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ABSTRACT: Installing and maintaining structural health monitoring (SHM) systems on infrastructure assets can be expensive. 

These systems may produce large volumes of data that require processing and interpretation before the behaviour of the asset can 

be understood and assessed. However, in-depth understanding typically also requires knowledge of asset construction details and 

loading patterns. These data may be produced and stored using disparate systems, databases, and file types, creating additional 

challenges for data fusion and interoperability. 

 

Additionally, there has been an increasing trend towards public bodies providing access to their data either reactively because of 

freedom of information requests, or proactively to encourage use by researchers or to allow others to provide innovative products 

or services using the data in ways not anticipated by those generating and providing them. 

 

This paper presents potential strategies to leverage publicly available data from sources such as Network Rail Open Data Feeds, 

Rail Data Marketplace, OpenRail Data, OpenStreetMap and others, to contextualise and increase the value of SHM data. Data are 

considered from four instrumented railway bridges in the U.K., each of varying steel, concrete, and masonry construction. This 

paper presents scenarios by which these data might be used to gain network-level insights into other structures on the network and 

discusses the current difficulties in achieving this in practice. 

KEY WORDS: Open data, Structural Health Monitoring, Data formats, Digital Twins. 

1 INTRODUCTION 

It is becoming increasingly common for structural health 

monitoring systems (SHM) to be deployed to monitor key 

transport infrastructure such as bridges. Interpretation of data 

generated by these systems is often challenging and may 

require additional information. For example, to understand the 

strains or deflection of a bridge deck it is also necessary to 

understand the applied loading, including loading from passing 

vehicles, or from environmental factors such as wind, or 

temperature. This requirement usually results in additional 

sensors being specified for the monitoring system.  

For road bridges, detecting traffic can be done using lane 

occupancy sensors, cameras, or weigh-in-motion strips. As 

road traffic is usually completely unscheduled, there is no 

information known a priori about the traffic crossing the bridge. 

Interpreting these data can be challenging and it may be 

tempting to consider using machine learning (ML) techniques 

or computer vision to identify the type and position of vehicles. 

In some cases, such as in Bridge Weigh-In-Motion (B-WIM) 

systems where the primary purpose of the monitoring system is 

to weigh the road traffic [1], there may be sufficient sensor 

coverage to infer vehicle type directly from axle loads. 

However, in general vehicle identification may not be 

straightforward.  

This need not however be the case for most railways. Railway 

operations, timetables, and signalling are increasingly 

digitised. The railway is a known environment, at least as far as 

those responsible for operating the railway are concerned. 

These data are already used to provide information to 

passengers, e.g. through passenger information screens at 

stations. The data are also available to third-party developers of 

smartphone apps and websites. Leveraging data from railway 

timetables and signalling systems as an additional source of 

information for a bridge structural health monitoring system 

may mitigate the need for some sensors on the assets 

themselves. 

 Background 

In 2015 researchers at the Centre for Smart Infrastructure and 

Construction (CSIC) at the University of Cambridge installed 

fibre-Bragg grating (FBG) strain and temperature gauges on 

two new railway bridges during construction: Bridges IB5 and 

UB11 in Staffordshire, UK. 

 

Figure 1: Bridge IB5, Staffordshire, U.K. 

Bridge IB5, shown in Figure 1, is of steel beam construction 

with an in situ concrete deck carrying two railway tracks [2], 
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while Bridge UB11, shown in Figure 2, is constructed from 

nine pre-tensioned concrete beams with an in situ concrete 

deck. 

The initial goal of the project was to evaluate the potential 

benefits of installing instrumentation during construction and 

to create ‘self-sensing’ bridges as technology demonstrators for 

fibre-optic sensors and for Structural Health Monitoring in 

general. These were newly constructed bridges and so there 

was no concern regarding structural integrity, although the 

fibre-optic sensors were used to investigate creep and shrinkage 

of the concrete from pre-tensioning, through installation and 

after commissioning [3]. 

 

 

 

Figure 2. Bridge UB11, Staffordshire, U.K. 

Initially the two Staffordshire bridges did not have permanently 

installed fibre-optic analysers or data loggers as there was no 

permanent power supply available on site. However, a power 

supply was provided in 2021, and permanent monitoring 

systems were installed, with IB5 upgraded with additional 

accelerometers, cameras and laser-based axle sensors [4]. 

These accelerometers and axle sensors were added to augment 

the existing FBG-based strain instrumentation to create a 

bridge weigh-in-motion (B-WIM) system [5]. 

