3.15. We recall the main steps. Using the Galerkin
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orthogonality (3.28) and that ūH − uH ∈ X̄H we conclude from the discrete inf-sup
stability condition (3.37)

c̄S‖ūH − uH‖X,h ≤ sup
06=qh∈Yh

〈B(ūH − uH), qh〉H
‖qh‖Y

= sup
0 6=qh∈Yh

〈A(ph − p̄h), qh〉H
‖qh‖Y

≤ ‖ph − p̄h‖Y .

Further, using that 〈p̄h, B(ūH − uH)〉H = 0, which follows from (3.25), and the
Galerkin orthogonality (3.28) we obtain

‖ph − p̄h‖2
Y = 〈A(ph − p̄h), ph − p̄h〉H = 〈B(ūH − uH), ph − p̄h〉H

= 〈B(ūH − uH), ph〉H = 〈A(ph − p̄h), ph〉H
≤ ‖ph − p̄h‖Y ‖ph‖Y .

Hence, we conclude

‖ūH − uH‖X,h ≤
1

c̄S
‖ph‖Y .

Finally, using the triangle inequality and the saturation assumption (3.39) we get

‖u− uH‖X,h ≤ ‖u− ūH‖X,h + ‖ūH − uH‖X,h ≤ η‖u− uH‖X,h +
1

c̄S
‖ph‖Y

from which the assertion follows.

3.2 Extension to the nonlinear case

In this section we will extend the approach seen in Section 3.1 to the nonlinear
case. In the context of DPG methods there are some works dealing with nonlinear
problems. We want to mention the work [41], where a Gauß-Newton scheme is
used to solve a nonlinear minimal residual problem. A steepest descent approach
is considered in the PhD thesis [116], which is based on the works [26, 27], where
they solved a transonic flow problem. A PDE-constrained residual minimization
approach is considered [31]. Finally, in [35] the DPG framework is applied to a
nonlinear diffusion problem and quasi-optimal a priori and reliable and efficient a
posteriori error estimates are shown.

For the motivation of the least-squares approach in the nonlinear case we consider
two Hilbert spaces X, Y , and a nonlinear operator B : X → Y ∗. Then we are
interested to find a solution u ∈ X to the nonlinear operator equation

B(u) = f in Y ∗. (3.40)
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The discretization of (3.40) reads to find uH ∈ XH ⊂ X such that

〈B(uH), qh〉H = 〈f, qh〉H for all qh ∈ Yh ⊂ Y.

This leads to a system of nonlinear equations which can be solved with e.g. Newton’s
method [57]. In Newton’s method one computes a sequence of iterates {ukH}k ⊂ XH

which satisfy
uk+1
H = ukH + wkH ,

where wkH ∈ XH is the solution of the Newton system〈
B′(ukH)wkH , qh

〉
H

= −
〈
B(ukH)− f, qh

〉
H

for all qh ∈ Yh. (3.41)

For well-posedness of (3.41) one has to assume some discrete inf-sup stability conditon
as well as dim(XH) = dim(Yh). However, as pointed out in [118] the latter condition
is in some applications too restrictive as it narrows possible stable pairs (XH , Yh).
Therefore, in the following we will consider a minimal residual approach for the
solution of (3.40), which seeks for a minimizer u ∈ X to the least-squares functional

J(w) =
1

2
‖B(w)− f‖2

Y ∗ (3.42)

We start with an abstract derivation of the method and then discuss solution strate-
gies involving Newton’s as well as Gauß-Newton’s method.

3.2.1 Derivation of the method

As in the linear setting we consider X ⊂ H ⊂ X∗ and Y ⊂ H ⊂ Y ∗ to be Gelfand
triples of Hilbert spaces, where X∗, Y ∗ denote the dual spaces with respect to H
with the duality pairing 〈f, q〉H for f ∈ Y ∗ and q ∈ Y . Further, let A : Y → Y ∗ be a
linear, bounded, self-adjoint and Y -elliptic operator. In addition to that we consider
a nonlinear operator B : X → Y ∗ which we assume to be an isomorphism and twice
Fréchet differentiable.

The minimal residual method aims to find a minimizer u ∈ X to (3.42) which due
to Lemma 3.2 reads

J (w) =
1

2
‖B(w)− f‖2

Y ∗ =
1

2

〈
A−1(B(w)− f), B(w)− f

〉
H

=
1

2

〈
A−1B(w), B(w)

〉
H
−
〈
A−1f,B(w)

〉
H

+
1

2

〈
A−1f, f

〉
H

A minimizer u ∈ X to (3.42) has to fulfill the first-order optimality system which in
this case reads

DJ (u)(v) =
〈
B′(u)∗A−1(B(u)− f), v

〉
H

= 0 for all v ∈ X. (3.43)

In order to solve (3.43) we can apply Newton’s method, which gives the well-known
Newton minimization algorithm [133].
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Algorithm 3.22. Choose an initial guess u0 ∈ X.

For k = 0, 1, 2..., until convergence do

(i) Compute wku ∈ X as solution to

D2J (uk)(wku, v) = −DJ (uk)(v) for all v ∈ X. (3.44)

(ii) Set uk+1 = uk + wku.

In particular, (3.44) reads in our case〈
B′(uk)∗A−1B′(uk)wku, v

〉
H

+
〈
B′′(uk)(wku, v), A−1(B(uk)− f)

〉
H

= −
〈
B′(uk)∗A−1(B(uk)− f), v

〉
H

(3.45)

for all v ∈ X. In our numerical examples we do not apply Newton’s method directly to
(3.43). Instead, we first introduce similar as in the linear case the Riesz representative
of the residual p := A−1(f − B(u)) ∈ Y . Then (3.43) can be rewritten as a mixed
system to find (u, p) ∈ X × Y such that

Ap+B(u) = f in Y ∗, B′(u)∗p = 0 in X∗. (3.46)

The related variational formulation of the mixed system is then to find (u, p) ∈ X×Y
such that

〈Ap, q〉H + 〈B(u), q〉H = 〈f, q〉H , 〈p,B′(u)v〉H = 0 (3.47)

holds for all (v, q) ∈ X × Y . Now, we apply Newton’s method to the operator
G : Y ×X → Y ∗ ×X∗ defined by

G(p, u) :=

[
G1(p, u)
G2(p, u)

]
:=

[
Ap+B(u)− f

B′(u)∗p

]
,

which gives the following algorithm for the solution of (3.43).

Algorithm 3.23. Choose an initial guess z0 := (p0, u0) ∈ Y ×X.

For k = 0, 1, 2, ..., until convergence do

(i) Compute wk = (wkp , w
k
u) ∈ Y ×X as solution to〈

G′(pk, uk)(wkp , w
k
u), (q, v)

〉
H

= −
〈
G(pk, uk), (q, v)

〉
H
∀(q, v) ∈ Y ×X. (3.48)

(ii) Set zk+1 = zk + wk, where zk = (pk, uk).
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In more detail (3.48) reads to find (wkp , w
k
u) ∈ Y ×X such that〈

Awkp , q
〉
H

+
〈
B′(uk)wku, q

〉
H

= −
〈
G1(pk, uk), q

〉
H
,〈

wkp , B
′(uk)v

〉
H

+
〈
pk, B′′(uk)(wku, v)

〉
H

= −
〈
G2(pk, uk), v

〉
H

(3.49)

is satisfied for all (q, v) ∈ Y × X. The reason for the consideration of the optimal-
ity system (3.43) in its mixed form (3.46) is that it allows the computation of the
solution u as well as the Riesz representative of the residual simultaneously. This is
in particular interesting if one wants to use the Riesz lift of the residual to drive an
adaptive refinement scheme. Furthermore, we want to mention that the implemen-
tation of Algorithm 3.23 can be done via the automatic differentiability capabilities
of Netgen/NGSolve, which felt more convenient. Both Algorithms, i.e., 3.22, 3.23,
respectively, have in common that they need the second derivative of B. However, in
some cases one might be interested in a solution method which does not need the sec-
ond derivative of the operator B. One possibility is to use a Gauß-Newton method for
computing a minimizer to the nonlinear least-squares functional. In Gauß-Newton’s
method the second directional derivative in (3.44) is approximated by

D2J (uk)(wku, v) ≈
〈
B′(uk)∗A−1B′(uk)wku, v

〉
H
.

This results in the following algorithm.

Algorithm 3.24. Choose an initial guess u0 ∈ X.

For k = 0, 1, 2..., until convergence do

(i) Compute wku ∈ X as solution to〈
B′(uk)∗A−1B′(uk)wku, v

〉
H

= −
〈
B′(uk)∗A−1(B(uk)− f), v

〉
H

(3.50)

for all v ∈ X.

(ii) Set uk+1 = uk + wku.

Remark 3.25. In operator form (3.50) reads

B′(uk)∗A−1
[
B′(uk)wku +B(uk)− f

]
= 0,

i.e., the Gauß-Newton search direction wku ∈ X is the minimizer of the linearized
least-squares functional

wku = arg min
v∈X

1

2

∥∥B′(uk)v +B(uk)− f
∥∥2

Y ∗
.
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Remark 3.26. In order to overcome the realization of the inverse of A and to have
the Riesz representative of the residual explicitly available one can implement step (i)
in Algorithm 3.24 in the following way: First determine pk ∈ Y as solution to〈

Apk, q
〉
H

=
〈
B(uk)− f, q

〉
H

for all q ∈ Y.

Then solve the mixed system to find (wkp , w
k
u) ∈ Y ×X such that〈

Awkp , q
〉
H

+
〈
B′(uk)wku, q

〉
H

= 0,
〈
wkp , B

′(uk)v
〉
H

=
〈
pk, B′(uk)v

〉
H

is satisfied for all (q, v) ∈ Y ×X.

A comparison between (3.45) and (3.50) reveals that for the Gauß-Newton method
to be well-posed one only needs stability of the first order derivative B′, which is
in practice often beneficial. For the well-posedness of Newton’s method one needs
additional conditions on the second order derivative B′′ of the nonlinear operator B.
However, in general the convergence of Gauß-Newton’s method is slower than that of
Newton’s method, cf. [57, p. 199], [133, p. 257]. In what follows we assume that the
operator B′(u) : X → Y ∗ satisfies an inf-sup condition and a boundedness estimate
uniformly for all u ∈ X, i.e.,

cB
′

1 ‖v‖X ≤ sup
06=q∈Y

〈B′(u)v, q〉H
‖q‖Y

, ‖B′(u)v‖Y ∗ ≤ cB
′

2 ‖v‖X (3.51)

for all v ∈ X with constants cB′1 , cB′2 > 0 independent of u. Then we can show that
the operator Su := B′(u)∗A−1B′(u) : X → X∗ obtains the following properties.

Lemma 3.27. Under the assumptions of (3.51) the operator Su := B′(u)∗A−1B′(u) :
X → X∗ is bounded and elliptic uniformly for any u ∈ X, i.e.,

‖Suw‖X∗ ≤ cSu2 ‖w‖X , 〈Suw,w〉H ≥ cSu1 ‖w‖2
X for all w ∈ X,

where cSu2 = [cB
′

2 ]2, cSu1 = [cB
′

1 ]2.

Proof. The proof follows the lines of the proof of Lemma 3.4

Corollary 3.28. Under the assumptions (3.51) the variational formulation (3.50)
admits a unique solution and the Gauß-Newton search direction wku ∈ X is a descent
direction.

Proof. Unique solvability of (3.50) follows immediately from Lemma 3.27. For the
unique solution wku ∈ X to (3.50) it holds

DJ (uk)(wku) =
〈
B′(uk)∗A−1(B(uk)− f), wku

〉
H

= −
〈
B′(uk)∗A−1B′(uk)wku, w

k
u

〉
H
≤ −[cB

′

1 ]2
∥∥wku∥∥2

X
< 0

for wku 6= 0. Hence, the assertion follows.
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Remark 3.29. If the operator B′(u) : X → Y ∗ does not satisfy the conditions in
(3.51) one can use a steepest descent method to solve (3.42). This involves the com-
putation of a Riesz representative of

DJ (u) = B′(u)∗A−1(B(u)− f) ∈ X∗.

This can be done via an auxiliary boundary value problem, where B′ is solely used
to compute the right-hand side. Hence, no conditions on B′ are needed. However,
this comes at the cost of a lower convergence rate of the iterative scheme compared
to that of a Gauß-Newton method. The steepest descent approach is considered e.g.
in [116].

3.2.2 Discretization

For the discretization we consider conforming finite dimensional subspaces XH =
span{ϕi}MX

i=1 ⊂ X and Yh = span{ψi}MY
i=1 ⊂ Y , which are defined with respect to some

admissible decomposition of the computational domain into shape regular simplicial
finite elements of mesh size H,h, respectively. The discrete version of the Newton
algorithm 3.23 starts with an initial guess (p0

h, u
0
H) ∈ Yh × XH and then computes

iteratively (pk+1
h , uk+1

H ) = (pkh, u
k
H)+(wkph, w

k
uH), where (wkph, w

k
uH) ∈ Yh×XH solves〈

Awkph, qh
〉
H

+
〈
B′(ukH)wkuH , qh

〉
H

= −
〈
G1(pkh, u

k
H), qh

〉
H
,〈

wkph, B
′(ukH)vH

〉
H

+
〈
pkh, B

′′(ukH)(wkuH , vH)
〉
H

= −
〈
G2(pkh, u

k
H), vH

〉
H

(3.52)

for all (qh, vH) ∈ Yh ×XH . Introducing

Ah[i, j] = 〈Aψj, ψi〉H i, j = 1, ...,MY ,

B(u)[i] = 〈B(uH), ψi〉, i = 1, ...,MY ,

B′h(u)[i, j] = 〈B′(uH)ϕj, ψi〉H , i = 1, ...,MY , j = 1, ...,MX ,

B′′h(u, p)[i, j] = 〈ph, B′′(uH)(ϕj, ϕi)〉H , i, j = 1, ...,MX

with the identification uH ∈ XH ↔ u ∈ RMX , ph ∈ Yh ↔ p ∈ RMY we can write the
discrete version of Algorithm 3.23 as following.

Algorithm 3.30. Choose an initial guess (p0
h, u

0
H) ∈ Yh ×XH ↔ (p0, u0) ∈ RMY ×

RMX .

For k = 0, 1, 2, ..., until convergence do

(i) Solve the algebraic system of equations[
Ah B′h(u

k)
B′h(u

k)> B′′h(uk, pk)

] [
wkp
wku

]
= −

[
Ahp

k +B(uk)− f
(B′h(u

k))>pk

]
.
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(ii) Set (pk+1
h , uk+1

H )↔ (pk+1, uk+1) = (pk, uk) + (wkp, w
k
u).

In view of Remark 3.26 the discrete version of the Gauß-Newton algorithm starts
with an initial guess u0

H ∈ XH and then computes iteratively uk+1
H = ukH + wkuH ,

where we first determine pkh ∈ Yh as solution to〈
Apkh, qh

〉
H

=
〈
B(ukH)− f, qh

〉
H

for all qh ∈ Yh.

In the second step we compute (wph, wuH) ∈ Yh ×XH such that〈
Awkph, qh

〉
H

+
〈
B′(ukH)wkuH , qh

〉
H

= 0〈
wkph, B

′(ukH)vH
〉
H

=
〈
pkh, B

′(ukH)vH
〉
H

holds for all (qh, vH) ∈ Yh ×XH . Thus, we can state the following algorithm.

Algorithm 3.31. Choose an initial guess u0
H ∈ XH ↔ u0 ∈ RMX .

For k = 0, 1, 2, ..., until convergence do

(i) Set pk = A−1
h (B(uk)− f).

(ii) Solve the algebraic system of equations[
Ah B′h(u

k)
B′h(u

k)>

] [
wkp
wku

]
=

[
0

B′h(u
k)>pk

]
.

(iii) Set uk+1
H ↔ uk+1 = uk + wku.

Remark 3.32. For the practical implementation of the Newton algorithm 3.30 and
the Gauß-Newton algorithm 3.31 we will use their damped version [57, p.109-172],
[133]. This is to overcome the local convergence behaviour of Newton’s or Gauß-
Newton’s method, respectively, as also mentionend in [76]. In the damped version of
these algorithms we perform an update (pk+1, uk+1) = (pk, uk) + τ(wkp, w

k
u), uk+1 =

uk + τwku, respectively, where the parameter τ ∈ (0, 1] is chosen according to some
line search strategy.



4 Parabolic evolution equations

In this chapter we apply the minimal residual/least-squares framework described in
Chapter 3 in combination with the conforming space-time finite element discretiza-
tion scheme described in [157] to parabolic evolution equations. In particular, we
consider the heat equation, the convection-diffusion equation and a semilinear heat
equation as model problems. For the heat equation and the convection-diffusion
equation a discrete inf-sup stability condition will be shown with respect to a mesh-
dependent norm which ensures stability of the mixed system (3.14). The finite el-
ement matrices used to set up the mixed system (3.14) will be implemented using
standard finite element libraries. Several numerical examples will be presented which
confirm our theoretical findings and a comparison to the FOSLS method of Führer
and Karkulik in [72] in case of the heat equation will be given. For the nonlinear
problem a solution via Newton’s and Gauß-Newton’s method will be presented.

4.1 Heat equation

We consider the Dirichlet boundary value problem for the heat equation

∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ), (4.1a)
u(x, t) = 0 for (x, t) ∈ Σ := Γ× (0, T ), (4.1b)
u(x, 0) = 0 for x ∈ Ω, (4.1c)

where Ω ⊂ Rd, d = 1, 2, 3 is a bounded Lipschitz domain with boundary Γ = ∂Ω,
T > 0 is a given time horizon and f is a given right-hand side.

The common space-time variational formulation of Bochner type [64] is to find u ∈
X = L2(0, T ;H1

0 (Ω)) ∩H1
0,(0, T ;H−1(Ω) such that

〈Bu, q〉Q := 〈∂tu, q〉Q + 〈∇xu,∇xq〉L2(Q) = 〈f, q〉Q (4.2)

is satisfied for all q ∈ Y := L2(0, T ;H1
0 (Ω)). Stable space-time discretization schemes

for this variational formulation are considered in, e.g., [108, 153, 157]. We will employ
a minimal residual discretization which we described in Chapter 3. The idea to use a
least-squares approach for the solution of the heat equation was already considered
by Andreev [6]. However, as pointed out in [82] a verification of the LBB condition
for discrete pairs (Xh, Yh) has been restricted to pairs of finite element spaces with

43
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respect to partitions of Q that permit a decomposition into time-slabs [164, 165].
Therefore, stability of the scheme for fully unstructured decompositions of space and
time are not covered. Using the abstract framework in Section 3.1 in the spirit of the
space-time discretization scheme [157] we will show that the necessary discrete inf-
sup condition on the operator B is satisfied with respect to a mesh-dependent norm,
see also [106]. This gives us stability on the discrete level with respect to arbitrary
decompositions of the space-time domain Q into simplicial elements. This result
also enables us to prove that the inbuilt error indicator is efficient and under some
saturation assumption reliable. In Section 4.1.2 we will describe an alternative least-
squares approach, namely the space-time first order system least-squares (FOSLS)
method introduced by Führer and Karkulik in [72]. The reformulation as a first
order system comes with the fact that the residual is measured in a norm which
is localizable, i.e., in a norm which allows for L2-regularity. However, the handling
of loads which belong to Sobolev spaces of negative order is more involved and not
straightforward, see e.g. [70, 71] for a related approach. We also want to refer to
[172], where a space-time discretization using a constrained first order system least-
squares (CFOSLS) method is proposed, which is based on the works [3, 132]. In
[172] discretizations for the heat equation, a scalar conservation law and the wave
equation are considered and numerical examples in (d+ 1) dimensions with d = 2, 3
are presented. The approach uses a slightly different reformulation of the original
PDE as a first order system than in [72]. Finally, in Section 4.1.3 we will present
some numerical examples, which will confirm our theoretical findings.

4.1.1 Minimal residual method

For the solution of (4.2) we consider the space-time finite element method proposed
in [157] and apply it with respect to the least-squares setting developed in Section
3.1. In this context we have the Bochner spaces

X := L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω)), Y := L2(0, T ;H1
0 (Ω)), H := L2(Q)

with the corresponding norms

‖p‖Y := ‖∇xp‖L2(Q), ‖u‖X :=
√
‖∂tu‖2

Y ∗ + ‖∇xu‖2
L2(Q).

The operators A : Y → Y ∗ and B : X → Y ∗ are defined in the variational sense
satisfying

〈Ap, q〉Q := 〈∇xp,∇xq〉L2(Q), 〈Bu, q〉Q := 〈∂tu, q〉Q + 〈∇xp,∇xq〉L2(Q), (4.3)

for all p, q ∈ Y and u ∈ X, where 〈·, ·〉Q denotes the duality pairing. In order to apply
the abstract framework from Section 3.1 we have to make sure that the operators
A, B fulfill the assumptions. This will be done in the following.
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Lemma 4.1. The operator A : Y → Y ∗ defined in (4.3) is bounded, self-adjoint and
elliptic with constants cA1 = cA2 = 1.

Proof. The boundedness of A follows from the Cauchy-Schwarz inequality, i.e.,

〈Ap, q〉Q = 〈∇xp,∇xq〉L2(Q) ≤ ‖∇xp‖L2(Q)‖∇xq‖L2(Q) = ‖p‖Y ‖q‖Y .

From the definiton of A it follows

〈Ap, q〉Q = 〈∇xp,∇xq〉L2(Q) = 〈∇xq,∇xp〉L2(Q) = 〈Aq, p〉Q,

which gives the self-adjointness. The ellipticity immediately follows from

〈Ap, p〉Q = 〈∇xp,∇xp〉L2(Q) = ‖p‖2
Y .

Lemma 4.2. The operator B : X → Y ∗ defined in (4.3) is bounded with cB2 =
√

2,
fulfills the inf-sup condition (3.4) with cB1 = 1 and is surjective.

Proof. Using the estimate (a+ b)2 ≤ 2(a2 + b2) for a, b > 0 we obtain

〈Bu, q〉Q = 〈∂tu, q〉Q + 〈∇xu,∇xq〉L2(Q) ≤ ‖∂tu‖Y ∗‖q‖Y + ‖u‖Y ‖q‖Y

≤
√

2
√
‖∂tu‖2

Y ∗ + ‖u‖2
Y ‖q‖Y =

√
2‖u‖X‖q‖Y ,

which gives boundedness of the operator B. In order to prove an inf-sup condition
we proceed as in [106]. We define wu := A−1∂tu ∈ Y , i.e., wu solves the variational
problem

〈∇xwu,∇xq〉L2(Q) = 〈∂tu, q〉Q for all q ∈ Y.
Note that wu ∈ Y is nothing than the Riesz representative of ∂tu ∈ Y ∗. Thus, by
Lemma 3.2 and Remark 3.3 we conclude ‖wu‖Y = ‖∂tu‖Y ∗ . For q̄ := u+wu ∈ Y we
then have

〈Bu, q̄〉Q = 〈Bu, u+ wu〉Q
= 〈∂tu, u+ wu〉Q + 〈∇xu,∇x(w + wu)〉L2(Q)

= 〈∇xwu,∇x(u+ wu)〉L2(Q) + 〈∇xu,∇x(w + wu)〉L2(Q)

= 〈∇x(u+ wu),∇x(w + wu)〉L2(Q)

= ‖u+ wu‖2
Y = ‖q̄‖2

Y .

Further we have

‖q̄‖2
Y = ‖∇x(u+ wu)‖2

L2(Q)

= ‖∇xu‖2
L2(Q) + 2〈∂tu, u〉Q + ‖∇xwu‖2

L2(Q)

≥ ‖∇xu‖2
L2(Q) + ‖∇xwu‖2

L2(Q) = ‖u‖2
X ,
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where we used

〈∂tu, u〉Q =

∫ T

0

〈∂tu(t), u(t)〉Ω dt =
1

2

∫ T

0

d

dt
〈u(t), u(t)〉L2(Ω) dt

=
1

2
‖u(T )‖2

L2(Ω) −
1

2
‖u(0)‖2

L2(Ω) =
1

2
‖u(T )‖2

L2(Ω) ≥ 0.

Now, we obtain
〈Bu, q̄〉Q ≥ ‖u‖X‖q̄‖Y ,

and therefore we conclude the inf-sup stability condition

sup
06=q∈Y

〈Bu, q〉Q
‖q‖Y

≥
〈Bu, q̄〉Q
‖q̄‖Y

≥ ‖u‖X for all u ∈ X.

It remains to prove that B is surjective. For this let q ∈ Y \ {0}. Then we define

uq(x, t) :=

∫ t

0

q(x, s) ds.

Since uq(x, 0) = 0 and ∂tuq = q ∈ Y it holds that uq ∈ X. Further we compute

〈Buq, q〉Q = 〈∂tuq, q〉L2(Q) + 〈∇xuq,∇xq〉L2(Q)

= ‖q‖2
L2(Q) +

∫ T

0

〈∇xuq(t),∇x∂tuq(t)〉L2(Ω) dt

= ‖q‖2
L2(Q) +

1

2

∫ T

0

d

dt
〈∇xuq(t),∇xuq(t)〉L2(Ω) dt

= ‖q‖2
L2(Q) +

1

2
‖∇xuq(T )‖2

L2(Ω) > 0,

which gives surjectivity of B and concludes the proof.

Remark 4.3. A proof of the inf-sup condition on B can also be found in e.g. [157,
Thm. 2.1] with a constant cB1 = 1

2
√

2
. It also follows from the inf-sup identity [65,

Thm. 2.1]. However, the idea for the choice of the test function q̄ = u+A−1∂tu can
already be found in [64, Thm. 6.6]. Note that it holds q̄ ∈ Y opt = A−1B(X), i.e., it is
an optimal test function, cf. Rem. 3.9 and Sec. 3.1.4. Indeed, using Bu = ∂tu+Au,
a straightforward computation gives

q̄ = u+ wu = u+ A−1∂tu = A−1(∂tu+ Au) = A−1Bu.

The properties of the operator B ensure that the variational problem (4.2) admits
a unique solution u ∈ X. Together with the properties of the operator A and by
Lemma 3.6 it holds

u = arg min
w∈X

1

2
‖Bw − f‖2

Y ∗ .
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A solution to the minimization problem can be obtained from the mixed system
(3.12), which in this particular case reads to find (u, p) ∈ X × Y such that

〈∇xp,∇xq〉L2(Q) + 〈∂tu, q〉Q + 〈∇xu,∇xq〉L2(Q) = 〈f, q〉Q,
〈∂tv, p〉Q + 〈∇xv,∇xp〉L2(Q) = 0

(4.4)

is satisfied for all (v, q) ∈ X × Y .

For the discretization of (4.4) we consider the finite dimensional subspaces XH ⊂ X
and Yh ⊂ Y , where we assume the inclusion XH ⊂ Yh. As already used in the proof
of Lemma 4.2 the norm ‖u‖X allows the representation

‖u‖X =
√
‖wu‖2

Y + ‖u‖2
Y , ‖wu‖Y = ‖∂tu‖Y ∗ ,

where wu := A−1∂tu is the Riesz representative of ∂tu ∈ Y ∗, i.e., it solves the
variational formulation

〈∇xwu,∇xq〉L2(Q) = 〈∂tu, q〉Q for all q ∈ Y.

In view of this observation we define wuh ∈ Yh as the unique solution of the Galerkin
variational formulation

〈∇xwuh,∇xqh〉L2(Q) = 〈∂tu, qh〉Q for all qh ∈ Yh.

With this we can define the discrete norm

‖u‖X,h :=
√
‖u‖2

Y + ‖wuh‖2
Y ≤ ‖u‖X . (4.5)

This allows us to prove the following properties of the operator B.

Lemma 4.4. Let XH ⊂ X and Yh ⊂ Y be finite dimensional subspaces of X, Y ,
respectively with XH ⊂ Yh. Then the operator B satisfies the discrete boundedness
estimate

〈Bu, qh〉Q ≤
√

2‖u‖X,h‖qh‖Y for all u ∈ X, qh ∈ Yh,
as well as the discrete inf-sup condition

‖uH‖X,h ≤ sup
06=qh∈Yh

〈BuH , qh〉Q
‖qh‖Y

for all uH ∈ XH . (4.6)

Proof. From the definition of the discrete norm (4.5) and using the Cauchy-Schwarz
inequality as well as (a+ b)2 ≤ 2(a2 + b2) we obtain

〈Bu, qh〉Q = 〈∂tu, qh〉Q + 〈∇xu,∇xqh〉L2(Q)

= 〈∇xwuh,∇xqh〉L2(Q) + 〈∇xu,∇xqh〉L2(Q)

≤ (‖wuh‖Y + ‖u‖Y ) ‖qh‖Y
≤
√

2‖u‖X,h‖qh‖Y ,
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which gives the discrete boundedness estimate. The proof of the discrete inf-sup
condition follows the lines as in the continuous case, see Lemma 4.2. We recall the
main steps. First, we define q̄h := uH + wuHh, where wuHh ∈ Yh solves

〈∇xwuHh,∇xqh〉L2(Q) = 〈∂tu, qh〉Q for all qh ∈ Yh.

As XH ⊂ Yh we have q̄h ∈ Yh. Then we can compute

〈BuH , q̄h〉Q = ‖q̄h‖2
Y .

Further we have due to 〈∂tuH , uH〉Q ≥ 0 the estimate

‖q̄h‖2
Y = ‖uH‖2

Y + ‖wuHh‖2
Y + 2〈∂tuH , uH〉Q ≥ ‖uH‖

2
X,h,

which implies
〈BuH , q̄h〉Q ≥ ‖uH‖X,h‖q̄h‖Y .

Finally, we obtain

sup
0 6=qh∈Yh

〈BuH , qh〉Q
‖qh‖Y

≥
〈BuH , q̄h〉Q
‖q̄h‖Y

≥ ‖uH‖X,h,

which gives the desired result.

Remark 4.5. A similar proof of the discrete inf-sup condition can be also found in
[157, Thm. 3.1].

The discrete inf-sup stability condition shown in Lemma 4.4 ensures the unique solv-
ability of the mixed variational formulation (3.13), which in this particular case is to
find (uH , ph) ∈ XH × Yh such that

〈∇xph,∇xqh〉L2(Q) + 〈∂tuH , qh〉Q + 〈∇xuH ,∇xqh〉L2(Q) = 〈f, qh〉Q,
〈∂tvH , ph〉Q + 〈∇xvH ,∇xph〉L2(Q) = 0

(4.7)

is satisfied for all (vH , qh) ∈ XH × Yh. The related error estimate follows from (3.36)
and reads with cB2 =

√
2 and c̃S = 1

‖u− uH‖X,h ≤
√

2 inf
vH∈XH

‖u− vH‖X .

In case of a piecewise linear finite element space for the trial space XH and a sufficient
regular solution u ∈ Hs(Q) for some s ∈ [1, 2] we conclude the error estimate, see
e.g., [157]

‖∇x(u− uH)‖L2(Q) ≤ ‖u− uH‖X,h ≤ cHs−1|u|Hs(Q).

In view of Lemma 3.21 we can define X̄H = Yh ∩ X and show the discrete inf-sup
condition (3.37) similar as demonstrated in Lemma 4.4 with c̄S = 1. Using that
cB2 =

√
2 and assuming the saturation assumption (3.39) for some η ∈ (0, 1) we

conclude for the error indicator
1√
2
‖∇xph‖L2(Q) ≤ ‖u− uH‖X,h ≤

1

1− η
‖∇xph‖L2(Q).
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4.1.2 FOSLS method

In this section we describe the space-time first order least-squares finite element
method [72]. For the derivation of the method we assume that f ∈ L2(Q).

The basic idea, which was already mentioned in [21, Ch. 9.1.4] is to rewrite the heat
equation (4.1) as a first oder system. For this we introduce the auxiliary variable
σ = −∇xu. Then we obtain the first order system

∂tu(x, t) + divx σ(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ), (4.8a)
σ(x, t) +∇xu(x, t) = 0 for (x, t) ∈ Q (4.8b)

u(x, t) = 0 for (x, t) ∈ Σ := Γ× (0, T ), (4.8c)
u(x, 0) = 0 for x ∈ Ω. (4.8d)

Now, we can define the spaces

U := {(u, σ) ∈ X × L2(Q)d : ∂tu+ divx σ ∈ L2(Q)},
V := L2(Q)× L2(Q)d,

where X = L2(0, T ;H1
0 (Ω)) ∩ H1

0,(0, T ;H−1(Ω)) with the corresponding norms for
the spaces U, V

‖(u, σ)‖2
U := ‖u‖2

X + ‖σ‖2
L2(Q) + ‖∂tu+ divx σ‖2

L2(Q),

‖(w, %)‖2
V := ‖w‖2

L2(Q) + ‖%‖2
L2(Q),

for all (u, σ) ∈ U , (w, %) ∈ V . Further we can define the operator

B : U → V, (u, σ) 7→ B(u, σ) =

[
∂tu+ divx σ
σ +∇xu

]
,

and the right-hand side F := [f, 0]T . Then the operator equation of the first order
system (4.8) reads to find (u, σ) ∈ U such that

B(u, σ) = F in V. (4.9)

For the solution of (4.9) one considers a least-squares approach which seeks for a
minimizer (u, σ) ∈ U to the functional

J(v, τ) =
1

2
‖B(v, τ)−F‖2

V =
1

2

[
‖∂tv + divx τ − f‖2

L2(Q) + ‖τ +∇xv‖2
L2(Q)

]
.

The minimizer of this functional solves the first-order optimality system

B∗B(u, σ) = B∗F in U∗, (4.10)
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i.e., we have to solve the variational formulation

〈B(u, σ),B(v, τ)〉V = 〈F ,B(v, τ)〉V for all (v, τ) ∈ U, (4.11)

which in more detail reads

b(u, σ; v, τ) := 〈∂tu+ divx σ, ∂tv + divx τ〉L2(Q) + 〈σ +∇xu, τ +∇xv〉L2(Q)

= 〈f, ∂tv + divx τ〉L2(Q) =: l(v, τ)

(4.12)

for all (v, τ) ∈ U . For the variational formulation (4.11), (4.12), respectively, it was
shown in [72, Lem. 4] that the bilinear form b is bounded and elliptic on U , i.e.,
there exist constants cS1 , cB2 > 0 such that

b(u, σ; v, τ) ≤ cB2 ‖(u, σ)‖U‖(v, τ)‖U , b(u, σ;u, σ) ≥ cS1 ‖(u, σ)‖2
U

for all (u, σ), (v, τ) ∈ U , and that the linear functional l is bounded. These properties
ensure that the variational formulation (4.12) obtains a unique solution, see [72, Thm.
5] and hence the least-squares minimization problem is well-posed. The ellipticity
of the bilinear form b gives that the corresponding operator B is injective since it
holds

sup
0 6=(w,%)∈V

〈B(u, σ), (w, %)〉V
‖(w, %)‖V

≥ 〈B(u, σ),B(u, σ)〉V
‖B(u, σ)‖V

=
b(u, σ;u, σ)

‖B(u, σ)‖V

≥ cS1
cB2
‖(u, σ)‖U .

Note that this is sufficient for a least-squares method in order to be well-posed. It
was shown in [81, Thm. 2.3] that B is indeed surjective and hence an isomorphism.
Therefore, solving the operator equation (4.9) is equivalent to solving the minimiza-
tion problem, in particular (4.10). Finally, we note that any f ∈ Y ∗ can be expressed
as f = f1 − divx f2 for f1 ∈ L2(Q), f2 ∈ L2(Q)d. This equality has to be understood
in the distributional sense, i.e.,

〈f, q〉Q = 〈f1, q〉L2(Q) + 〈f2,∇xq〉L2(Q) for all q ∈ Y. (4.13)

The quantities f1, f2 can be obtained by setting f1 = w, f2 = ∇xw, where w ∈ Y
solves

〈∇xw,∇xq〉L2(Q) + 〈w, q〉L2(Q) = 〈f, q〉Q
for all q ∈ Y . Using this splitting the following holds.
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Lemma 4.6. Let f ∈ Y ∗ be given as in (4.13), where f1 ∈ L2(Q) and f2 ∈ [L2(Q)]
d.

Then u ∈ X solves the variational problem of Bochner type (4.2) for the heat equation
and σ = −∇xu + f2 if and only if (u, σ) ∈ U solves (4.9) with right-hand side
F = [f1, f2]>.

Proof. A proof can be found in [81, Proposition 2.5].

The result of Lemma 4.6 states that the first order formulation of the heat equation
(4.9) applies whenever the space-time variational formulation (4.2) does, see [82].
Note that the right-hand side l in (4.12) changes to

l(v, τ) = 〈f1, ∂tv + divx τ〉L2(Q) + 〈f2, τ +∇xv〉L2(Q),

when considering a splitting of f ∈ Y ∗ as in (4.13).

In what follows we consider the finite dimensional subspace Uh ⊂ U , which is defined
with respect to an admissible decomposition Th of Q into simplicial elements, and
we assume f ∈ L2(Q). The discrete variational problem of (4.12) then reads to find
(uh, σh) ∈ Uh such that

b(uh, σh; vh, τh) = l(vh, τh) for all (vh, τh) ∈ Uh. (4.14)

Due to the ellipticity of b the variational formulation is well-posed, and we have the
best approximation result [72, Thm. 5]

‖(u− uh, σ − σh)‖U ≤
cB2
cS1

inf
(vh,τh)∈Uh

‖(u− vh, σ − σh)‖U .

For the discrete space Uh = S1
h(Th)∩X × [S1

h(Th)]
d there holds for a smooth solution

u ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;H2(Ω))∩H2(0, T ;L2(Ω))∩L∞(0, T ;H3(Ω)) the error

behaviour, see [72, Cor. 15]

‖(u− uh, σ − σh)‖U = O(h).

For the solution (uh, σh) of (4.12) an a posteriori error indicator can be defined via
the least-squares functional

η2
h(uh, σh) = J(uh, σh) =

∑
K∈Th

η2
K(uh, σh) (4.15)

with local error indicators

η2
K(uh, σh) :=

1

2

[
‖∂tuh + divx σh − f‖2

L2(K) + ‖σh +∇xuh‖2
L2(K)

]
.

The error indicator is efficient and reliable which can be seen from the following
lemma.
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Lemma 4.7. Let f ∈ L2(Q). Further, let (u, σ) ∈ U be the unique solution (4.12) and
(uh, σh) ∈ Uh be the unique solution to (4.14). Then the error indicator ηh defined in
(4.15) is efficient and reliable, i.e., there exist constants Cc, Cb > 0 such that

Cc‖(u− uh, σ − σh)‖2
U ≤ η2

h(uh, σh) ≤ Cb‖(u− uh, σ − σh)‖2
U .

Proof. A proof is given in [72, Thm. 17]

4.1.3 Numerical examples

In this section we consider numerical examples for the developed minimal residual
framework for the heat equation. The inbuilt error indicator will be used to drive an
adaptive refinement scheme and the results will be compared with those of a uniform
refinement scheme. Furthermore, we provide a comparison to the FOSLS method
proposed by Führer and Karkulik in [72]. The underlying finite element spaces used
in our computations are defined with respect to an admissible and locally quasi-
uniform decomposition TH of Q into shape regular simplicial elements.

Minimal residual method

We consider (4.7) with the trial space XH = S1
H(TH) ∩ X of piecewise linear and

globally continuous functions and the test space Yh = YH = S2
H(TH)∩Y of piecewise

quadratic and globally continuous functions. Note that the latter is defined with
respect to the mesh of local mesh size H. However, since we use piecewise quadratic
basis functions the test space can be identified with a space of piecewise linear func-
tions which are defined with respect to a refined mesh of local mesh size h = H/2, cf.
[106]. In the adaptive refinement scheme we use the global error indicator ph ∈ Yh.
Due to the choice of the test spaces it allows the representation

η2
H = ‖ph‖2

Y = 〈∇xph,∇xph〉L2(Q) =
∑
τ∈TH

〈∇xph,∇xph〉L2(τ) =
∑
τ∈TH

η2
τ , (4.16)

with the local error indicators

η2
τ = 〈∇xph,∇xph〉L2(τ) for τ ∈ TH .

If not other stated we use as a marking strategy the Dörfler criterion [58] with
parameter θ = 0.5. This criterion seeks for a minimal set of elementsM⊂ TH such
that ∑

τ∈M

η2
τ ≥ θ

∑
τ∈TH

η2
τ .
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The selected space-time simplicial elements are refined using newest vertex bisection.
All computations were done in the software Netgen/NGSolve [152], where we used the
sparse direct solver Pardiso [148, 149, 150] to solve the resulting linear systems.