 

 

Figure 3. Bridge HDB-19, London, U.K. 

Subsequently, the centre also instrumented several other 

railway structures in the U.K. including Victorian and 

Edwardian masonry arch bridges, both of which were 

monitored due to potential concerns with the structures: Bridge 

HDB-19 in London – a three-span bridge instrumented with 

FBG strain and temperature sensors, and acoustic emission 

sensors; and CFM-5 in Yorkshire – a single span bridge 

instrumented with FBG strain sensors alongside conventional 

strain and displacement sensors and videogrammetry 

monitoring [6,7].  

 

Figure 4. Bridge CFM-5, Yorkshire, U.K. 

The monitoring systems on the two masonry arch bridges both 

used solar power. Despite using large deep-cycle batteries and 

multiple solar panels, these systems do not function 24 hours a 

day – the systems thus miss the structural response of the 

bridges for most train crossings. 

 Automated Train Identification 

To interpret strain, deflection or accelerometer data measured 

during a crossing of a train over a bridge it is usually necessary 

to know information about the type of train, including axle 

loads and spacings. Trains of similar types are likely to produce 

similar responses, whereas trains of differing types may result 

in responses that are more difficult to compare.  

Various techniques have been used to attempt train 

identification automatically. Alexakis et al. [8] limited their 

analyses of trains crossing the Marsh Lane viaduct, a masonry 

arch structure in Leeds, U.K., to only one type of train – the 

Class 185 three-car diesel multiple unit (DMU). Peak detection 

was used to identify train bogies and thereby determine which 

trains consisted of three carriages, while a comparison of 

readings from two adjacent arches was used to determine the 

train direction. The purpose of the monitoring was to evaluate 

whether the condition of the structure was deteriorating over 

time. Using a single train type allowed a comparison of the 

structural response from similar loading conditions on different 

dates. The trains identified as Class 185 trains represented 

approximately 50% of the traffic crossing the viaduct. Later 

analyses [9] identified other types of three-car train and 

Statistical Shape Analysis and a Support Vector Machine 

(SVM) was used to further classify these trains into Class 185, 

Class 155/158 and Class 170 respectively. The results were 

checked by visual observations of passing trains.  

Cheng et al. [10]  used gradient-based decision trees to 

identify and classify trains crossing Bridge CFM-5. A subset 

(4,900 out of 7,100) of train crossings identified using FBG 

strain data from July 2020 to October 2021 was labelled using 

timetable data obtained ‘by scraping publicly available 

records’. These labels were used to train a model using 

XGBoost [11] to classify trains based on features in the strain 

data such as number and spacing of peaks, amplitude and width 

of peaks etc. This model was then able to classify 930 further 

train crossing events over an 8-month period in 2023 achieving 

a classification accuracy of 97%. 

To classify trains crossing Bridge IB5 where axles spacing 

and loading are provided via the B-WIM system, the authors 

used t-SNE (t-Distributed Stochastic Neighbour Embedding) – 

a statistical technique to group crossing trains into distinct 
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groups by reducing the dimensionality of input data. Input data 

include the number of axles, axle spacing, speed, axle loads etc. 

t-SNE is used to reduce these to just two dimensions which can 

then be plotted.  

 

Figure 5. Groups of trains identified by t-SNE and DBSCAN 

unsupervised train classification 

A clustering algorithm such as the Density-Based Algorithm 

for Discovering Clusters in Large Spatial Databases with Noise 

(DBSCAN) [13]  is then used to distinguish separate groups of 

trains appearing as clusters within the plot.  

Table 1. Labels assigned to groups shown in Figure 5 by 

manual inspection of video from on-bridge cameras 

Label Description % 

A Class 390 9 car 2.28 

B Class 390 11 car 3.36 

C 2 x Class 221 5 car (10 car total) 1.08 

D Class 350 175 tonne Direction 1 6.64 

E New Measurement Train 0.09 

F Class 220 4 car + Class 221 4 car (8 cat total) 0.95 

G Class 221 4 car + Class 221 5 car (9 car total) 0.86 

H Class 221 5 car + Class 221 4 car (9 car total) 0.72 

I Class 220 4 car + Class 221 5 car (9 car total) 5.68 

J Class 221 5 car 11.27 

K Class 221 4 car 1.20 

L Class 350 165 tonne Direction 1 15.46 

M Class 220 4 car 9.85 

N Tamping Machine 0.18 

O Freight Locomotive 0.21 

P Class 221 5 car + Class 220 4 car (9 car total) 5.79 

Q Class 221 4 car + Class 220 4 car (8 car total) 1.14 

R Class 350 165 tonne Direction 2 14.41 

S Class 350 (axle detectors missed one axle) 0.13 

T 2 x Class 350 (8 car total) 0.08 

U 2 x Class 220 4 car (8 car total) 8.86 

V Freight Train 1.92 

W Class 350 175 tonne Direction 2 7.00 

 Outliers 0.84 

Figure 5 shows the plot resulting from 18,800 data points each 

representing a train. Only northbound trains are included due to 

limitations of the B-WIM system.  