In the first example we use, as in [106], the one-dimensional spatial domain Ω = (0, 3)
and the time horizon T = 6, i.e., we have the space-time domain Q := (0, 3)×(0, 6) ⊂
R2. As exact solution we consider the smooth function

u(x, t) :=

{
1
2
(t− x− 2)3(x− t)3 sin π

3
x for x ≤ t and t− x ≤ 2,

0 else,
(4.17)

and we compute f = ∂tu−∆xu accordingly. The exact solution u is smooth. Hence,
we expect to see a rate of O(H2) for the error in L2(Q) and a rate of O(H) for
the error measured in the energy norm ‖∇x · ‖L2(Q). These rates are confirmed in
our numerical experiment for both a uniform and an adaptive refinement strategy,
see Fig. 4.1a, where we plotted the errors against the number of vertices M̃X =
dim(S1

H(TH)). Further, we see that for the same amount of degrees of freedom we
have in the adaptive case a higher accuracy than in the uniform case, which is an
expected behaviour. In Fig. 4.1b a comparison between the error estimator ηH =
‖∇xph‖L2(Q) and the errors ‖∇x(u−uH)‖L2(Q), ‖u−uH‖X,h, respectively, is provided.
It demonstrates that the error indicator is effective. Finally, in Fig. 4.2 we present
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Figure 4.1: Convergence results in the case of a smooth solution for the heat equation.

the related space-time finite element meshes. The adaptive mesh reflects the fact
that the solution behaves like a travelling wave.

As a second example we consider, as in [106], Ω = 1, T=1, i.e., the unit square
Q = (0, 1)2 ⊂ R2 as a space-time domain. For the right-hand side we consider the
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Figure 4.2: Space-time finite element meshes. Left: Initial mesh. Middle: Uniform
refinement L = 5. Right: Adaptive refinement L = 10.

discontinuous function

f(x, t) =

{
1 (x, t) ∈

{
(x, t) ∈ (0, 1)×

(
1
10
, 1

2

)
: x− 1

10
≤ t ≤ x− 1

20

}
,

0 else,
(4.18)

and we choose homogeneous initial and boundary conditions. Note that this example
is also considered in [72, Sec. 5.2.3]. For this example the exact solution is unknown.
Thus, we only provide error rates for the error estimator ηH = ‖∇xph‖L2(Q). These
rates can be seen in Fig. 4.3. In case of a uniform refinement strategy we obtain a
reduced rate of O(H

1
2 ), while in the adaptive case we have the optimal rate O(H).

These rates are also observed in [72]. In Fig. 4.4 we depict the numerical solution
uH as well as the adaptive generated space-time finite element mesh. Here, stronger
refinements around the support of the function f can be observed as in [72], see also
Fig. 4.9 in case of our own implementation of the FOSLS method.

In the third example for the heat equation we consider a problem with incompatible
initial datum similar as in [72, Sec. 5.2.4] and [106]. To be more precise, we consider
Q = (0, 1)2, f(x, t) = 2 for (x, t) ∈ (0, 1)2 and an inhomogeneous inital datum
u0(x) = 1 for x ∈ (0, 1). Obviously, we have u0 ∈ L2(Ω), but u0 /∈ H1

0 (Ω). This
means there is no compatibility with the homogeneous Dirichlet boundary condition
for t = 0. Therefore, we expect to see a reduced rate. The numerical implementation
of the inhomogeneous initial datum is done via a homogenization approach similar
as for inhomogeneous Dirichlet boundary conditions. This is possible because in the
space-time setting the initial condition acts like a Dirichlet condition on the initial
boundary. In Fig. 4.5 the rates for the error indicators as well as the adaptive
generated mesh are depicted. We observe a reduced rate of O(H

1
4 ) in the uniform

case which is improved to O(H0.8) in the adaptive case. These rates are better than
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Figure 4.3: Error estimator ηH in the case of a discontinuous right-hand side.

a) Solution uH b) Adaptive mesh with M̃X = 17689

Figure 4.4: Singular solution of the heat equation for the discontinuous right-hand
side (4.18).
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those observed in [72, Section 5.2.4] and similar as in [82, Section 4.2.1]. The adaptive
space-time mesh shows stronger refinements around the incompatibility of the initial
datum with the homogeneous Dirichlet datum.
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Figure 4.5: Numerical results in case of an incompatible initial condition u0 /∈ H1
0 (Ω).

Comparison with FOSLS method

In the last part of this section we want to compare the results obtained from the
minimal residual framework, see Section 4.1.1 with those of the FOSLS method, see
4.1.2 in more detail. For this reason we implemented the FOSLS method within the
finite element software Netgen/NGSolve [152], where we used the sparse direct solver
Pardiso [149]. For the discretization we use the space UH = S1

H(TH)∩X×[S1
H(TH)]

d.
The adaptive refinement scheme in the FOSLS method is driven by the error indicator
ηH defined in (4.15), where we use the Dörfler criterion [58] with parameter θ = 0.5.
The marked elements are refined using newest vertex bisection.

In the first comparison we revisit the example with the smooth solution (4.17), which
corresponds to a travelling wave in the space-time domain Q = (0, 3)× (0, 6). In Fig.
4.6 we present the related errors in the energy norm as well as the error indicators
for both a uniform and an adaptive refinement scheme. In both cases we see a linear
rate O(H) for the errors and the indicators. Further, we observe that in the minimal
residual method the value of the true error ‖∇x(u − uH)‖L2(Q) is smaller compared
to the value in the FOSLS method for the same amount of dofs. This means that the
minimal residual method delivers a more accurate solution. In addition to that we
see that the error estimator (4.16) used in the minimal residual method estimates the
value of the true error better than the estimator (4.15) used in the FOSLS method.
In Fig. 4.7 we present the related adaptive refined space-time finite element meshes.
Both meshes are created from the same initial mesh, which can be seen in Fig. 4.2.
The mesh obtained from the minimal residual method seems a bit more concentrated
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Figure 4.6: Comparison of the numerical results from the minimal residual (MinRes)
method and the FOSLS method in case of the smooth solution (4.17).

a) FOSLS, L = 10, M̃X = 7301 dofs b) MinRes, L = 10, M̃X = 6524 dofs

Figure 4.7: Comparison of the generated adaptive space-time finite element meshes
for the smooth solution (4.17).

at the turning point of the travelling wave while the FOSLS method seems to resolve
the interface where the solution has a steep gradient a bit better.

As a second comparison we revisit the example with the discontinuous right-hand
side f given in (4.18) on the unit square Q = (0, 1)2. As mentioned this example is
also considered in [72, Sec. 5.2.3]. The numerical results are depicted in Fig. 4.8. We
can confirm the rates observed in [72] also for our own implementation of the FOSLS
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Figure 4.8: Numerical results for the piecewise constant right-hand side f given in
(4.18) for the minimal residual method and the FOSLS method.

a) FOSLS, L = 13, M̃X = 18856 dofs b) MinRes, L = 10, M̃X = 17689 dofs

Figure 4.9: Comparison of the generated adaptive space-time finite element meshes
for the piecewise constant function (4.18).

method. Moreover, in Fig. 4.9 we provide a comparison of the generated adaptive
space-time meshes. We started again with the same initial mesh in both cases, which
had M̃X = 136 dofs. We can see that both meshes show stronger refinements around
the support of f . However, in the case of the FOSLS method the refinement is more
concentrated along the interface of the function f .
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4.2 Convection-diffusion equation

In this section we consider the nonstationary advection-diffusion problem

∂tu(x, t)− ε∆xu(x, t) + β(x, t) · ∇xu(x, t) = f(x, t) for (x, t) ∈ Q, (4.19a)
u(x, t) = 0 for (x, t) ∈ Σ, (4.19b)
u(x, 0) = 0 for x ∈ Ω. (4.19c)

Here, Q := Ω × (0, T ) is the space-time cylinder, where Ω ⊂ Rd, d = 1, 2, 3 is
a bounded Lipschitz domain with boundary Γ = ∂Ω, and T > 0 is a given time
horizon. We consider ε > 0 to be a given parameter, and β ∈ L∞(0, T ;W 1,∞(Ω,Rd))
some given velocity field. We assume that the velocity field satisfies divx(β) = 0.
Note that this corresponds to the conservation of mass property for incompressible
flows. As mentioned in [117, 141] this problem arises in many applications, e.g., in
pollution simulations, in the modeling of heat and flow problems, in heat transfer
problems with respect to thin domains or in semiconductor device simulations, just
to name a few. In particular, we are interested in the case ε

‖β‖ � 1, which means that
this problem gets advection dominated. In this case the solutions are characterized
by boundary layers and hence the numerical solution of this problem becomes difficult
[141] as standard finite element discretization schemes lead to oscillatory solutions
unless the mesh size is chosen in the order of ε, i.e., h ∼ ε. To illustrate this effect
we consider similar as in [141, Ex. 1.2] the boundary value problem

−εu′′(x) + u′(x) = f on (0, 1)

u(0) = u(1) = 0,
(4.20)

with the exact solution

u(x) = x−
exp

(
−1−x

ε

)
− exp

(
−1
ε

)
1− exp

(
−1
ε

) . (4.21)

The right-hand side f is computed accordingly and reads f = 1. Note that the
exact solution has a boundary layer at x = 1 and that β = 1. A standard finite
element discretization with piecewise linear finite elements for (4.20) reads to find
uh ∈ Vh := S1

h(0, 1) ∩H1
0 (0, 1) such that

b(uh, vh) := 〈εu′h, v′h〉L2(0,1) + 〈u′h, vh〉L2(0,1) = 〈f, vh〉L2(0,1) for all vh ∈ Vh. (4.22)

The convergence behaviour of the error ‖∇(u − uh)‖L2(0,1) is depicted in Tab. 4.1
and Fig. 4.11. We see that we obtain linear convergence if the mesh size h is of
the order of the parameter ε. Before, the numerical solutions uh obtain oscillations
and are unphysical, see Fig. 4.10, where we plotted the numerical solution uh for
NV = 512 elements and ε ∈ {10−2, 10−4, 10−5}. In applications, choosing h ∼ ε
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a) ε = 10−2 b) ε = 10−4 c) ε = 10−5

Figure 4.10: Numerical solution uh for the variational formulation (4.22) in case of
NV = 512 elements.

ε = 10−2 ε = 10−4 ε = 10−5

M̃V ‖∇(u− uh)‖L2(0,1) eoc M̃V ‖∇(u− uh)‖L2(0,1) eoc M̃V ‖∇(u− uh)‖L2(0,1) eoc

129 1.567e+00 4097 4.280e+01 65537 9.237e+01
257 7.938e-01 0.981 8193 2.389e+01 0.841 131073 4.843e+01 0.931
513 3.982e-01 0.995 16385 1.233e+01 0.955 262145 2.452e+01 0.982
1025 1.993e-01 0.999 32769 6.213e+00 0.988 524289 1.230e+01 0.995
2049 9.966e-02 1.000 65537 3.113e+00 0.997 1048577 6.154e+00 0.999

Table 4.1: Numerical results for the variational formulation (4.22) in case of the func-
tion (4.21).

is impractical as this leads to unacceptably large numbers of mesh points. For this
reason one is interested in robust methods that work for all values of the singular
perturbation parameter ε and give physical correct solutions even before the mesh
size h is in the order of ε. In literature different techniques have been proposed to
achieve this, see e.g. [141]. There are methods like the Streamline-Diffusion (SD)
[15, 141] or the Streamline-Upwind Petrov-Galerkin method (SUPG) [22, 29, 94, 141]
which add some stabilizing terms to the bilinear form b(uh, vh) and to the right-
hand side. Other methods are based on the residual minimization idea. Here one
can differ between methods which are proposed in a Petrov-Galerkin (PG) setting
[28, 43, 56, 62], or in a first order least-squares setting (FOSLS) [44, 117] or the
variational stabilization/saddle point least-squares technique [12, 42, 46]. We will
focus on the latter approach and apply the abstract framework presented in Section
3.1 to (4.19).
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Figure 4.11: Convergence behaviour of the error ‖∇(u − uh)‖L2(0,1) for a uniform
refinement strategy.

4.2.1 Application of the abstract framework

We apply the abstract framework from Section 3.1 in the space-time setting consid-
ered in [157]. We consider the spaces

Y := L2(0, T ;H1
0 (Ω)),

X := {u ∈ Y : ∂tu+ β · ∇xu ∈ Y ∗, u(x, 0) = 0, x ∈ Ω},
H := L2(Q),

(4.23)

equipped with the norms

‖p‖Y := 〈ε∇xp,∇xp〉L2(Q), |||u|||X =
√
‖∂tu+ β · ∇xu‖2

Y ∗ + ‖u‖2
Y .

Introducing wu ∈ Y as solution to

〈ε∇xwu,∇xq〉L2(Q) = 〈∂tu+ β · ∇xu, q〉Q for all q ∈ Y, (4.24)

we have
‖∂tu+ β · ∇xu‖Y ∗ = ‖wu‖Y , |||u|||X =

√
‖wu‖2

Y + ‖u‖2
Y .

Note that the most standard choice for the space X would be to consider, as for the
heat equation, the space L2(0, T ;H1

0 (Ω)) ∩H1
0,(0, T ;H−1(Ω)). The space X defined

in (4.23) allows for the consideration of more general velocity fields β. However, in
case of bounded velocity fields β, which we assume, we have

X = L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω)),

and we can provide the following result.
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Lemma 4.8. In case of bounded velocity fields β there holds the norm equivalence

1

max{(1 + 2c(ε)2), 2)}
‖u‖2

X ≤ |||u|||
2
X ≤ max{(1 + 2c(ε)2), 2)}‖u‖2

X , (4.25)

where c(ε) = 1
ε
cp
√
d‖β‖L∞(Q) and ‖u‖2

X = ‖∂tu‖2
Y ∗ + ‖∇xu‖2

L2(Q).

Proof. Using the Cauchy-Schwarz inequality and a spatial Poincaré inequality, see
(2.6) we can estimate

〈β · ∇xu, q〉L2(Q) =

∫ T

0

∫
Ω

d∑
i=1

βi∂xiuqdxdt

≤ ‖β‖L∞(Q)

d∑
i=1

∫ T

0

∫
Ω

|∂xiuq|dxdt

≤ ‖β‖L∞(Q)

d∑
i=1

‖∂xiu‖L2(Q)‖q‖L2(Q)

≤ ‖β‖L∞(Q)‖q‖L2(Q)

√
d‖∇xu‖L2(Q)

≤ ‖β‖L∞(Q)cp
√
d‖∇xu‖L2(Q)‖∇xq‖L2(Q)

=
1

ε
‖β‖L∞(Q)cp

√
d‖ε1/2∇xu‖L2(Q)‖ε1/2∇xq‖L2(Q) = c(ε)‖u‖Y ‖q‖Y ,

with c(ε) = 1
ε
cp
√
d‖β‖L∞(Q). Thus, it holds

‖β · ∇xu‖Y ∗ = sup
06=q∈Y

〈β · ∇xu, q〉L2(Q)

‖q‖Y
≤ c(ε)‖u‖Y .

Now, we can conclude using standard estimates the upper inequality

|||u|||2X = ‖u‖2
Y + ‖∂tu+ β · ∇xu‖2

Y ∗

≤ ‖u‖2
Y + 2‖∂tu‖2

Y ∗ + 2‖β · ∇xu‖2
Y ∗

≤ (1 + 2c(ε)2)‖u‖2
Y + 2‖∂tu‖2

Y ∗

≤ max{(1 + 2c(ε)2), 2}‖u‖2
X .

On the other hand we have for the lower inequality

‖u‖2
X = ‖u‖2

Y + ‖∂tu‖2
Y ∗

≤ ‖u‖2
Y + 2‖∂tu+ β · ∇xu‖2

Y ∗ + 2‖β · ∇xu‖2
Y ∗

≤ (1 + 2c(ε)2)‖u‖2
Y + 2‖∂tu+ β · ∇xu‖2

Y ∗

≤ max{(1 + 2c(ε)2), 2)}|||u|||2X

and thus the norm equivalence follows.
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The operators A : Y → Y ∗ and B : X → Y ∗ are defined in the variational sense
satisfying

〈Ap, q〉Q := 〈ε∇xp,∇xq〉L2(Q),

〈Bu, q〉Q := 〈∂tu+ β · ∇xu, q〉Q + 〈ε∇xu,∇xq〉L2(Q),
(4.26)

for all p, q ∈ Y and u ∈ X. The operator A : Y → Y ∗ is self-adjoint bounded
and elliptic with constants cA1 = cA2 = 1. This can be proven in the same way as
demonstrated in Lemma 4.1. For the operator B : X → Y ∗ we can show the following
properties.

Lemma 4.9. The operator B : X → Y ∗ fulfills:

(i) B is bounded with cB2 =
√

2, i.e., it holds ‖Bv‖Y ∗ ≤
√

2|||v|||X for all v ∈ X,

(ii) B is inf-sup stable with cB1 = 1, i.e., it satisfies

|||u|||X ≤ sup
06=q∈Y

〈Bu, q〉Q
‖q‖Y

for all u ∈ X,

(iii) B is surjective.

Proof. We start with the proof of (i). As in the proof of Lemma 4.2 we can estimate

〈Bu, q〉Q := 〈∂tu+ β · ∇xu, q〉Q + 〈ε∇xu,∇xq〉L2(Q)

≤ ‖∂tu+ β · ∇xu‖Y ∗‖q‖Y + ‖u‖Y ‖q‖Y ≤
√

2|||u|||X‖q‖Y ,

for all u ∈ X, q ∈ Y , which gives the boundedness of B. The proof of (ii) can also
be done as in Lemma 4.2 with some small adaptations. We consider the specific test
function q̄ := u+ wu ∈ Y , where wu ∈ Y solves (4.24). Then, we have

〈Bu, q̄〉Q = 〈∂tu+ β · ∇xu, q̄〉Q + 〈ε∇xu,∇xq̄〉L2(Q)

= 〈ε∇xwu,∇xq̄〉L2(Q) + 〈ε∇xu,∇xq̄〉L2(Q)

= ‖q̄‖2
Y .

Now, using integration by parts and that by assumption divx(β) = 0, we obtain

〈∂tu+ β · ∇xu, u〉Q = 〈∂tu, u〉Q + 〈β · ∇xu, u〉L2(Q)

= 〈∂tu, u〉Q −
1

2

〈
divx(β), u2

〉
L2(Q)

≥ 0,
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which gives

‖q̄‖2
Y = ‖u+ wu‖2

Y

= ‖u‖2
Y + ‖wu‖2

Y + 2〈ε∇xwu,∇xu〉L2(Q)

= |||u|||2X + 2〈∂tu+ β · ∇xu, u〉Q
≥ |||u|||2X .

This implies
〈Bu, q̄〉Q ≥ |||u|||X‖q̄‖Y ,

and therefore the inf-sup stability condition

|||u|||X ≤ sup
06=q∈Y

〈Bu, q〉Q
‖q‖Y

for all u ∈ X

follows with cB1 = 1. We continue with the proof of (iii). For the surjectivity of the
operator B, let w ∈ Y \{0} and consider the auxiliary initial boundary value problem
to find uw ∈ X such that

〈Buw, q〉Q = 〈ε∇xw,∇xq〉L2(Q) for all q ∈ Y (4.27)

is satisfied. The operator B allows the representation B = ∂t +A, with an operator
A : Y → Y ∗, defined in the weak sense via

〈Auw, q〉Q = 〈ε∇xuw,∇xq〉L2(Q) + 〈β · ∇xuw, q〉L2(Q) for all q ∈ Y,

Since the operator A is bounded

〈Ap, q〉Q ≤ (1 + c(ε))‖p‖Y ‖q‖Y , c(ε) =
1

ε
cp
√
d‖β‖L∞(Q)

for all p, q ∈ Y and elliptic with constant cA1 = 1, i.e.,

〈Ap, p〉Q ≥ ‖p‖
2
Y for all p ∈ Y,

an application of Theorem 2.10 yields a unique solution uw ∈ X to (4.27). Therefore,
we have

〈Buw, w〉Q = 〈ε∇xw,∇xw〉L2(Q) > 0,

and hence surjectivity of B follows.

Remark 4.10. The proof of the inf-sup condition also stays true for velocity fields
with −1

2
divx(β) ≥ 0. This is inline with other works concerning convection-diffusion

equations, see e.g., [7, 33, 46].
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The properties of the operator B ensure that the variational formulation of the ab-
stract operator equation Bu = f which reads to find u ∈ X such that

〈∂tu+ β · ∇xu, q〉Q + 〈ε∇xu,∇xq〉L2(Q) = 〈f, q〉Q for all q ∈ Y (4.28)

admits a unique solution. Together with the properties of A we can apply the least-
squares framework, which ends up in the mixed system to find (u, p) ∈ X × Y such
that

〈ε∇xp,∇xq〉L2(Q) + 〈∂tu+ β · ∇xu, q〉Q + 〈ε∇xu,∇xq〉L2(Q) = 〈f, q〉Q,
〈∂tv + β · ∇xv, p〉Q + 〈ε∇xv,∇xp〉L2(Q) = 0,

(4.29)

is satisfied for all (v, q) ∈ X × Y .

For the discretization of (4.29) we consider finite dimensional subspaces XH ⊂ X and
Yh ⊂ Y , where we assume the inclusion XH ⊂ Yh. Similar as for the heat equation
we define wuh ∈ Yh as the unique solution of the variational formulation

〈ε∇xwuh,∇xqh〉L2(Q) = 〈∂tu+ β · ∇xu, qh〉Q for all qh ∈ Yh. (4.30)

Note that (4.30) is the discrete variational formulation of (4.24). Hence, we have
‖wuh‖Y ≤ ‖wu‖Y . Now we can define the mesh-dependent norm

|||u|||X,h :=
√
‖u‖2

Y + ‖wuh‖2
Y ≤ |||u|||X . (4.31)

This enables us to prove on the discrete level a refined boundedness estimate as well
as a stability result for the operator B.

Lemma 4.11. Let XH ⊂ X and Yh ⊂ Y be finite dimensional subspaces of X, Y,
respectively. Further, assume the inclusion XH ⊂ Yh. Then there holds

(i)
〈Bu, qh〉Q ≤

√
2|||u|||X,h‖qh‖Y for all u ∈ X, qh ∈ Yh,

(ii)

|||uH |||X,h ≤ sup
06=qh∈Yh

〈BuH , qh〉Q
‖qh‖Y

for all uH ∈ XH .

Proof. For the proof of (i) we use (4.30), the Cauchy-Schwarz inequality and the
inequality (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0. Thus, we obtain

〈Bu, qh〉Q = 〈∂tu+ β · ∇xu, qh〉Q + 〈ε∇xu,∇xqh〉L2(Q)

= 〈ε∇xwuh,∇xqh〉L2(Q) + 〈ε∇xu,∇xqh〉L2(Q)

≤ (‖wuh‖Y + ‖u‖Y ) ‖qh‖Y
≤
√

2|||u|||X,h‖qh‖Y .
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The proof of (ii) can be done in the same way as in Lemma 4.9. We sketch the main
ideas. We consider the specific test function q̄h := uH + wuHh, where wuHh ∈ Yh
solves (4.30). Due to the inclusion XH ⊂ Yh we have q̄h ∈ Yh. Then we can compute

〈BuH , q̄h〉Q = 〈∂tuH + β · ∇xuH , q̄h〉Q + 〈ε∇xuH ,∇xq̄h〉L2(Q)

= 〈ε∇xwuHh,∇xq̄h〉L2(Q) + 〈ε∇xuH ,∇xq̄h〉L2(Q)

= ‖q̄h‖2
Y .

Now, we have due to divx(β) = 0 that

〈ε∇xwuHh,∇xuH〉L2(Q) = 〈∂tuH + β · ∇xuH , uH〉Q ≥ 0.

This gives

‖q̄h‖2
Y = ‖uH + wuHh‖2

Y

= ‖uH‖2
Y + ‖wuHh‖2

Y + 2〈ε∇xwuHh,∇xuH〉L2(Q)

≥ |||uH |||2X,h,

which implies
〈BuH , q̄h〉Q ≥ |||uH |||X,h‖q̄h‖Y .

Hence, we conclude the discrete inf-sup stability condition

|||uH |||X,h ≤ sup
06=qh∈Yh

〈BuH , qh〉Q
‖qh‖Y

for all uH ∈ XH ,

with c̃S = 1.

Now we are in a position to conclude unique solvability of the discrete variational
formulation (3.13) which for the particular problem at hand reads to find (uH , ph) ∈
XH × Yh such that

〈ε∇xph,∇xph〉L2(Q) + 〈∂tuH + β · ∇xuH , qh〉Q + 〈ε∇xuH ,∇xqh〉L2(Q) = 〈f, qh〉Q,
〈∂tvH + β · ∇xvH , ph〉Q + 〈ε∇xvH ,∇xph〉L2(Q) = 0

(4.32)

is satisfied for all (vH , qh) ∈ XH × Yh. An application of the abstract error estimate
(3.36) gives the best approximation result

|||u− uH |||X,h ≤
√

2 inf
vH∈XH

|||u− vH |||X . (4.33)
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Remark 4.12. The dependency on the parameter ε is hidden in the norm |||·|||X .
Changing to the equivalent norm ‖ · ‖X will result in constants that depend on ε.

In case of a piecewise linear finite element space for the trial space and a sufficient
regular solution u ∈ Hs(Q) for some s ∈ [1, 2] we can derive with similar techniques
as in [157] the error estimate

‖u− uH‖Y ≤ |||u− uH |||X,h ≤ c(ε)Hs−1|u|Hs(Q). (4.34)

Using X̄H = Yh ∩ X we can show the discrete inf-sup condition (3.37) similar as
in Lemma 4.11 with c̄S = 1. Now, an application of Lemma 3.21 gives for some
η ∈ (0, 1) an efficiency and reliability estimate for the global error indicator ph ∈ Yh
which reads

1√
2
‖ph‖Y ≤ |||u− uH |||X,h ≤

1

1− η
‖ph‖Y . (4.35)

4.2.2 Numerical examples for the nonstationary case

In this section we will consider the developed framework for the convection-diffusion
equation in an adaptive refinement scheme and compare the results with those ob-
tained from a uniform refinement scheme. For the discretization we choose the trial
space XH = S1

H(TH) ∩ X of piecewise linear and globally continuous functions and
the test space Yh = YH = S2

H(TH)∩Y of piecewise quadratic and globally continuous
functions, which are defined with respect to an admissible and locally quasi-uniform
decomposition TH of Q into shape regular simplicial elements. In the adaptive refine-
ment scheme we use the global error estimator ph, which allows the representation

η2
H = ‖ph‖2

Y = 〈ε∇xph,∇xph〉L2(Q) =
∑
τ∈TH

〈ε∇xph,∇xph〉L2(τ) =
∑
τ∈TH

η2
τ ,

with the local error indicators

η2
τ = 〈ε∇xph,∇xph〉L2(τ) for τ ∈ TH .

As a marking strategy we use the Dörfler criterion [58] with parameter θ = 0.5. The
selected space-time simplicial elements are refined using newest vertex bisection. All
computations were done in the software Netgen/NGSolve [152], where we used the
sparse direct solver Pardiso [149] to solve the resulting linear systems.

In the first numerical example we consider the one dimensional spatial domain Ω =
(0, 1) and the time horizon T = 1, i.e., we have the space-time domain Q = (0, 1)2.
As exact solution we choose the smooth function

u(x, t) :=
(

1− e−
t
ε

)(ex−1
ε − 1

e−
1
ε − 1

+ x− 1

)
, (4.36)
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and we compute f = ∂tu − ε∆xu + β · ∇xu accordingly for ε = 10−2 and β = 1.
Note that a similar function in a 2d-1d setting is considered in [33]. The smooth
function (4.36) exhibits a spatial (x = 1) and a temporal (t = 0) boundary layer.
The numerical results for both a uniform and an adaptive refinement strategy are
shown in Fig. 4.12a. We observe a rate of O(H) for the error in the energy norm
and O(H2) for the L2-error as expected. In Fig. 4.12b we present a comparison
between the errors ‖u− uH‖Y , |||u− uH |||X,h and the error estimator ηH = ‖ph‖Y .
One can see that the error indicator is effective and that the error in the norm |||·|||X,h
is mainly driven by the spatial part of the norm. Finally, in Fig. 4.13 we present the
related finite element mesh and the numerical solution uH .
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Figure 4.12: Convergence results in the case of a smooth solution for a nonstationary
convection-diffusion equation.

As a second numerical example we use the two-dimensional spatial domain Ω = (0, 1)2

and the time horizon T = 1, i.e., we have the space-time domain Q = (0, 1)3. As
initial state u0 we consider similar as in [117] the function

u0(x) := ψ(10‖x− c‖2), ψ(r) :=

{
(1− r2)2, for r ≤ 1,

0, for r > 1,

with c = (0.5, 0.5)T . We compute numerical solutions to (4.19) for the velocity field
β = (0, 1)T and without a source term, i.e. f ≡ 0. Furthermore, we consider the
diffusion coefficient to be ε ∈ {10−3, 10−5, 10−6}. The results for a mesh with 32 ×
32×32 elements (35937 dofs) can be seen in Fig. 4.14. In the top row one can see the
numerical solution uH computed by solving (4.28) with the space-time finite element
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a) Adaptive mesh on L = 15, 144563 dofs b) Solution uH on adaptive mesh

Figure 4.13: Simulation results for the adaptive refinement process.

method described in [157]. This leads to oscillations in the solution as the mesh size is
not sufficiently small. In the bottom row one can see the solution using the developed
least-squares formulation with piecewise linear trial and piecewise quadratic test
functions. This formulation leads to stable results. We want to remark that the
stabilization method considered in [117, Fig. 3] still has some minor oscillations,
while in our case it seems that these oscillations are gone. In a further step we use
the inbuilt error estimator to drive an adaptive refinement scheme for the parameters
ε = 10−3, β = (0, 0.3)T and ε = 10−6, β = (0, 1)T . In Fig. 4.15 the convergence rate
of the error estimator in case of a uniform and an adaptive refinement strategy for
both sets of parameters is depicted. In the case ε = 10−3, β = (0, 0.3)T , we observe
a linear rate O(H) for both refinement strategies. In the case ε = 10−6, β = (0, 1)T

we observe a reduced rate of O(H0.4) in the uniform case. However, we can recover
the full rate of O(H) in the adaptive case. The obtained adaptive meshes as well as
the corresponding numerical solutions are depicted in Fig. 4.16 and 4.17. In every
case we obtain a mesh which is fully unstructured in space and time.

As a third example we consider again the unit cube in the space-time domain, i.e.,
Q = (0, 1)3. We choose u0 = 0, ε = 10−2 and the source term to be f = 1.
The advection vector β is given in terms of a time dependent function with β(t) =
(sin(2πt), cos(2πt))T . Thus, the solution u has a boundary layer whose location
depends on time. Note that a similar example is considered in [33, Ex. 4]. In
Fig. 4.18 a comparison of the error estimator in case of an adaptive and uniform
refinement strategy is depicted. We observe a convergence rate of O(H) in both
cases. The generated grids in the adaptive case at different fixed times can be seen
in Fig. 4.19. The circular movement of the boundary layer in time is visible.
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a) ε = 10−3 b) ε = 10−5 c) ε = 10−6

d) ε = 10−3 e) ε = 10−5 f) ε = 10−6

Figure 4.14: Numerical results for β = (0, 1)T on a mesh with 32× 32× 32 elements.
Top: no stabilization via direct formulation [157], bottom: stabilization
via developed least-squares formulation.
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Figure 4.15: Error estimator ηH = ‖ph‖Y in case of an adaptive and uniform refine-
ment strategy for the second example.
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a) Adaptive mesh on L = 7, 152513 dofs b) Solution uH on the adaptive mesh

Figure 4.16: Obtained results for ε = 10−6 and β = (0, 1)T after the adaptive refine-
ment process.

a) Adaptive mesh on L = 6, 463696 dofs b) Solution uH on adaptive the mesh

Figure 4.17: Obtained results for ε = 10−3 and β = (0, 0.3)T after the adaptive
refinement process.
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Figure 4.18: Error estimator ηH = ‖ph‖Y in case of an adaptive and uniform refine-
ment strategy for the third example.

4.2.3 Numerical examples for the stationary case

Although the scope of Section 4.2 lies on the application of the minimal residual
method to the nonstationary convection-diffusion equation within a space-time frame-
work, we also want to demonstrate the approach in case of stationary convection-
diffusion problems. The reason for this is that there are benchmark problems avail-
able, which allow for a comparison with reference values. We will quickly state the
variational setting involving the spaces and the operators. Afterwards we show some
numerical examples. For the sake of brevity we omit a detailed analysis of the oper-
ators, but we mention that this can be done similarly as in the instationary case.

In the stationary case we have the spaces

Y = H1
0 (Ω), X = {u ∈ Y : β · ∇u ∈ Y ∗} ,

and consider the norms

‖p‖Y =
√
〈ε∇p,∇p〉L2(Ω), ‖u‖X =

√
‖u‖2

Y + ‖β · ∇u‖2
Y ∗ , ‖β · ∇u‖Y ∗ = ‖wu‖Y ,

where the Riesz representative wu ∈ Y is the unique solution of the variational
problem

〈ε∇wu,∇q〉L2(Ω) = 〈β · ∇u, q〉Ω.

Since we assume bounded velocity fields β the norm ‖·‖X defines an equivalent norm
in H1

0 (Ω) and the space X coincides with Y = H1
0 (Ω). This can be shown similar as

in Lemma 4.8. The operators A : Y → Y ∗ and B : X → Y ∗ are given as

〈Ap, q〉Ω := 〈ε∇p,∇q〉L2(Ω), 〈Bu, q〉Ω := 〈ε∇u,∇q〉L2(Ω) + 〈β · ∇u, q〉Ω
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a) t = 0.25 b) t = 0.5

c) t = 0.75 d) t = 1

Figure 4.19: Generated mesh on refinement level L = 5 at different times t in case of
the time dependent velocity field β(t) = (sin(2πt), cos(2πt))>.
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for all u ∈ X, p, q ∈ Y . We remark that the operator A : Y → Y ∗ is self-adjoint
bounded and elliptic with constants cA1 = cA2 = 1. For the operator B : X → Y ∗ we
conclude

‖Bu‖Y ∗ ≤
√

2‖u‖X , ‖u‖X ≤ sup
06=q∈Y

〈Bu, q〉Ω
‖q‖Y

,

i.e., boundedness and an inf-sup stability condition. This can be shown as demon-
strated in Lemma 4.9. For the surjectivity we consider 0 6= q ∈ Y = H1

0 (Ω). Since we
assume bounded velocity fields β we have q ∈ X, i.e., using uq = q ∈ X we obtain

〈Buq, q〉Ω = 〈ε∇q,∇q〉L2(Ω) + 〈β · ∇q, q〉L2(Ω) = ‖q‖2
Y > 0,

where we use 〈β · ∇q, q〉L2(Ω) = 0 since we assume div β = 0. Summing up all
conditions of Section 3.1 are satisfied. The variational formulation of the mixed
system is to find (u, p) ∈ X × Y such that

〈ε∇p,∇q〉L2(Ω) + 〈ε∇u,∇q〉L2(Ω) + 〈β · ∇u, q〉Ω = 〈f, q〉Ω,
〈ε∇v,∇p〉L2(Ω) + 〈β · ∇v, p〉Ω = 0

is satisfied for all (v, q) ∈ X × Y . For the discretization we choose XH = S1
H(TH) ∩

X and Yh = YH = S2
H(TH), which are defined with respect to some admissible

and locally quasi-uniform decomposition TH of Ω into shape regular simplicial finite
elements. Note that it holds XH ⊂ Yh. Similar as in the instationary case, cf. Lem.
4.11, one can prove a discrete inf-sup stability condition

‖uH‖X,h ≤ sup
06=q∈Yh

〈BuH , qh〉Ω
‖qh‖Y

for all uH ∈ XH , (4.37)

with the discrete norm

‖uH‖X,h :=
√
‖u‖2

Y + ‖wuh‖2
Y ≤ ‖u‖X ,

where wuh ∈ Y solves the variational problem

〈ε∇wuh,∇qh〉L2(Ω) = 〈β · ∇u, qh〉Ω for all qh ∈ Yh.

The stability condition (4.37) ensures that the discrete mixed system which reads to
find (uH , ph) ∈ XH × Yh such that

〈ε∇ph,∇qh〉L2(Ω) + 〈ε∇uH ,∇qh〉L2(Ω) + 〈β · ∇uH , qh〉Ω = 〈f, qh〉Ω,
〈ε∇vH ,∇ph〉L2(Ω) + 〈β · ∇vH , ph〉Ω = 0

(4.38)

is satisfied for all (vH , qh) ∈ XH × Yh admits a unique solution. In our numerical
experiments we solve (4.38) and use the global error estimator

η2
H = ‖ph‖2

Y = 〈ε∇ph,∇ph〉L2(Ω) =
∑
τ∈TH

〈ε∇ph,∇ph〉L2(τ) =
∑
τ∈TH

η2
τ ,
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Figure 4.20: Convergence behaviour of the errors and the estimators for the problem
(4.20) with ε ∈ {10−2, 10−5}.

with the local indicators

η2
τ = 〈ε∇ph,∇ph〉L2(τ) for τ ∈ TH

to drive an adaptive refinement scheme. As a marking strategy we use the Dörfler
criterion [58] with parameter θ = 0.5. All linear systems were solved using the sparse
direct solver Pardiso [149].

As a first example we revisit the singularly perturbed boundary value problem (4.20),
see also [141, Ex. 1.2], and apply the least-squares framework. The convergence
behaviour of the error and the estimator in case of ε ∈ {10−2, 10−5} are given in Fig.
4.20. As expected, we observe a linear rate. The numerical solutions obtained on
different refinement levels are provided in Fig. 4.21. We see that the sequence of
iterates from the adaptive refinement process converges to the physical true solution
(4.21). However, the first few iterates obtain a constant shift from the true solution
and some minor oscillations at x = 0 and at x = 1. Note that this behaviour is also
observed in [12, 46]. Further, we see that the numerical solutions on the first few
refinement levels have negative values even though the true solution is not negative.
However, the inbuilt error estimator detects how many dofs need to be added in order
to obtain a physical correct solution, which fulfills a discrete maximum principle
(DMP). Finally, we want to mention that in case of ε = 10−5 the numerical solution
uH on L = 20 was computed on a mesh with M̃X = 60 vertices (indicated in black)
and 179 dofs for the corresponding saddle point system. This already lead to a
satisfactory result. In comparison, the direct approach needed about 100000 dofs to
give a satisfactory approximation to the solution.
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a) ε = 10−2 b) ε = 10−5

Figure 4.21: Numerical solutions uH and exact solution u (4.21) to the problem
(4.20). The black dots indicate the grid points on L = 4 for ε = 10−2

and on L = 20 for ε = 10−5.

As a second example we consider the problem in [98], which deals with a non-constant
convection field β. In particular, we consider Ω = (0, 1)2 with the velocity field
β = (−y, x)>, ε = 10−5 and right-hand side f = 0. We prescribe homogeneous
Dirichlet boundary conditions on the boundaries {1} × [0, 1] and [0, 1] × {1}, i.e.,
on the right and top boundary. At the inlet boundary [0, 1] × {0} we consider the
inhomogeneous boundary condition given by

u(x, 0) =


1− 1

4

(
1− cos

(
1/3+ξ−x

2ξ
π
))2

for x ∈
[

1
3
− ξ, 1

3
+ ξ
]
,

1 for x ∈
(

1
3

+ ξ, 2
3
− ξ
)
,

1− 1
4

(
1− cos

(
x−2/3+ξ

2ξ
π
))2

for x ∈
[

2
3
− ξ, 2

3
+ ξ
]
,

0 else

(4.39)

with ξ = 10−3. On the remaining outlet boundary {0} × (0, 1) we prescribe a ho-
mogeneous Neumann boundary condition. In order to study the satisfaction of the
global DMP we evaluate as in [97] the quantity

oscmax(uH) = max
(x,y)∈Ω

uH(x, y)− 1− min
(x,y)∈Ω

uH(x, y). (4.40)

In order to assess the accuracy of the numerical solution three characteristic values
of the solution at the outflow boundary are provided in [98]. The reference values
read:

• width of the lower layer: 0.01439869,
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Figure 4.22: Left: Inhomogeneous boundary condition (4.39) prescribed on inlet
boundary. Right: Numerical solution uH at the outlet boundary for
different refinement levels.