By referencing plots of the axle loads and inspecting video 

recordings from the cameras positioned on the bridge, labels 

may be manually assigned to these groups. 

Some types of train such as the Class 220 Voyager and 

Class 221 Super Voyager look similar but may be distinguished 

using axle weights. Class 221 trains are heavier as they include 

tilting bogie mechanisms, absent on the Class 220. Similarly, 

Class 350 Desiro trains appear in four distinct groups on the 

plot. This is because there are two types within the class with 

differing total weights. This is likely because early Class 350 

trains have dual-voltage capability and are able to use either the 

third rail system or overhead line equipment, while later Class 

350s lack the third-rail pickup [14]. The axle loads are also 

asymmetric front to back relative to the direction of the train, 

which leads to two further groups. 

  Once labelled, the data can then be used as training data for 

ML techniques such as Random Forest [15] or XGBoost which 

can then be used to classify future trains. 

 

Other methods that may be used for classifying trains on Bridge 

IB5 utilise computer vision (CV) and video from the on-site 

cameras directly. One such CV technique uses a vertical strip 

of pixels from each frame of a video of a passing train to 

produce a single 2D image where the x-axis represents time. 

Examples of such images are shown in Figure 6. A manually 

labelled set of these images is then used to train a model from 

a partially pretrained convolutional neural network (CNN) with 

Keras [16] as the deep learning framework.  A dataset of 543 

trains was randomly selected, of which 462 were used for 

image classification, split 85%/15% between training and 

testing images, respectively.  

 

 

Figure 6. Examples of (a) Double 4-car Class 220/221, 

(b) 9-car Class 390, (c) 4-car Class 350, and (d) 5-car 

Class 221 trains approaching Bridge IB5. The still images are 

converted from moving video, with time along the x-axis 

The results obtained are presented in Table 2 using a confusion 

matrix. These show classification accuracies of around 90% on 

average across all train classes. The CNN-based model 

achieved high classification accuracy despite the relatively 

small dataset of 543 samples, demonstrating the merit of the 

approach. However, it also highlights limitations which may 

not necessarily be solved by increasing the size of the training 

dataset.  
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Table 2. Confusion matrix of CNN-based train classification 

algorithm. 

          Predicted 

A
ct

u
a

l 
  

  
  

Train 

Class 
350 

220/1 

4-car 

220/1 

5-car 

2×220/1 

4-car 
390 

350 96% 4%   
 

 

220/1 

4-car 
6% 88% 6%  

 

 

220/1 

5-car 
 22% 78%  

 

 

2×220/1 

4-car 

 

 
  83% 17% 

390 
 

 
   100% 

 

In particular, the model performs best when distinguishing 

visually distinct train types, but struggles with more subtle 

variations, such as between 4- and 5-car variants of Class 

220/221 trains. These misclassifications suggest that 

incorporating additional features beyond image data, such as 

train speed or axle spacing, could significantly enhance model 

performance. Future work will explore hybrid models that 

combine visual and sensor-based inputs, as well as alternative 

machine learning techniques such as recurrent neural networks 

(RNNs) for temporal data or multimodal architectures that can 

process both image and numerical inputs simultaneously. 

Computer vision techniques are however only applicable on 

SHM systems that incorporate cameras, such as the installation 

at Bridge IB5. It is also vulnerable to issues caused by poor 

lighting conditions such as at night or caused by inclement 

weather conditions leading to water or ice on the lens. 

2 PUBLICALLY AVAILABLE RAIL DATA SOURCES 

 Network Rail 

In the U.K. Network Rail is the organisation responsible for 

maintaining the track, signalling, most stations and operation 

of the railway in England, Scotland and Wales. It is not 

responsible for running train services, which are currently run 

by passenger and freight train operating companies (TOCs).  