Figure 4.23: Left: Numerical solution uH on L = 15. Right: Adaptive mesh on
L = 15 with 148968 dofs.

• width of the upper layer: 0.01439637,

• outflow profile width: 0.3482541.

In Fig. 4.22 we provide a plot of the inhomogeneous boundary condition (4.39) on
the inlet boundary as well as the numerical solution uH at the outlet boundary for
different refinement levels. In Fig. 4.23 the numerical solution uH as well as the
adaptive mesh generated on refinement level L = 15 are depicted. The adaptive
mesh was generated from a structured initial mesh with 16 × 16 elements. Further,
in Tab. 4.2 and Fig. 4.24 we provide a comparison of the computed characteristic
values to the reference values and the satisfaction of the global DMP. We see that



78 4 Parabolic evolution equations

103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

M̃X

di
ffe

re
nc
e
to

re
fe
re
nc
e
va
lu
es profile width

lower width

upper width

103 104 105

0

0.1

0.2

0.3

0.4

M̃X
os

c m
a
x
(u

H
)

Figure 4.24: Left: Comparison of the computed characteristic values to the reference
values. Right: Satisfaction of the global DMP on different refinement
levels.

L M̃X lower layer upper layer profile oscmax(uH)

0 289 0.17989000 0.06040999 0.49811000 0.43594821
5 1666 0.04909000 0.05312000 0.37743000 0.28357896
10 15160 0.01785999 0.01824999 0.35253999 0.07359097
13 51480 0.01422000 0.01436000 0.34822000 1.523e-03
15 148968 0.01440000 0.01440000 0.34825000 7.373e-04
17 473779 0.01439000 0.01439000 0.34825000 4.033e-04

Table 4.2: Computed characteristic values and evaluation of (4.40).
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for earlier refinement levels over- and undershoots are visible, but they are almost
vanishing on higher refinement levels. This can be also seen from the quantity (4.40)
in Table 4.2 and Fig. 4.24, which shows a good satisfaction of the global DMP for
higher refinements. In addition to that Fig. 4.24 shows that the difference of the
computed characteristic quantities to the reference values is in the order of floating
point precision for higher refinement levels, i.e., we have a good agreement of the
computed reference values with the characteristic values.

As a third example we consider the Hemker problem [91], which is a standard bench-
mark problem for steady state convection-diffusion problems. The domain is given by
Ω = (−3, 9)×(−3, 3)\{(x, y) : x2+y2 ≤ 1}. The velocity is given by β = (1, 0)>, and
the right-hand side f is set equal to zero. Further we have the boundary conditions

u(x, y) =


0 x = −3,

1 x2 + y2 = 1,

ε∇u · n = 0 x = 9 ∨ y = −3 ∨ y = 3

.

As in [10, 97, 98] we consider the diffusion coefficient to be ε = 10−4. In order to
assess the accuracy of the numerical solution a value for the width of the interior layer
at x = 4 was provided in [10]. This width is defined to be the length of the interval,
where u(4, y) ∈ [0.1, 0.9]. In [10] the reference value 0.0723 is provided for the upper
layer, i.e., where y ≥ 0. Furthermore, we evaluate the quantity (4.40) to measure the
satisfaction of the global DMP. The values of the reference solution provided in [10]
are contained in the interval [0, 1]. In Fig. 4.25 the initial mesh and the adaptive
mesh otained on L = 17 are depicted. We see stronger refinements at the boundary
layer around the circle, which at the top and bottom of the circle passes into an
interior layer that spread into the direction of the convection. Moreover, we observe
some refinements at the left boundary. This may be explained in terms of the over-
and undershoots that occur for lower refinements. In Fig. 4.27 we provide a plot of
the numerical solution uH for y = 1 and x = 4, i.e., we consider the cut lines uH(x, 1)
and uH(4, y). For ealier refinement levels we see an oscillatory behaviour of the cut
line uH(x, 1) and some over- and undershoots in both cut lines. However, for higher
refinements these oscillations are reduced, and we see cut lines which are in good
accordance with the lines of the physically correct reference solution, see [10, Fig. 6].
In Tab. 4.3 and Fig. 4.28 we provide a comparison of the computed characteristic
value with the reference value as well as a plot of the satisfaction of the DMP. We
see that we converge to the reference characteristic value, while the quantity (4.40)
gets reduced. For example on level L = 18 the difference of the computed upper
width to the reference upper width is about 3.5 · 10−4 and the quantitiy (4.40) is
approximately 6.8 · 10−4. This means we have an accurate numerical solution which
shows a good satisfaction of the DMP.
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Figure 4.25: Left: Initial mesh with 438 dofs. Right: Adaptive mesh on L = 17 with
676072 dofs.

Figure 4.26: Numerical solution uH on L = 17.

Figure 4.27: Cut lines of the numerical solution on different refinement levels. Left:
uH(x, 1). Right: uH(4, y).
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Figure 4.28: Left: Comparison of the computed characteristic values to the reference
values. Right: Satisfaction of the global DMP on different refinement
levels.

L M̃X upper layer oscmax(uH)

0 438 0.8087 0.9742
8 12048 0.4873 0.6315
12 82453 0.1603 0.1909
15 227728 0.0801 0.0165
17 676072 0.0728 1.187e-03
18 1181853 0.0727 6.823e-04

Table 4.3: Computed characteristic value and evaluation of (4.40) for the Hemker
problem.
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4.3 A semilinear model problem

In this section we will apply the minimal residual framework presented in Section 3.2
to a semilinear equation. In particular, we consider the problem

∂tu(x, t)−∆xu(x, t) + u3(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ), (4.41a)
u(x, t) = 0 for (x, t) ∈ Σ := Γ× (0, T ), (4.41b)
u(x, 0) = 0 for x ∈ Ω, (4.41c)

where Ω ⊂ Rd, d = 1, 2, 3 is a bounded Lipschitz domain with boundary Γ = ∂Ω, and
T > 0 is a given time horizon. This model problem is motivated from the Schlögl
model [39, 151], which models electrical currents on the human heart. It can be also
related to the FitzHugh-Nagumo equations [155], which describe reaction-diffusion
systems in biology.

4.3.1 Minimal residual formulation of the nonlinear problem

In view of the abstract setting we have the same spaces as for the heat equation,
i.e.,

X := L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω)), Y := L2(0, T ;H1
0 (Ω)), H := L2(Q),

with the corresponding norms

‖p‖Y := ‖∇xp‖L2(Q), ‖u‖X :=
√
‖∂tu‖2

Y ∗ + ‖∇xu‖2
L2(Q).

The operators A : Y → Y ∗ and B : X → Y ∗ are defined in the variational sense
satisfying

〈Ap, q〉Q := 〈∇xp,∇xq〉L2(Q),

〈B(u), q〉Q := 〈∂tu, q〉Q + 〈∇xu,∇xq〉L2(Q) +
〈
u3, q

〉
L2(Q)

,
(4.42)

for all p, q ∈ Y and u ∈ X. Note that the expression〈
u3, q

〉
L2(Q)

=

∫ T

0

〈
u3(t), q(t)

〉
L2(Ω)

dt

is well-defined due to the embeddings H1
0 (Ω) ↪→ C(Ω) for Ω ⊂ R, H1

0 (Ω) ↪→ Lq(Ω)
with 1 ≤ q < ∞ for Ω ⊂ R2 and H1

0 (Ω) ↪→ L6(Ω) for Ω ⊂ R3, see [168, Satz
7.1]. The first and second directional derivative of the operator B are then given by
B′(u) : X → Y ∗, B′′(u) : X ×X → Y ∗ satisfying

〈B′(u)ϕ, q〉Q = 〈∂tϕ, q〉Q + 〈∇xϕ,∇xq〉L2(Q) + 3
〈
u2ϕ, q

〉
L2(Q)

,

〈B′′(u)(ψ, ϕ), q〉Q = 6〈uψϕ, q〉L2(Q),



4.3 A semilinear model problem 83

for all u, ϕ, ψ ∈ X, q ∈ Y . The abstract mixed Galerkin variational formulation of
the optimality system (3.47) in this case reads to find (u, p) ∈ X × Y such that

〈∇xp,∇xq〉L2(Q) + 〈∂tu, q〉Q + 〈∇xu,∇xq〉+
〈
u3, q

〉
L2(Q)

= 〈f, q〉Q,

〈∂tv, p〉L2(Q) + 〈∇xv,∇xp〉L2(Q) + 3
〈
u2v, p

〉
L2(Q)

= 0,
(4.43)

holds for all (v, q) ∈ X × Y . The application of Newton’s method to (4.43) gives the
following algorithm.

Algorithm 4.13. Choose an initial guess (p0, u0) ∈ Y ×X.

For k = 0, 1, 2, ..., until convergence do

(i) Find (wkp , w
k
u) ∈ Y ×X such that〈

∇xw
k
p ,∇xq

〉
L2(Q)

+
〈
∂tw

k
u, q
〉
Q

+
〈
∇xw

k
u,∇xq

〉
L2(Q)

+ 3
〈
(uk)2wku, q

〉
L2(Q)

= −
〈
G1(pk, uk), q

〉
Q〈

∂tv, w
k
p

〉
Q

+
〈
∇xv,∇xw

k
p

〉
L2(Q)

+3
〈
(uk)2v, wkp

〉
L2(Q)

+ 6
〈
ukwkuv, p

k
〉
L2(Q)

= −
〈
G2(pk, uk), v

〉
Q

is satisfied for all (q, v) ∈ Y ×X, where G1 : Y ×X → Y ∗ and G2 : Y ×X → X∗

are given as 〈
G1(pk, uk), q

〉
Q

=
〈
∇xp

k,∇xq
〉
L2(Q)

+
〈
∂tu

k, q
〉
Q

+
〈
∇xu

k,∇xq
〉

+
〈
(uk)3, q

〉
− 〈f, q〉Q

〈
G2(pk, uk), v

〉
Q

=
〈
∂tv, p

k
〉
L2(Q)

+
〈
∇xv,∇xp

k
〉
L2(Q)

+ 3
〈
(uk)2v, pk

〉
L2(Q)

,

for all v ∈ X, q ∈ Y .

(ii) Set (pk+1, uk+1) = (pk, uk) + (wkp , w
k
u).

The Gauß-Newton algorithm for this particular problem is given via the following
algorithm.

Algorithm 4.14. Choose an inital guess u0 ∈ X.

For k = 0, 1, 2, ..., until convergence do

(i) Find pk ∈ Y such that〈
∇xp

k,∇xq
〉
L2(Q)

=
〈
∂tu

k, q
〉
Q

+
〈
∇xu

k,∇xq
〉
L2(Q)

+
〈
(uk)3, q

〉
L2(Q)

− 〈f, q〉Q

holds for all q ∈ Y .
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(ii) Solve the mixed system to find (wkp , w
k
u) ∈ Y ×X such that〈

∇xw
k
p ,∇xq

〉
L2(Q)

+
〈
∂tw

k
u, q
〉
Q

+
〈
∇xw

k
u,∇xq

〉
L2(Q)

+ 3
〈
(uk)2wku, q

〉
L2(Q)

= 0,〈
∂tv, w

k
p

〉
Q

+
〈
∇xv,∇xw

k
p

〉
L2(Q)

+ 3
〈
(uk)2v, wkp

〉
L2(Q)

=
〈
∂tv, p

k
〉
Q

+
〈
∇xv,∇xp

k
〉
L2(Q)

+ 3
〈
(uk)2v, pk

〉
L2(Q)

is satisfied for all (q, v) ∈ Y ×X.

(iii) Set uk+1 = uk + wku.

For the discretization we consider a trial space XH = span {ϕi}MX
i=1 ⊂ X and a test

space Yh = span{ψi}MY
i=1 ⊂ Y . The discrete version of the Algorithms 4.13 and 4.14

are given by the Algorithms 3.30, 3.31 together with the matrices and vectors

Ah[i, j] = 〈∇xψj,∇xψi〉L2(Q), i, j = 1, ...,MY ,

B(u)[i] = 〈∂tuH , ψi〉Q + 〈∇xuH ,∇xψi〉+
〈
u3
H , ψi

〉
L2(Q)

, i = 1, ...,MY ,

B′h(u)[i, j] = 〈∂tϕj, ψi〉Q + 〈∇xϕj,∇xψi〉L2(Q) + 3
〈
u2
Hϕj, ψi

〉
L2(Q)

,

i = 1, ...,MY , j = 1, ...,MX

B′′h(u, p)[i, j] = 6〈uHphϕj, ϕi〉L2(Q), i, j = 1, ...,MX

f [i] = 〈f, ψi〉Q i = 1, ...,MY ,

where we use the identifications uH ∈ XH ↔ u ∈ RMX , ph ∈ Yh ↔ p ∈ RMY .

4.3.2 Numerical example

In this section we apply Algorithm 3.30 and Algorithm 3.31 in their damped ver-
sion with a backtracking line search strategy for the solution of the semilinear heat
equation (4.41). For the discretization we choose the trial space XH = S1

H(TH) ∩X
of piecewise linear and continuous basis functions and the test space Yh = YH =
S2
H(TH) ∩ Y of piecewise quadratic basis functions. In both algorithms we compute

quantities ηNH and ηGNH , which will be used as an error indicator to drive an adaptive
refinement scheme. They allow for a represenation similar as in (4.16). As a marking
strategy we will use the Dörfler criterion [58] with parameter θ = 0.5. The marked
elements are then refined using newest vertex bisection. For the implementation
we used the finite element software Netgen/NGSolve [152]. All systems of algebraic
equations were solved using the sparse direct solver Pardiso [148, 149, 150].
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Figure 4.29: Convergence behavior for the approximation of the smooth function
(4.17).

In the numerical example we consider the space-time domain Q = (0, 3)×(0, 6) ⊂ R2.
As exact solution u : Q→ R we consider the smooth function (4.17), and we compute
f = ∂tu−∆xu accordingly. On refinement level L = 0 we choose the initial guesses
(pL,0, uL,0) = (0, 0), uL,0 = 0, for Newtons’s, Gauß-Newton’s method, respectively.
For L > 0 we prolongate the solution uL−1 from the mesh level L− 1 to the current
mesh level L and take this as an initial guess in both methods, i.e., uL,0 = PL,L−1

h uL−1.
Additionally, in Newton’s method we choose pL,0 = 0 for L > 0. The numerical results
for both a uniform and an adaptive refinement scheme in case of Newton’s method
can be seen in Fig. 4.29a. We observe a rate of O(H) for the error ‖∇x(u−uH)‖L2(Q)

and a rate O(H2) for the L2(Q) error. This is expected as we consider the smooth
function (4.17) for the true solution. In Fig. 4.29b we present a comparison between
the results of Newton’s and Gauß-Newton’s method. On the one hand it shows that
we get the same energy errors in both methods. On the other hand one can also see
that in both cases the error estimators ηNH , ηGNH are effective. In Tab. 4.4 and 4.5 we
present the number of iterations (iter), the step size τ in the final step and the final
error (err) for Newton’s and Gauß-Newton’s method, respectively. As a stopping
criterion we chose a maximal error of 10−10. We can see that Newton’s method
takes 3 to 4 iterations on each refinement level until convergence. The Gauß-Newton
method needs slightly more iterations namely 3 to 8. This is expected since in the
Gauß-Newton method we neglect the information of the second order derivative of
the operator B for computing a descent direction. However, we can observe from the
number of nodes M̃X = dim(S1

h(Q)) that both algorithms lead to the same number
of marked elements which are refined in every step.
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L M̃X iter err τ

0 14 4 8.872e-14 1.000
1 24 4 3.295e-16 1.000
2 41 4 6.023e-11 1.000
3 72 4 1.182e-12 1.000
4 138 4 3.408e-16 1.000
5 267 4 3.616e-16 0.500
6 494 3 3.839e-11 1.000
7 949 3 5.593e-12 1.000
8 1804 3 1.702e-13 1.000
9 3395 3 4.266e-14 1.000
10 6448 3 1.582e-15 1.000
11 12057 3 1.405e-15 1.000

Table 4.4: Number of iterations and final errors of Newton’s method during adaptive
refinement.

L M̃X iter err τ

0 14 7 3.434e-11 1.000
1 24 8 6.246e-12 1.000
2 41 8 8.577e-12 1.000
3 72 6 3.275e-11 1.000
4 138 5 2.032e-11 1.000
5 267 5 1.547e-12 1.000
6 494 4 3.392e-11 1.000
7 949 4 4.121e-12 1.000
8 1804 4 2.272e-13 1.000
9 3395 4 2.361e-14 1.000
10 6448 3 1.042e-11 1.000
11 12057 3 2.862e-12 1.000

Table 4.5: Number of iterations and final errors of Gauß-Newton’s method during
adaptive refinement.



5 Application to the simulation of electric
machines

This chapter is dedicated to the application of the minimal residual method to the
simulation of electric machines. Electric machines are part of our everyday life, rang-
ing from applications in industry, public services or in households. They are also
used to power a variety of equipment including wind blowers, water pumps or com-
pressors, see e.g., [145]. Further, it is mentionend in [115, 145] that electric machines
consume about 2/3 of the industrial power in each nation and about 46% of the
total electricity worldwide, which result in about 6040 Mega-tonnes of CO2 emission.
Increasing the efficiency of electric machines is therefore of great interest, not only
from an economic point of view, since the most efficient machines will dominate the
market, but also from the point of view of sustainability and environmental protec-
tion. The latter two concerns have become more and more important over the last
years due to the fight against climate change.

The design of efficient electric machines relies on powerful simulation tools. The
creation of such tools is a challenging task as electric machines are multiphysical ob-
jects, meaning that underlying models include electromagnetic, thermodynamic as
well as structural mechanics partial differential equations, which are accomplished by
nonlinear and possibly hysteretic material models. In this thesis we restrict ourselves
to magnetic field computations like in [76, 78, 89, 90, 136]. Magnetic field compu-
tations are fundamental in the design process of an electric machine as performance
criteria like torque [144] or losses can be derived from the magnetic flux density.
Therefore, an application of a numerical method in combination with an adaptive
mesh refinement scheme to determine the magnetic flux density accurately is of high
interest.

5.1 A brief introduction into electric machines and the
electromagnetic model

Electric machines can be distinguished between motors and generators, see [19, 76,
104]. An electric motor converts electrical into mechancial energy, while a generator
does the opposite. Further, one can classify electric motors in direct current mo-
tors (DC-motors) and in alternating current motors (AC-motors). Two important
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representatives of AC-motors are the induction motors or asynchronous motors and
the synchronous motors. The latter can be divided into synchronous reluctance ma-
chines and permanent synchronous motors. In general, electric motors consist of a
fixed part called stator and a moving part called rotor, which are separated via an
air gap, cf. [76]. For more details on electric machines we refer the interested reader
to the book of Binder [19].

Starting point for the derivation of the physical model are Maxwell’s equations, see
e.g., [95, 96, 102, 103, 109, 122]. The complete set of equations in its differential form
reads

curlH = J +
∂

∂t
D, (5.1a)

curlE = − ∂

∂t
B, (5.1b)

divB = 0, (5.1c)
divD = %. (5.1d)

The electromagnetic quantities are connected via the constitutive equations, see e.g.,
[40, 100, 102, 103]

J = Ji + σ(E + v ×B), (5.2)
D = εE + P, (5.3)
B = µ (H + M) . (5.4)

Note that the physical quantities are vector valued functions mapping from R3×R→
R3. Further, we want to mention that the differential operators like curl, div, ∇ are
acting on the spatial coordinates. A detailed description of the underlying physical
quantities in Maxwell’s equations and the related material laws together with their
units are given in Table 5.1. The units are given in terms of SI units like metre
m, seconds s, Ampere A and derived units like Volt V , Tesla T , Ohm Ω = V/A
and its reciprocal Siemens S = 1/Ω. It has to be stated, see e.g., [102, 174] that
the fundamental equations (5.1) are based on experiments and concluding empirical
laws stated by Ampère, Faraday and Gauß. In particular, Ampère’s law (5.1a)
states how electric current generates a magnetic field intensity. The law of Faraday
(5.1b) describes how a time varying magnetic flux density induces a voltage. On the
one hand it is based on the observation that a uniform and constant magnetic flux
density induces a voltage in an electrically conductive slab which moves inside the
magnetic field B, cf. [102]. On the other hand it represents the fact that a time
varying magnetic flux density induces a voltage in an open conductive loop, cf. [102].
The relation (5.1c) states that there exists no magnetic monopols, i.e., no magnetic
charges exist, and the magnetic field is solenoidal, i.e., the field lines are closed, see
[102]. The law of Gauß (5.1d) postulates that the amount of electric flux density



5.1 A brief introduction into electric machines and the electromagnetic model 89

Quantity Unit Description

E V
m

Electric field intensity
D As

m2 Electric flux density or electric induction
H A

m
Magnetic field intensity

B T = V s
m2 Magnetic flux density or magnetic induction

J A
m2 Current density

% As
m3 Electrical charge density

M A
m

Magnetization
P As

m2 Electric polarization
σ 1

Ωm
= S

m
Electric conductivity

ε As
V m

Electric permittivity
µ V s

Am
Magnetic permeability

Table 5.1: Description of the electromagnetic quantities and material parameters.

crossing a closed surface Γ is equal to the total electric charge % within the volume
Ω. This means that the sources of the electric field are the electric charges and
therefore the electric field is irrotational, see [102]. For a more detailed discussion of
the fundamental equations (5.1) we refer the interested reader to [95, 96, 102]. It is
important to note that the set of equations (5.1) imply the continuity equation. In
fact, taking the divergence of (5.1a) and combining it with (5.1d) gives

∂t%+ div J = 0. (5.5)

This corresponds to the conservation of charges, which can be seen from

d

dt

∫
ω(t)

%(y, t)dy =

∫
ω(t)

∂t%(y, t) + div(%(y, t)v(y, t))dy = 0,

where we used Reynold’s transport theorem [61, Satz 5.4] and the relation J = %v.

The material parameters ε, µ, σ are in general tensors of rank 2 which depend on
space, time and the field quantities E,H. We assume isotropic material in all our
computations, which means that the material parameters become scalar quantities,
see e.g., [76, 136]. Further, we assume that the material parameters are constant in
time. In so-called linear materials the material parameters are independent of the
field quantities, cf. [174]. Of special interest in the framework of electric machine
simulation is the magnetic reluctivity ν, which is defined as the reciprocal of the
magnetic permeability, i.e., ν := µ−1. In ferromagnetic material it will be a nonlinear
function depending on the field quantity B, i.e., ν = ν(y, |B|). Note that we will
neglect in our simulation any kind of hysteresis effects [95]. For electric machine
simulations including hysteresis effects we refer to [83].
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The constitutive relation (5.2) consists of an impressed current density Ji and a
conduction current density Jc = σ(E + v × B), which is due to the force relation
by Lorentz [102]. In terms of electric machine simulation the impressed current
density is given via the excitation of the coils. The conduction currents are used to
model so-called eddy currents in electric machines. Note that the second term in the
conduction currents is due to the rotor, which is moving within the magnetic field B.
The eddy currents arise in metalic bodies if excited by time varying magnetic fields
[174]. This is for instance the case in the permanent magnets of the machine, but
they do not occur in the ferromagnetic part of the stator and rotor since they are
made of laminated steel sheets which prevent the appearance of eddy currents.

In what follows we will derive, see e.g., [100], the common physical model to describe
electric machines, which is the eddy current or magneto-quasistatic approximation
of Maxwell’s equations in its vector potential formulation. The eddy current approx-
imation is well suited for low frequency applications which is the case for electric
machines, transformers or relays [174]. In this case the displacement currents ∂D

∂t
can

be neglected and hence (5.1d) decouples from (5.1a)-(5.1c), and we end up with the
system

curlH = J, curlE = −∂B
∂t
, divB = 0.

Since B is divergence free there exists a vector potential Ã which is unique up to a
gradient field such that

B = curl Ã (5.6)

Inserting (5.6) into Faraday’s law (5.1b) gives

curl

(
E +

∂Ã

∂t

)
= 0.

Due to the identity curl∇(.) = 0 we conclude that there exists a scalar field ϕ such
that

−∇ϕ = E + ∂tÃ.

Now, we introduce a modified vector potential via

A(y, t) = Ã(y, t) +

∫ t

0

∇ϕ(y, s)ds.

For this modified vector potential we have B = curlA and ∂tA = ∂tÃ +∇ϕ. Thus,
it holds

E = −∂tÃ−∇ϕ = −∂tA.
Using this and that by (5.4) it holds that H = νB −M we obtain from Ampère’s
law (5.1a)

σ [∂tA + curlA× v] + curl(ν curlA) = Ji + curlM, (5.7)
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which is the vector potential formulation of the eddy current problem. For the
solution of (5.7) one needs to impose boundary, initial, and interface conditions. For
this reason let D ⊂ R3, T > 0 and Γ := ∂D. Further we denote with ΓI the interface
where the reluctivity ν and the electrical conductivity σ jumps. We introduce n as
the outer unit vector on Γ × (0, T ), ΓI × (0, T ), respectively. A possible choice in
terms of electric machines is to consider

A× n = 0 on Γ× (0, T ),

A(., 0) = 0 in Ω,

JA× nK = 0 on ΓI × (0, T ),

Jνn× curlAK = 0 on ΓI × (0, T ),

Jσn · (∂tA + curlA× v)K = 0 on ΓI × (0, T ),

where JvK denotes the jump of a function v along the interface, i.e., cf. [76, 104],

JvK = v+
∣∣
ΓI×(0,T )

− v−
∣∣
ΓI×(0,T )

.

Here v+, v− are the restrictions of v to the corresponding subdomains, cf. [76]. The
boundary condition A× n = 0 implies that B · n = 0 on Γ× (0, T ), see [136]. This
means that no magnetic flux leaves the computational domain [40, 104]. This is also
called induction boundary condition, see e.g., [76].

It is common practice to reduce (5.7) for the simulation of electric machines to a
two-dimensional model in space, see e.g., [40, 76, 77, 78, 136]. For this we assume
that the spatial computational domain D ⊂ R3 is of the form

D = Ω× (−`, `) with `� diam(Ω),

i.e., one spatial component is much larger than the other two components and that
the current density Ji, the magnetization M, the magnetic field intensity H and the
velocity v are of the form

Ji =

 0
0

f(y1, y2, t)

 ,M =

M1(y1, y2, t)
M2(y1, y2, t)

0

 ,
H =

H1(y1, y2, t)
H2(y1, y2, t)

0

 , v =

v1(y1, y2, t)
v2(y1, y2, t)

0

 .
From the constitutive relation (5.4) we immediately obtain that the magnetic flux
density is of the same form as H and M, i.e,

B =

B1(y1, y2, t)
B2(y1, y2, t)

0

 .
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This can be achieved by the ansatz

A =

 0
0

u(y1, y2, t)

 , (5.8)

since then it holds

B = curlA =

 ∂y2u
−∂y1u

0

 .
Note that the ansatz of the vector potential (5.8) also ensures the Coloumb gauge
condition divA = 0. Plugging (5.8) into (5.7) yields a two-dimensional partial dif-
ferential equation in space for the scalar field u which is posed on the cross-section
Ω(t) ⊂ R2 of the electric machine. The cross-section Ω(t) depends on the time t as the
rotor is moving. This can be described via a bijective and sufficiently smooth defor-
mation mapping ϕ : Ω× (0, T )→ R2, (x, t) 7→ y(t) := ϕt(x) := ϕ(x, t) which satisfies
v(y, t) = d

dt
y(t) and ϕ(x, 0) = x. The domain Ω ⊂ R2 describes the cross-section

of the electric motor at initial time t = 0, and we will also refer to it as reference
domain. This domain is then transported via the mapping ϕ to the deformed domain
Ω(t), i.e., Ω(t) = ϕt(Ω). Introducing the space-time domain

Q := {(y, t) ∈ R3 : y = ϕ(x, t), x ∈ Ω, t ∈ (0, T )}

together with its lateral boundary

Σ := {(y, t) : y = ϕ(x, t), x ∈ ∂Ω, t ∈ (0, T )}

the resulting initial boundary value problem together with the simplified boundary,
initial and transmisson conditions reads

σ [∂tu+∇yu · v]− divy(ν∇yu) = f − divyM
⊥ in Q, (5.9a)

u = 0 on Σ, (5.9b)
u(., 0) = 0 in Ω, (5.9c)

JuK = 0 on ΓI(t)× (0, T ), (5.9d)
Jν∇yu · nK = 0 on ΓI(t)× (0, T ). (5.9e)

Note that for the reluctivity we have ν = ν(y, |∇yu|), and we denote with M⊥ =
(−M2,M1)> the counterclockwise rotation of the vector M = (M1,M2)>.

5.2 Physical properties of B-H-curves

In this section we will discuss some properties of B-H-curves. We follow the presen-
tation in [76, 136, 137]. These properties play a key role in the analysis of the related
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Figure 5.1: Left: B-H-curve f . Right: Corresponding reluctivity in semilogarithmic
plot.

nonlinear partial differential equations occurring in electromagnetic field computa-
tions. In particular, they ensure that the resulting differential operators admit some
monotonicity property. As pointed out we restrict ourselves to the case of isotropic
materials and neglect any kind of hysteresis effect [18], cf. [76, 136].

The magnetic permeability µ as well as its reciprocal the magnetic reluctivity describe
the connection between the magnetic flux density B and the magnetic field strength
H via the constitutive relation (5.4). In many materials this can be described via a
linear relation |B| = µ|H|, where µ is just a constant value [76]. However, electric
machines are also made of laminated steel sheets, which behave as ferromagnetic
material. In ferromagnetic material the relation between B and H is nonlinear and
described by a B-H-curve, see e.g., [101, 137],

f : R+
0 → R+

0 , H 7→ B = f(H), (5.10)

where H = |H|, B = |B| denotes the intensity of the field quantities and R+
0 repre-

sents the set of nonnegative real numbers. Based on (5.10) one defines the perme-
ability and reluctivity via

µ(s) =
f(s)

s
, ν(s) =

f−1(s)

s
,

which gives the relations

B = µ(|H|)H, H = ν(|B|)B.

In Fig. 5.1 we depict a typical example of a B-H-curve f . As pointed out in [137]
we see for small values of H a strong amplification in B, whereas for high values of
H this amplification gets more to the one of vacuum. These observations lead to the
following assumptions on a B-H-curve.
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Assumption 5.1 ([76, 136, 137]). Let f : R+
0 → R+

0 be a B-H-curve. Then we
assume that f fulfills

(i) f is continuously differentiable on R+
0 ,

(ii) f(0) = 0,

(iii) f ′(s) ≥ µ0 for all s ≥ 0,

(iv) lim
s→∞

f ′(s) = µ0.

Here, µ0 = 4π · 10−7 V s
Am

denotes the permeability of vacuum, and we denote with
ν0 = 1/µ0 the corresponding reluctivity. The following Lemma is a consequence of
Assumption 5.1.

Lemma 5.2 ([76, 105, 136]). Let Assumption 5.1 be satisfied. Then there holds:

(i) ν is continuously differentiable on (0,∞) and ν ′(s)→ 0 for s→∞.

(ii) There exists a constant ν > 0 such that for all s ∈ R+
0 we have

ν ≤ ν(s) ≤ ν0,

ν ≤ (ν(s)s)′ ≤ ν0.

(iii) The mapping s 7→ ν(s)s is strongly monotone with monotonicity constant ν,
i.e.,

(ν(s)s− ν(t)t)(s− t) ≥ ν(s− t)2 ∀s, t ∈ R+
0 ,

and Lipschitz continuous with Lipschitz constant ν0, i.e.,

|ν(s)s− ν(t)t| ≤ ν0|s− t| ∀s, t ∈ R+
0 .

Remark 5.3. The properties of the reluctivity ν shown in Lemma 5.2 ensure well-
posedness of the eddy current problem (5.9), see [40, 83].

In practice the B-H-curve has to be approximated from measurement data, see [76].
It is important that the interpolation of such real life measurements preserves the
monotonicity. In terms of B-H-curves we want to mention the work by Heise [90]
which is based on a cubic interpolation [69] and the more recent works of Pechstein,
Jüttler [137] and Kaltenbacher B., Kaltenbacher M., Reitzinger [101].
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Figure 5.2: Left: Computational domain Ω indicating different materials of the ma-
chine. Red: iron, blue: air, yellow: copper, cyan: damping material.
Right: Domain Ω divided into ferromagnetic material Ωf and nonferro-
magnetic material Ω \ Ωf .

5.3 Synchronous reluctance motor

In this section we consider a synchronous reluctance machine, which is intended for
the use in an X-ray tube for medical applications, see [79, 124, 125]. We apply the
minimal residual framework from Chapter 3 in a linear as well as nonlinear setting.
Moreover, we demonstrate the application of the method for a fixed rotor position
in a 2d spatial setting and for a moving rotor in the spirit of a 2d-1d space-time
computation.

The basic computational domain Ω indicating different subdomains of the machine
can be seen in Fig. 5.2. It consists of a stator and rotor, which are separated
via an airgap indicated in blue. The ferromagnetic regions in stator and rotor are
highlighted in red. The stator has 24 coils marked in yellow which correspond to
copper and are of nonferromagnetic type. Moreover, the rotor has a layered design
whose nonferromagnetic layers are depicted in cyan. Note that Fig. 5.2 also includes
an additional air layer around the stator. In the static regime we will include such a
layer, while for the quasistatic and eddy current approximation we will neglect this
layer in order to safe some dofs since in the space-time setting we have to deal with
a three-dimensional geometry. In what follows we denote with Ωf the ferromagnetic
subdomain of the computational domain Ω as depicted in the right plot of Fig. 5.2.
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5.3.1 Magnetostatic problem for a fixed rotor position

In the following we consider a special regime of the eddy current problem (5.9),
namely the magnetostatic approximation. In this setting it is assumed that the rotor
moves at a constant speed, see [76]. Furthermore, we consider a fixed position of
the rotor, where the impressed current density f = f(x1, x2) is chosen such that
the motor generates its maximal torque. Hence, all electromagnetic quantities are
independent of time and (5.9) boils down to

− div(ν(x, |∇u(x)|)∇u(x)) = f(x) for x ∈ Ω, (5.11a)
u(x) = 0 for x ∈ Γ := ∂Ω, (5.11b)

Ju(x)K = 0 for x ∈ ΓI , (5.11c)
Jν(x, |∇u(x)|)∇u(x) · n(x)K = 0 for x ∈ ΓI , (5.11d)

where ΓI denotes the interface between ferromagnetic and nonferromagnetic material.
Note that the magnetization M vanishes since the motor does not have permanent
magnets. We consider a linear as well as a nonlinear computation of the electric
motor. For this we introduce the linear reluctivity νl(x) and the nonlinear reluctivity
ν(x, |∇u(x)|) via

νl(x) :=

{
νf = 1

µ0·µr,Fe
for x ∈ Ωf

ν0 for x ∈ Ω \ Ωf

,

ν(x, |∇u(x)|) :=

{
ν̂(|∇u(x)|) for x ∈ Ωf

ν0 for x ∈ Ω \ Ωf

.

(5.12)

Here ν0 = 107/4π Am
V s

denotes the reluctivity of vacuum, air, respectively, which is the
reciprocal of the permeability of vacuum µ0 = 4π/107 V s

Am
. Note that the coils in the

stator of the machine obtain the value ν0 as the ferromagnetic behaviour of copper is
the same as of air. The value νf denotes the reluctivity of the ferromagnetic material
if we assume it to behave linear. It is given as the reciprocal of the product between
the permeability of vacuum and the relative permeability of iron which we choose to
be µr,Fe = 3978. This is a realistic appproximation when saturation of the material
does not occur, see [78]. The function s 7→ ν̂(s) denotes a nonlinear reluctivity curve
stemming from a B-H-curve f fulfilling the Assumption 5.1.

Linear case

In the linear setting we have in view of the abstract setting in Section 3.1 the spaces

X = Y = H1
0 (Ω),
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together with the norm
‖v‖X :=

√
〈νl∇v,∇v〉L2(Ω).

The operators A = B : H1
0 (Ω) → H−1(Ω) are defined in the variational sense satis-

fying
〈Bu, q〉Ω := 〈νl∇u,∇q〉L2(Ω)

for all (u, q) ∈ H1
0 (Ω)×H1

0 (Ω), where 〈·, ·〉Ω denotes the duality pairing. We obviously
have that the operators A,B fulfill the assumptions of Section 3.1 with the constants
cA1 = cB1 = cA2 = cB2 = 1. The abstract variational formulation (3.12) then reads to
find (u, p) ∈ H1

0 (Ω)×H1
0 (Ω) such that

〈νl∇p,∇q〉L2(Ω) + 〈νl∇u,∇q〉L2(Ω) = 〈f, q〉Ω, 〈νl∇v,∇p〉L2(Ω) = 0 (5.13)

is satisfied for all (v, q) ∈ H1
0 (Ω)×H1

0 (Ω). For the discretization we choose the finite
dimensional subspaces XH = S1

H(Ω) ∩ X = span{ϕi}MX
i=1 and Yh = YH = S2

H(Ω) ∩
Y = span{ψj}MY

j=1 which are defined with respect to some admissible and locally
quasi-uniform decomposition TH of Ω into shape regular simplicial finite elements.
Obviously we have XH ⊂ Yh and the discrete inf-sup condition

‖uH‖X =
〈νl∇uH ,∇uH〉L2(Ω)

‖uH‖Y
≤ sup

06=qh∈Yh

〈νl∇uH ,∇qh〉L2(Ω)

‖qh‖Y
= sup

06=qh∈Yh

〈BuH , qh〉Ω
‖qh‖Y

,

i.e., (3.15). This ensures unique solvability of the discrete variational formulation
(3.13), which in this case reads to find (uH , ph) ∈ XH × Yh such that

〈νl∇ph,∇qh〉L2(Ω) + 〈νl∇uH ,∇qh〉L2(Ω) = 〈f, qh〉Ω, 〈νl∇vH ,∇ph〉L2(Ω) = 0 (5.14)

is satisfied for all (vH , qh) ∈ XH × Yh. In the numerical experiment we solve the
related linear system to (5.14), i.e., (3.14) with the matrices and vector

Ah[j, i] = 〈νl∇ψi,∇ψj〉L2(Ω), Bh[j, k] = 〈νl∇ϕk,∇ψj〉L2(Ω), fj = 〈f, ψj〉Ω,

where i, j = 1, ...,MY and k = 1, ...,MX . Furthermore, we use the global error
indicator

η2
H = ‖ph‖2

Y = 〈νl∇ph,∇ph〉L2(Ω) =
∑
τ∈TH

〈νl∇ph,∇ph〉L2(τ) =
∑
τ∈TH

η2
τ ,

with the local indicators

η2
τ = 〈νl∇ph,∇ph〉L2(τ) for τ ∈ TH ,

to drive an adaptive refinement scheme. As a marking strategy we use the Dör-
fler criterion [58] with parameter θ = 0.5. The marked elements are refined using



98 5 Application to the simulation of electric machines

Figure 5.3: Left: Impressed current density f in the coils. Right: Numerical solution
uH obtained on refinement level L = 8.

newest vertex bisection. For the implementation we used the finite element software
Netgen/NGSolve [152], where we used the sparse direct solver Pardiso [149] to solve
the resulting linear systems.

In Fig. 5.3 we depict the impressed current density f used in our simulations and
the corresponding numerical solution uH obtained on refinement level L = 8 on a
mesh with M̃X = 120091 vertices. The current density was provided from a reference
simulation of C. Mellak using JMAG [99], see [79]. The maximal value of the current
density indicated in red is given by jmax = 2357.72 · 104 A

m2 . The coils indicated in
yellow obtain the value jmax/2, light blue correspond to −jmax/2 and coils in dark
blue admit the value −jmax. In Fig. 5.4 we see the generated adaptive mesh obtained
from the adaptive refinement process. We started with an initial mesh of 13485 dofs.
The resulting adaptive mesh shows stronger refinements around the coils, the air gap
as well as the interfaces between ferromagnetic and nonferromagnetic material. In
Fig. 5.5 we show the corresponding convergence behaviour of the error indicator ηH .
For higher refinement levels we see a linear convergence rate of the estimator, which
is expected as the current density satisfies f ∈ L2(Ω).

Nonlinear case

In the nonlinear setting we have the same spaces X = Y = H1
0 (Ω) as in the linear

case, but we use the norms

‖u‖X := ‖∇u‖L2(Ω), ‖p‖Y :=
√
〈νl∇p,∇p〉L2(Ω).
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Figure 5.4: Left: Initial mesh with 13485 dofs. Right: Adaptive refined mesh on level
L = 7 with 68425 dofs obtained for a linear material behaviour.
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Figure 5.5: Convergence behaviour of the error estimator ηH during the adaptive
refinement process in case of a linear material behaviour.
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The operators A,B : H1
0 (Ω) → H−1(Ω) are defined in the variational sense and

read

〈Ap, q〉Ω := 〈νl∇p,∇p〉L2(Ω),

〈B(u), q〉Ω :=

∫
Ω

ν(x, |∇u(x)|)∇u(x) · ∇q(x) dx
(5.15)

for all u, p, q ∈ H1
0 (Ω). As in the linear case we have that A is a bounded, self-adjoint,

and elliptic opertator. For the properties of the operator B we state the following
result.

Lemma 5.4. Let s 7→ ν̂(s) from R+
0 → R+

0 denote a nonlinear reluctivity curve stem-
ming from a B-H-curve fulfilling Assumption 5.1 and let the global reluctivity curve
(x, s) 7→ ν(x, s) be given as in (5.12). Then the operator B is strongly monotone and
Lipschitz continuous, i.e., it holds

〈B(u)−B(v), u− v〉Ω ≥ ν‖∇(u− v)‖2
L2(Ω)

and
‖B(u)−B(v)‖H−1(Ω) ≤ 3ν0‖∇(u− v)‖L2(Ω).

Proof. First, we remark that the assumptions on the mapping s 7→ ν̂(s) for s ∈ R+
0

ensure that the map s 7→ ν(x, s)s is strongly monotone with constant ν and Lipschitz
continuous with constant ν0 for all x ∈ Ω. Indeed, by Lemma 5.2 it follows that the
mapping s 7→ ν̂(s)s is strongly monotone with constant ν and Lipschitz continuous
with constant ν0. Hence, for x ∈ Ωf the assertion is fulfilled. For x ∈ Ω \Ωf we have
s 7→ ν(x, s)s = ν0s which clearly is strongly monotone and Lipschitz continuous.
Thus, we conclude the assertion on the mapping s 7→ ν(x, s)s involving the global
reluctivity ν(x, s). Now, an application of [136, Lem. 2.8, Lem. 2.9], compare also
[182, pp. 130-131] gives the desired properties for the operator B.

The properties of Lemma 5.4 ensure that the nonlinear operator equation

B(u) = f in H−1(Ω) (5.16)

admits a unique solution, see Thm. 2.11. For the application of the minimal residual
framework we also need the derivative of the operator B. In order to compute the
derivative we remark that the mappingW → ν̂(|W |) forW ∈ R2 is not differentiable
in W = (0, 0)>, but W → ν̂(|W |)W is. Therefore, we introduce similar as in [76] the
operator T̂ : R2 → R2

T̂ (W ) := ν̂(|W |)W
and the operator T : Ω× R2 → R2

T (x,W ) := ν(x, |W |)W =

{
T̂ (W ) for x ∈ Ωf

ν0W for x ∈ Ω \ Ωf
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involving the global reluctivity. Thus, the operator B defined in (5.15) allows the
representation

〈B(u), q〉Ω =

∫
Ω

T (x,∇u) · ∇q dx.

The Fréchet derivative of B in u ∈ H1
0 (Ω) is then given by, see e.g., [76, 105, 136]

B′ : H1
0 (Ω)→ L(H1

0 (Ω), H−1(Ω)),

〈B′(u)w, q〉Ω =

∫
Ω

DT (x,∇u)(∇w) · ∇q dx
(5.17)

for all w, q ∈ H1
0 (Ω), where we have for W,V ∈ R2

DT (x,W )(V ) =

{
DT̂ (W )(V ) for x ∈ Ωf

ν0V for x ∈ Ω \ Ωf

(5.18)

with the directional derivative DT̂ (W )(V ) given as

DT̂ (W )(V ) =

{
ν̂(|W |)V + ν̂′(|W |)

|W | (W · V )W for W 6= (0, 0)>

ν̂(0)V for W = (0, 0)>
. (5.19)

Plugging in (5.18) and (5.19) into (5.17) we obtain for |∇u| 6= 0 in more detail

〈B′(u)w, q〉Ω =

∫
Ω

ν(x, |∇u(x)|)∇w(x) · ∇q(x) dx

+

∫
Ωf

ν̂ ′(|∇u(x)|)
|∇u(x)|

(∇u(x) · ∇w(x))(∇u(x) · ∇q(x)) dx,

and for |∇u| = 0 we have more precisely

〈B′(u)w, q〉Ω =

∫
Ωf

ν̂(0)∇w(x) · ∇q(x) dx+

∫
Ω\Ωf

ν0∇w(x) · ∇q(x) dx.

In the following we state some properties of the operator B′.

Lemma 5.5. Let u ∈ H1
0 (Ω). The Fréchet derivative of the operator B given in

(5.17), i.e., B′(u) : H1
0 (Ω) → H−1(Ω), is bounded with constant ν0 and elliptic with

constant ν uniformly for any fixed u ∈ H1
0 (Ω), i.e., it holds

〈B′(u)w, q〉Ω ≤ ν0‖∇w‖L2(Ω)‖∇q‖L2(Ω), 〈B′(u)w,w〉Ω ≥ ν‖∇w‖2
L2(Ω) (5.20)

for all w, q ∈ H1
0 (Ω).
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Proof. First note that (5.18) can be written as,

DT (x,W )(V ) = JT (x,W )V, JT (x,W ) =

{
JT̂ (W ) for x ∈ Ωf

ν0I for x ∈ Ω \ Ωf

,

where JT (x,W ) ∈ R2×2 denotes the Jacobian of T , and I ∈ R2×2 the identity matrix.
The Jacobian JT̂ (W ) ∈ R2×2 of the mapping T̂ is given by means of the directional
derivative (5.19) and reads

JT̂ (W ) =

{
ν̂(|W |)I + ν̂′(|W |)

|W | WW> for W 6= (0, 0)>

ν̂(0)I for W = (0, 0)>
.

The eigenvalues and eigenvectors of JT̂ (W ) are, see e.g., [76, 136, 89]

λ1 = ν̂(|W |), v1 = W⊥ = (−w2, w1)>,

λ2 = ν̂(|W |) + ν̂ ′(|W |)|W |, v2 = W = (w1, w2)> (5.21)

We have due to the properties of ν̂, see Lem. 5.2, that

λmin := min{λ1, λ2} ≥ ν, λmax := max{λ1, λ2} ≤ ν0 (5.22)

Since JT̂ (W ) is symmetric we conclude

ν|Z|2 ≤ (JT̂ (W )Z) · Z ≤ ν0|Z|2, (5.23)

which is independent of W ∈ R2. For the global Jacobian JT (x,W ) we either have
the eigenvalues given in (5.21) if x ∈ Ω or λ1 = λ2 = ν0 if x ∈ Ω \ Ωf . In any case
we obtain the same estimates for the minimal and maximal eigenvalue as in (5.22)
and since JT (x,W ) is also symmetric the inequalities (5.23) remain valid also for the
global Jacobian JT (x,W ), i.e.,

ν|Z|2 ≤ JT (x,W )Z · Z ≤ ν0|Z|2 (5.24)

for any x ∈ Ω and W ∈ R2. Now, using (5.24) we can estimate

〈B′(u)w,w〉Ω =

∫
Ω

JT (x,∇u)∇w · ∇w dx ≥ ν

∫
Ω

|∇w|2 dx = ν‖∇w‖2
L2(Ω)

which gives ellipticity uniformly for any u ∈ H1
0 (Ω). Further we conclude

〈B′(u)w, q〉Ω =

∫
Ω

JT (x,∇u)∇w · ∇q dx ≤ ν0

∫
Ω

|∇w||∇q| dx

≤ ν0‖∇w‖L2(Ω)‖∇q‖L2(Ω),

which is the desired result regarding the boundedness.
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Figure 5.6: Magnetic reluctivity ν̂ defined in (5.26) in semilogarithmic plot.

The results of Lemma 5.5 ensure that the operator Su = B′(u)∗A−1B′(u) used in
Gauß-Newton’s method is elliptic and bounded, see Lem. 3.27. Furthermore, by
Cor. 3.28 we obtain that the search direction wku ∈ H1

0 (Ω) computed from (3.50) is
a descent direction.

For the discretization we choose XH = S1
H(TH) ∩ H1

0 (Ω) = span{ϕi}MX
i=1 and Yh =

YH = S2
H(TH)∩H1

0 (Ω) = span{ψi}MY
i=1 , which are defined with respect to some admis-

sible and locally quasi-uniform decomposition TH of Ω into shape regular simplicial
finite elements. In order to determine the numerical solution uH we apply Gauß-
Newton’s method, i.e., Algorithm 3.31 with the matrices

Ah[i, j] = 〈νlψj, ψi〉L2(Ω) i, j = 1, ...,MY ,

B′h(u)[i, j] =

∫
Ω

DT (x,∇uH)(∇ϕj) · ∇ψi dx i = 1, ...,MY , j = 1, ...,MX .
(5.25)

The right-hand side f is given as in the linear case. We use an analytic expression
for the reluctivity ν̂(s) defined by

ν̂(s) = ν0 − (ν0 − c1) exp (−c2s
c3) (5.26)

with the parameters c1 = 200, c2 = 0.001, c3 = 6, which can be seen in Fig. 5.6. As
an initial guess we choose uL,0H = 0 on refinement level L = 0 and uL,0H = PL,L−1

H uL−1
H

for L > 0, i.e., we prolongate the numerical solution uL−1
H on level L − 1 via the

prolongation operator PL,L−1
H to the latest mesh level. We let the algorithm run until

the error is below 10−7 and use a backtracking line search strategy. As in the linear
case we use the global error indicator

η2
H = ‖ph‖2

Y = 〈νl∇ph,∇ph〉L2(Ω) =
∑
τ∈TH

〈νl∇ph,∇ph〉L2(τ) =
∑
τ∈TH

η2
τ ,
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Figure 5.7: Left: Numerical solution uH obtained on refinement level L = 6 with
53013 dofs. Right: Contour plot of the magnetic flux density B = |B| on
L = 6.

with the local indicators

η2
τ = 〈νl∇ph,∇ph〉L2(τ) for τ ∈ TH

to drive an adaptive refinement scheme and the Dörfler criterion [58] with parameter
θ = 0.5 as marking strategy. All linear systems were solved using the sparse direct
solver Pardiso [149].

The numerical solution uH and the corresponding magnetic flux density B = |B| can
be seen in Fig. 5.7. We see that the material is in saturation where the coils admit
the maximal and minimal value of the impressed current density. We remark that
the maximal value in the contour plot is B = 1.9 T , but for a better visualization
of the areas in saturation we scaled the maximal value to B = 1.7 T . The resulting
adaptive mesh on L = 6 with 53013 dofs can be seen in Fig. 5.8. We started with
the same initial mesh on L = 0 as in linear case. The adaptive mesh shows stronger
refinements at the interface between ferromagnetic and nonferromagnetic material.
Furthermore, we see that the refinement of the coils which admit the values jmax
and −jmax is prioritized at least until level L = 6. We remark that the adaptive
mesh obtained on L = 7 consisting of 93999 dofs also shows stronger refinements for
the other coils similar as in the linear case, see Fig. 5.4. In contrast to the mesh
obtained from a linear calculation the mesh in the nonlinear case exhibits refinements
in the stator where the fieldlines of the poles join. In Fig. 5.9 we present the related
convergence behaviour of the error estimator ηH . As in the linear case we see a linear
convergence rate. In Tab. 5.2 we present the number iterations (iter), the final error
(err), and the step size τ in the final iteration of the Gauß-Newton solver during the
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Figure 5.8: Left: Initial mesh with 13485 dofs. Right: Adaptive refined mesh on level
L = 6 with 53013 dofs obtained for a nonlinear material behaviour.
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Figure 5.9: Convergence behaviour of the error estimator ηH during the adaptive
refinement process in case of a nonlinear material behaviour.
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L M̃X iter err τ

0 13485 86 9.794e-08 1.000e+00
1 13861 71 8.971e-08 1.000e+00
2 14836 18 9.969e-08 1.000e+00
3 17294 19 7.874e-08 1.000e+00
4 22153 30 9.462e-08 1.000e+00
5 32513 24 5.611e-08 1.000e+00
6 53013 20 6.196e-08 1.000e+00
7 93999 12 7.786e-08 1.000e+00

Table 5.2: Information of the Gauß-Newton solver during the adaptive refinement
process.

adaptive refinement process. We see that after the first two refinement levels the
number of iterations does not exceed 30 and that the step size in the final iteration
on each level is 1.

In a next step we also applied Newton’s method, see Algorithm 3.30 in order to solve
(5.16) via a minimal residual approach. However, we remark that the application of
this method is a bit speculative since we do not know any properties of the second
order derivative of the nonlinear operator B. We use a backtracking line search
strategy and an error tolerance of 10−10. The second order derivative is computed
via the automatic differentiability capabilities of Netgen/NGSolve. The convergence
behaviour of the error estimator ηH can be seen in Fig. 5.9. We see linear convergence
as in the case of Gauß-Newton’s method. In Tab. 5.3 we provide some information of
the Newton solver during the adaptive refinement process. On the first two refinement
levels the Newton solver got stuck as it could not achieve a descent of the objective
until the step size was below 10−11. Hence, we broke up the algorithm. Interestingly,
the value of the error estimator is nearly the same as in Gauß-Newton’s method
even though the method failed to converge. For the other refinement levels Newton’s
method converged in at most 15 iterations, which is faster than in Gauß-Newton’s
method.

The results obtained so far are not fully satisfactory. On the one hand we have
Gauß-Newton’s method which converges, but takes a lot of iterations. On the other
hand if we try to accelerate the convergence with Newton’s method we cannot ensure
convergence in every iteration. The idea is now to use a different operator A in Gauß-
Newton’s method, which leads to a better performance of the method. From the
abstract theory in Chapter 3 we know that we have to ensure that A is bounded, self-
adjoint and elliptic. Apart from that there are no restrictions onA in the least-squares
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L M̃X iter err τ

0 13485 28 1.410e+00 7.276e-12
1 13845 24 4.266e+00 7.276e-12
2 14815 8 7.333e-14 1.000e+00
3 17232 8 7.225e-14 5.000e-01
4 22083 15 1.970e-13 1.000e+00
5 32300 10 1.119e-13 1.000e+00
6 52722 8 5.212e-11 1.000e+00
7 93083 8 3.379e-13 1.000e+00

Table 5.3: Information of the Newton solver during the adaptive refinement process.

approach. We have seen in Lemma 5.5 that the operator B′(u) : H1
0 (Ω) → H−1(Ω)

is uniformly bounded and elliptic. Furthermore, it is self-adjoint since the Jacobian
JT (x,W ) is symmetric. Thus, in the following we apply Gauß-Newton’s method
with the matrices

Ah(u)[i, j] =

∫
Ω

JT (x,∇uH)∇ψj · ∇ψi dx i, j = 1, ...,MY ,

B′h(u)[i, j] =

∫
Ω

JT (x,∇uH)∇ϕj · ∇ψi dx i = 1, ...,MY , j = 1, ...,MX

(5.27)

We use a backtracking line search startegy and for the stopping criterion we consider
an error tolerance of 10−10. We start with the zero initial guess on level L = 0, i.e.,
u0,0
H = 0 and for L > 0 we use uL,0H = PL,L−1

H uL−1
H . For the global error estimator we

apply on each refinement level L(
ηLH
)2

=

∫
Ω

JT (x,∇uLH)∇pLh · ∇pLh dx =
∑
τ∈TH

(
ηLτ
)2
,

with the local indicators(
ηLτ
)2

=

∫
τ

JT (x,∇uLH)∇pLh · ∇pLh dx for τ ∈ TH .

The numerical results for the estimator ηLH can be seen in Fig. 5.9 and detailed
information about the solver is provided in Tab. 5.4. The convergence of the error
estimator ηLH is at the beginning faster than the convergence of the error indicator
ηH from Gauß-Newton’s and Newton’s method with the matrix Ah defined in (5.25).
For higher refinement levels it attemps to approach linear convergence. Further the
number of iterations in each step reduces drastically. It takes 6 to 7 iterations until
the solver is converged except for the first refinement level where it takes 13 iterations.
This can be explained with the initial guess which is for level L > 0 much better
than for L = 0.



108 5 Application to the simulation of electric machines

L M̃X iter err τ

0 13485 13 3.455e-11 1.000e+00
1 13896 6 4.314e-11 1.000e+00
2 15037 6 6.771e-14 1.000e+00
3 17265 6 7.509e-13 1.000e+00
4 21327 7 7.933e-14 5.000e-01
5 30165 7 2.190e-11 1.000e+00
6 48123 7 1.359e-13 1.000e+00
7 83065 7 4.013e-13 1.000e+00

Table 5.4: Information of the Gauss-Newton solver with the matrices (5.27) during
the adaptive refinement process.

5.3.2 Magnetostatic problem on a moving domain

In the previous section we considered the magnetostatic regime for a fixed rotor
position. However, in practice one usually performs a sequence of magnetostatic
computations for different rotor positions, see [76], as one is interested in e.g., the
average torque for one round. In literature there exists different stator/rotor coupling
techniques to incorporate the motion of the rotor, see e.g., the lock-step method
[63, 138], the moving band/sliding surface method [144, 169], the Lagrange multiplier
method [107, 140], Nitsche-type mortar methods [30] or DG methods [5]. We will
go for a different approach. We consider a space-time setting, where the movement
of the rotor is resolved within the mesh, see e.g., [40, 77, 78, 80]. This is possibly
because in the magnetostatic approximation it is assumed that the rotor moves at
a constant speed and hence the motion is a priori known. The impressed current
density f = f(y1, y2, t) is now a function dependent on time, which is given via a
three-phase alternating current. Hence, also the third component of the magnetic
vector potential u = u(y1, y2, t) is time dependent and (5.9) boils down to

− divy(ν(y, |∇yu(y, t)|)∇yu(y, t)) = f(y, t) for (y, t) ∈ Q, (5.28a)
u(y, t) = 0 for (y, t) ∈ Σ, (5.28b)

Ju(y, t)K = 0 for (y, t) ∈ ΓI(t)× (0, T ), (5.28c)
Jν(y, |∇yu(y, t)|)∇yu(y, t) · n(y, t)K = 0 for (y, t) ∈ ΓI(t)× (0, T ). (5.28d)

The reference configuration Ω is depicted in Fig. 5.10. Instead of an axially-layered
rotor as in Fig. 5.2 we consider a soild salient design of the rotor including a hole
for the shaft. Furthermore, we omit an additional air layer around the stator. The
domain Ω allows the representation

Ω = Ωs ∪ Ωr ∪ Ωa,
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Figure 5.10: Left: Computational domain Ω indicating different materials and sub-
domains of the machine. Red: iron, blue: air, yellow: copper. Right:
Domain Ω divided into ferromagnetic material Ωf (red) and nonferro-
magnetic material Ω \ Ωf (blue).

where Ωs denotes the stator including the coils, Ωr the solid rotor and Ωa the air
region. The stator as well as the air domain are fixed while the rotor domain is
rotationally moving over time. Therefore, the deformation to describe the evolution
Ω(t) of Ω is given as

y(t) = ϕ(x, t) =

{
R(α(t))x for x ∈ Ωr,

x for x ∈ Ω \ Ωr

,

R(α(t)) =

[
cos(α(t)) − sin(α(t))
sin(α(t)) cos(α(t))

]
.

(5.29)

Here α(t) describes the rotation angle. We choose a 180-degree rotation within the
final time horizon T = 0.012 s, i.e.,

α(t) = π
t

T
, (5.30)

which corresponds to 2500 number of rounds per minute (nrpm). Using (5.29) we
can define the space-time cylinder Q

Q := {(y, t) ∈ R3 : y = ϕ(x, t), x ∈ Ω, t ∈ (0, T )}, (5.31)

as well as the lateral boundary Σ

Σ := {(y, t) ∈ R3 : y = ϕ(x, t), x ∈ ∂Ω, t ∈ (0, T )}. (5.32)
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We apply the minimal residual framework to (5.28) solely in a linear material setting,
however we mention that an extension to the nonlinear case is possible, similar as it
was done in Section 5.3.1. The linear material coefficient vl(y) reads

νl(y, t) =

{
νf for (y, t) ∈ Qf ,

ν0 for (y, t) ∈ Q \Qf

, (5.33)

where the space-time cylinder Qf is defined as

Qf := {(y, t) ∈ R3 : y = ϕ(x, t), x ∈ Ωf , t ∈ (0, T )} (5.34)

and the parameters are the same as in (5.12). For the least-squares setting we have
the spaces

X = Y = {v ∈ L2(Q) : ∇yv ∈ [L2(Q)]2, v = 0 on Σ},

together with the norm

‖v‖X :=
√
〈νl∇yv,∇yv〉L2(Q).

The operators A : Y → Y ∗, B : X → Y ∗ are defined in the variational sense satisfy-
ing

〈Ap, q〉Q := 〈νl∇yp,∇yq〉L2(Q), 〈Bu, q〉Q := 〈νl∇yu,∇yq〉L2(Q)

for all u ∈ X, p, q ∈ Y . It is clear that the operators A,B fulfill the assumptions
of Section 3.1 with the constants cA1 = cB1 = cA2 = cB2 = 1. The abstract variational
formulation (3.12) then reads to find (u, p) ∈ X × Y such that

〈νl∇yp,∇yq〉L2(Q) + 〈νl∇yu,∇yq〉L2(Q) = 〈f, q〉Q, 〈νl∇yv,∇yp〉L2(Q) = 0 (5.35)

is satisfied for all (v, q) ∈ X×Y . For the discretization we choose XH = S1
H(TH)∩X

and Yh = YH = S2
H(TH) ∩ Y , which are defined with respect to some admissible

and locally quasi-uniform decomposition TH of Q into shape regular simplicial finite
elements. We have XH ⊂ Yh and the discrete inf-sup condition

‖uH‖X =
〈νl∇yuH ,∇yuH〉L2(Q)

‖uH‖Y
≤ sup

06=qh∈Yh

〈BuH , qh〉Q
‖qh‖Y

,

i.e., (3.15). This ensures unique solvability of the mixed discrete system which reads
to find (uH , ph) ∈ XH × Yh such that

〈νl∇yph,∇yqh〉L2(Q) + 〈νl∇yuH ,∇yqh〉L2(Q) = 〈f, qh〉Q,
〈νl∇yvH ,∇yph〉L2(Q) = 0

(5.36)
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holds for all (vH , qh) ∈ XH×Yh. In our numerical simulations we use the global error
estimator

η2
H = ‖ph‖2

Y = 〈νl∇yph,∇yph〉L2(Q) =
∑
τ∈TH

〈νl∇yph,∇yph〉L2(τ) =
∑
τ∈TH

η2
τ , (5.37)

with the local indicators

η2
τ = 〈νl∇yph,∇yph〉L2(τ) for τ ∈ TH ,

to drive an adaptive refinement scheme. We use the Dörfler criterion [58] as a marking
strategy and refine the marked elements via newest vertex bisection. As mentioned
the right-hand side f is given in terms of a three-phase alternating current with the
winding scheme indicated in Fig. 5.10, i.e.,

f(y, t) = jU(t)χQU+
(y, t) + jV (t)χQV+

(y, t) + jW (t)χQW+
(y, t)

− jU(t)χQU− (y, t)− jV (t)χQV− (y, t)− jW (t)χQW− (y, t),
(5.38)

for (y, t) ∈ Q, where χ denotes the indicator function or characteristic function. The
current densities are given by means of the functions

jU(t) =
I ·Nw

Ac
sin
(
α(t) +

π

4

)
,

jV (t) =
I ·Nw

Ac
sin

(
α(t) +

π

4
+

4π

3

)
,

jW (t) =
I ·Nw

Ac
sin

(
α(t) +

π

4
+

2π

3

)
,

where I = 12 A denotes the amplitude of the impressed current, Nw = 64 is the
number of turns, and Ac = 3.2962·10−5 m2 is the area of one coil. The implementation
was done in Netgen/NGSolve [152], where we used the sparse direct solver Pardiso
[149] to solve the resulting linear systems.

We started with an initial mesh consisting of 44459 dofs, where we inserted 12 time
slices in order to have a sufficient resolution in the time direction at the beginning of
the adaptive refinement process. The mesh between these time slices is completely
unstructured, see Fig. 5.11. The adaptive refinement process generated a space-time
mesh which obtains stronger refinements around the coils and in the airgap between
stator and rotor, see Fig. 5.11 and Fig. 5.12, where we present a more detailed view
on the mesh. The convergence behaviour of the error estimator until refinement
level L = 2 is depicted in Fig. 5.13. We see that the rate attemps to approach linear
convergence. We mention that the evaluation of ηH on level L = 2 is done on a mesh
with dim(S1

H(Q)) = 277754 dofs and dim(S1
H(Q) + S2

H(Q)) = 2395988 dofs for the
corresponding saddle point system (5.36). A further refinement was not possible as



112 5 Application to the simulation of electric machines

Figure 5.11: Left: Initial mesh with 44459 dofs. Right: Adaptive refined mesh on
level L = 2 with 277754 dofs obtained for a linear material behaviour.
Both meshes are cut at t = 0.003 s.

Figure 5.12: Detailed view of the generated adaptive space-time mesh. The blue lines
indicate the layout of the motor and the timeslices.
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Figure 5.13: Convergence behaviour of the error estimator ηH during the adaptive
refinement process in case of a linear material behaviour.

we reached the limits of the direct solver. In Fig. 5.14 we present the numerical
solution uH at different times in the space-time domain including the fieldlines. We
see a stronger concentration of the fieldlines in the stator, where the poles join and
also in the rotor around the shaft.

5.3.3 Eddy current approximation

In this section we consider the eddy current approximation of Maxwell’s equations,
i.e. (5.9), for the simulation of the synchronous reluctance machine given in Fig.
5.10. For this we use similar as in the previous section a space-time approach where
we consider the movement of the rotor within the mesh. The space-time cylinder Q
and its lateral boundary Σ can be described by means of the deformation mapping
(5.29) and are given by (5.31), (5.32), respectively. In the eddy current model we
also have to consider the velocity field induced by the deformation mapping (5.29).
A straight forward calculation gives

v(y, t) = y′(t) =

{
α′(t)(−y2, y1)> for (y, t) ∈ Qr

0 else
,

where Qr is the space-time cylinder of the rotor with its cross-section Ωr for t = 0
indicated in Fig. 5.10. The derivative of the rotation angle α(t) can be computed
from (5.30) and reads

α′(t) =
π

T
.

Note that this velocity field is divergence free, i.e.,

divy v(y, t) = 0 for (y, t) ∈ Q. (5.39)
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a) t = 0 s b) t = T
4 = 0.003 s

c) t = 3
4T = 0.009 s d) t = T = 0.012 s

Figure 5.14: Left: Numerical solution uH obtained on refinement level L = 2 with
277754 dofs for different times t in the space-time cylinder.
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The application of the least-squares framework to (5.9) is done for a linear material
behaviour, where the linear reluctivity νl is given by (5.33). The values of the electric
conductivity in the iron sheets and in the coils are usually negligible due to the
laminated structure of the sheets and the insulation of the wires. However, we assume
in our simulations a small value of σ in ferromagnetic material and in the coils of the
machine and solely neglect the value of σ in air. Hence, we choose

σ(y, t) =

{
0.001 for (y, t) ∈ Qf ∪Qc

0 else
,

where Qc denotes the space-time cylinder of the coils which are marked in yellow in
Fig. 5.10 and Qf is the space-time cylinder of the ferromagnetic material given by
(5.34). In view of the abstract minimal residual framework we have the spaces

Y :=
{
q ∈ L2(Q) : ∇yq ∈ [L2(Q)]2, q = 0 on Σ

}
,

X := {u ∈ Y : σ[∂tu+ v · ∇yu] ∈ Y ∗, u(x, 0) = 0 for x ∈ Ωf ∪ Ωc}

together with the norms

‖q‖2
Y := 〈νl∇yq,∇yq〉L2(Q),

‖u‖2
X := ‖u‖2

Y + ‖σ[∂tu+ v · ∇yu]‖2
Y ∗ = ‖u‖2

Y + ‖wu‖2
Y ,

where wu ∈ Y is the unique solution to the variational problem

〈νl∇ywu,∇yq〉L2(Q) = 〈σ(∂tu+ v · ∇yu), q〉Q
for all q ∈ Y . The operator A : Y → Y ∗ is defined as

〈Ap, q〉Q := 〈νl∇yp,∇yq〉L2(Q)

for p, q ∈ Y , which is bounded, elliptic and self-adjoint. The operator B : X → Y ∗

reads
〈Bu, q〉Q := 〈σ(∂tu+ v · ∇yu), q〉Q + 〈νl∇yu,∇yq〉L2(Q)

for u ∈ X, q ∈ Y . The necessary conditions on the operator B, i.e., boundedness,
injectivity and surjectivity are shown in [78, 83]. We briefly comment on these.
Similar as in the case of a fixed domain Ω, see e.g. Lemma 4.9 we conclude that the
operator B is bounded satisfying

〈Bu, q〉Q ≤
√

2‖u‖X‖q‖Y

for all u ∈ X, q ∈ Y . Furthermore, a careful look at the inf-sup proof of B in Lemma
4.9 reveals that it also carries over to the case of a moving domain Ω(t). The crucial
part is to show the nonnegativity of the expression

〈σ(∂tu+ v · ∇xu), u〉Q =

∫ T

0

∫
Ω(t)

σ(∂tu+ v · ∇yu)u dydt
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Using the total time derivative we can write

d

dt
u(y, t) = ∂tu(y, t) + v(y, t) · ∇yu(y, t). (5.40)

Moreover, an application of Reynold’s transport theorem [61] and (5.39) gives

d

dt

∫
Ω(t)

u(y, t)dy =

∫
Ω(t)

[∂tu(y, t) + divy(u(y, t)v(y, t))] dy

=

∫
Ω(t)

[∂tu(y, t) +∇yu(y, t) · v(y, t)] dy

=

∫
Ω(t)

d

dt
u(y, t) dy

(5.41)

With (5.40) and (5.41) we conclude

〈σ(∂tu+ v · ∇yu), u〉Q =

∫ T

0

∫
Ω(t)

σ
d

dt
uu dydt =

1

2

∫ T

0

∫
Ω(t)

d

dt
σ[u]2 dydt

=
1

2

∫ T

0

d

dt

∫
Ω(t)

σu2 dydt

=
1

2

(∫
Ω(T )

σu2(y, T ) dy −
∫

Ω

σu2(x, 0) dx

)
=

1

2

∫
Ω(T )

σu2(y, T ) dy ≥ 0,

(5.42)

where we use that the integral over the domain Ω vanishes since u(x, 0) = 0 for
x ∈ Ωf ∪Ωc and σ = 0 for x ∈ Ωa. The property (5.42) ensures that the operator B
is inf-sup stable satisfying

‖u‖X ≤ sup
06=q∈Y

〈Bu, q〉Q
‖q‖Y

(5.43)

for all u ∈ X. The proof of the surjectivity is more involved. We refer to [78, 83].
The abstract variational formulation (3.12) in this case reads to find (u, p) ∈ X × Y
such that

〈νl∇yp,∇yq〉L2(Q) + 〈σ(∂tu+ v · ∇yu), q〉Q + 〈νl∇yu,∇yq〉L2(Q) = 〈f, q〉Q,
〈σ(∂tz + v · ∇yz), p〉Q + 〈νl∇yz,∇yp〉L2(Q) = 0

(5.44)

is satisfied for all (z, q) ∈ X×Y . For the discretization we considerXH = S1
H(TH)∩X

and Yh = YH = S2
H(TH) ∩ Y , which are defined with respect to some admissible

and locally quasi-uniform decomposition TH of Q into shape regular simplicial finite
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elements. The discrete variational formulation of (5.44) is to find (uH , ph) ∈ XH×Yh
such that

〈νl∇yph,∇yqh〉L2(Q) + 〈σ(∂tuH + v · ∇yuH), qh〉Q + 〈νl∇yuH ,∇yqh〉L2(Q) = 〈f, qh〉Q,
〈σ(∂tzH + v · ∇yzH), ph〉Q + 〈νl∇yzH ,∇yph〉L2(Q) = 0

(5.45)

holds for all (zH , qh) ∈ XH×Yh. To ensure unique solvability of (5.45) we can proceed
as in the case of a fixed domain. This means we introduce the mesh dependent norm

‖u‖X,h :=
√
‖u‖2

Y + ‖wuh‖2
Y ≤ ‖u‖X ,

where wuh ∈ Y is the unique solution to the variational problem

〈νl∇ywuh,∇yqh〉L2(Q) = 〈∂tu+ v · ∇yu, qh〉Q for all qh ∈ Yh. (5.46)

Now, the proof of a discrete inf-sup condition can be shown similar as in the con-
tinuous case for a moving domain. In particular, we define the test function q̄h :=
uH + wuHh ∈ Yh, where wuHh ∈ Yh solves (5.46). Then it follows

〈BuH , q̄h〉Q = ‖q̄h‖2
Y , ‖q̄h‖2

Y ≥ ‖uH‖2
X,h,

and we conclude the discrete inf-sup stability condition

‖uH‖X,h ≤ sup
06=qh∈Yh

〈BuH , qh〉Q
‖qh‖Y

for all uH ∈ XH , (5.47)

which gives unique solvability of the mixed problem (5.45).

In our numerical simulations we use the error estimator (5.37) together with the
Dörfler criterion [58] with parameter θ = 0.5 to drive an adaptive refinement scheme.
The marked elements are then refined using newest vertex bisection. For the excita-
tion f of the electric machine we choose the same three-phase alternating current as
described in (5.38). The implementation was done in Netgen/NGSolve [152], where
we used the sparse direct solver Pardiso [149].

We started the adaptive refinement process with the same initial mesh consisting of
44459 dofs and 12 timeslices as in the quasistatic case, see Fig. 5.15. After three
iterations the mesh obtains stronger refinements around the coils and in the airgap
between stator and rotor, see Fig. 5.15. A detailed view of the generated mesh is
provided in 5.16. Here we indicated the layout of the motor as well as the time
slices in blue. We see a completely unstructured mesh with respect to space and
time between the time slices. In Fig. 5.17 we present the convergence behaviour of
the error estimator ηH . We observe a drop in the rate from level L = 1 to L = 2,
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Figure 5.15: Cross-section of the spac-time mesh for t = 0.003 s. Left: Initial mesh
with 44459 dofs. Right: Adaptive refined mesh on level L = 2 with
221495 dofs obtained for a linear material behaviour.

but still have an error reduction. To make a clear statement about the rate one
needs to compute some further iterations, which was not possible as we ran into the
limits of the direct solver. Finally, in Fig. 5.18 we depict the numerical solution
of the third component of the magnetic vector potential uH for homogeneous initial
conditions together with the corresponding fieldlines. Here we plot the solution on
the cross-section of the electric motor at specific time points t. For the time points
t 6= 0 we observe a stronger concentration of the magnetic fieldlines in the stator of
the machine as well as in the rotor around the shaft.
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Figure 5.16: Detailed view of the generated adaptive space-time mesh for the eddy
current problem. The blue lines indicate the layout of the motor and
the timeslices.
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Figure 5.17: Convergence behaviour of the error estimator ηH during the adaptive
refinement process in case of a linear material behaviour.



120 5 Application to the simulation of electric machines

a) t = 0 s b) t = T
4 = 0.003 s

c) t = 3
4T = 0.009 s d) t = T = 0.012 s

Figure 5.18: Left: Numerical solution uH obtained on refinement level L = 2 with
221495 dofs for different times t in the space-time cylinder.



6 Conclusions & Outlook

In this thesis we solved an abstract operator equation Bu = f by means of a least-
squares/minimal residual approach. In particular, we put a stong emphasis on the
combination of a least-squares method with a space-time discretization scheme in the
sense of [157] and on the simulation of electric machines. To take into account the
different types of PDEs, i.e., elliptic, parabolic, as well as linear and nonlinear we
presented an abstract least-squares framework for the solution of Bu = f . Assuming
that B : X → Y ∗ is an isomorphism and using the Riesz operator A : Y → Y ∗ the
first-order optimaliy system was given by means of a saddle point system[

A B
B∗ 0

] [
p
u

]
=

[
f
0

]
. (6.1)

We showed a complete stability and a priori error analysis of the mixed system
(6.1). Furthermore, we proved that the inbuilt error estimator, i.e., ph is efficient
and reliable modulo some data oscillation term. Additionally, assuming a saturation
assumption an alternative proof of the reliability of the error indicator was provided.
At several points we also highlighted the connection to the DPG framework presented
in [50, 52, 55]. In addition to that we also discussed an extension to the nonlinear case
with possible solution strategies involving Newton’s and Gauß-Newton’s method.

Next, we demonstrated the application of the abstract least-squares framework to
various parabolic evolution equations, involving the heat equation, the convection-
diffusion equation and a heat equation with nonlinear reaction term. For the heat
equation we were able to show a discrete inf-sup stability condition with respect
to a mesh dependent norm and provided numerical examples which confirmed our
theoretical findings as well as a comparison to the FOSLS method by Führer and
Karkulik [72]. In a next step we applied the least-squares method to the solution of a
time dependent convection-diffusion equation. Stability of the discrete system could
be shown with similar techniques as in the case of the heat equation. Numerical
examples including spatial and temporal boundary layers were given. Last but not
least a semilinear problem was considered and a comparison between the Newton
and the Gauß-Newton method was given. Both methods lead to the same rates for
erros and estimators. However, the Newton method needed fewer iterations than the
Gauß-Newton method.

Finally, we applied the least-squares method to the simulation of the electromagnetic
quantities in an electric machine. Since electric machines are low frequency appli-
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cations the eddy current approximation of Maxwell’s equations served as a physical
model. In a first step we considered the 2d magnetostatic approximation, i.e., all
field quantities are independent of time. This is one of the most widely used model
to simulate electric machines. We ended up with a quasilinear elliptic PDE. The
analysis was carried out using the theory of monotone operators. This enabled us to
prove the well-posedness of the resulting linear systems in Gauß-Newton’s method
as well as to show that the computed search direction is a descent direction. Nu-
merical results computed on a synchronous reluctance machine lead to an adaptive
mesh which obtained stronger refinements at the interfaces between ferromagnetic
and nonferromagnetic materials. In a second step and third step we considered the
quasistatic and the eddy current approximation. In both models the movement of
the rotor was considered within the mesh. Numerical results were presented which
demonstrated the applicability of the least-squares framework.

Open questions and future work

The work presented in this thesis can be extended into several directions:

The development of preconditioners which can be used in robust iterative solution
strategies to solve the discrete system resulting from (6.1) is an open task. In par-
ticular, this involves preconditioners for A and the Schur complement S = B∗A−1B.
For time dependent PDEs these preconditioners have to take care of the time related
anisotropy which is built-in in the considered space-time formulation. As mentio-
nend in [172] a possibility would be to explore specialized directional smoothers and
appropriate semi-coarsening in a geometric multigrid preconditioner. The resulting
finite element matrices Ah and Sh are symmetric and positive definite. Thus, pos-
sible iterative solution strategies are a conjugate gradient (CG) method [92] for the
solution of the discrete Schur complement system or the minimal residual (MINRES)
method [135] for the solution of the Galerkin discretization of the mixed system (6.1),
which is symmetric but indefinite. In a further step one could exploit parallelization
and domain decomposition methods.

A further direction would be to apply the least-squares approach in a 3d-1d space-
time setting, i.e., to consider a four-dimensional space-time cylinder Q. This involves
the use of adaptive mesh refinement routines for the 4d case, see e.g. [147, 160, 131].

We only considered a magnetic field computation for the simulation of an electric
machine. However, electric machines are multiphysical objects. Thus, in a further
step one could also consider a more enriched physical model of the machine which
involves the coupling to other physical fields. In particular, the couplings to physi-
cal models resulting from thermodynamics, structural mechanics or acoustics are of
interest.
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