Network Rail provides access to some of its operational data 

including dynamic data on signalling, train movement data, and 

real-time performance measures, along with static data such as 

scheduling data and background data needed to interpret these 

datasets. Accessing the data requires registering an account on 

the Network Rail Open Data Platform [17] which is free of 

charge. The dynamic data are streamed via an ActiveMQ 

message queue connection, which requires a constant 

connection. Static data is available to download daily or 

monthly. These datasets have been used by mobile app 

developers to provide real-time information to passengers, such 

as the platform from which their train will depart, or whether 

their train is running late. The available datasets include: 

 

• TD (Train describer): This is a real-time feed of train 

movements between signalling ‘berths’. The signalling ID 

(or ‘headcode’) for each train is given, along with a ‘to’ and 

‘from’ berth number representing a train movement. The 

signalling ID is only unique within a given signalling region 

at any one time. Berth numbers are not unique either. 

Timestamps are to the nearest second. 

• TRUST (Train movement): This is another real-time feed 

of train movements between timing point locations 

(TIPLOCs), usually stations and junctions. Different 

message types describe train activation, movement, 

cancellation. Timestamps are provided to the nearest 30 

seconds. 

• SCHEDULE and VSTP: These provide details of services 

that are due to run. The schedule is updated once per day. 

Each service in the schedule can either be a one-off service, 

or be valid for a number of days, weeks or months. The 

VSTP dataset (Very Short-Term Plan) is a real-time feed of 

additional one-off services for ad-hoc movements not in the 

main schedule.  

 

Documentation for the feeds is available on a wiki-style 

website [18] maintained by enthusiasts. Example source code 

of ActiveMQ clients able to fetch the data feeds is also 

available in multiple programming languages on GitHub [19]. 

Historical train movement data are not available from the 

Network Rail Open Data Feed. This limitation is not generally 

an issue for app developers but does limit what is available for 

interpreting past data from monitoring systems.  

 Rail Delivery Group 

The Rail Delivery Group (formerly the Association of Train 

Operating Companies) in the U.K. provides additional feeds 

and APIs collectively known as DARWIN, which offer data for 

live departure and arrival screens, including estimated arrival 

and departure times for delayed trains. Also provided is the 

Historical Service Performance (HSP) API for historic 

performance data. HSP can be used to query details of past 

services, such as planned and actual arrival and departure times. 

However, as the DARWIN and HSP datasets are primarily used 

for passenger information they do not contain information 

about freight trains, and only list arrival and departure at 

stations, not showing the times when trains pass junctions. 

 Rail Data Marketplace 

The Rail Delivery Group also runs the Rail Data Marketplace. 

This is a platform on which train operating companies, 

infrastructure providers, data aggregators, researchers, or rail 

enthusiasts may release datasets. Datasets include the Network 

Rail and Rail Delivery Group feeds described above, but also 

data on train operators’ carbon footprints, car park occupancy, 

train accessibility, fare information, occupancy and loading, 

complaints etc. Data providers may specify either an open or 

restricted licence for the data, and have the option of making 

data available publicly, or only to subscribers. The data may be 

made available free of charge or require payment. 

 OpenRail Data 

The OpenRail Data website [24] combines data from the 

Network Rail SCHEDULE, VSTP and TRUST feeds to 

provide details of train movements, including cancellations, 

late/early running arrivals and some details of the type and class 

of train. Up to three years of historical data may be queried 
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using a variety of web-based forms, with results returned as an 

HTML page. The source code is available from a GitHub 

repository, and so it would be possible to run customised 

instances of this service, modified to produce output in 

alternative formats such as JSON or XML. However, this 

would not include historic data. 

3 USING OPEN DATA FOR TRAIN IDENTIFICATION 

The TD dataset gives timestamps for when trains on the 

network move between signalling berths. Berths are labelled 

with four-character identifiers, usually consisting of three or 

four digits. These do not indicate any human-readable place 

names, and there does not appear to be any available data 

linking berths with their geographic coordinates. It is however 

possible to look at all train movements that occur within a time 

window either side of a train crossing event as inferred from 

measurements by a monitoring system. This will result in many 

candidate berth numbers. Eventually however, after observing 

enough train crossings it is possible to narrow the berth 

numbers common to all crossings to find those berths that are 

likely to be located on either side of the bridge. Figure 7 

illustrates one such possible method. 

 

  
 

Figure 7. Possible algorithm to deduce TD berth transitions 

corresponding to train crossings identified by an SHM system  

 

Alternatively, third-party websites such as OpenTrainTimes 

[23] provide topological track diagrams showing the real-time 

position of trains using TD data. 

By using both TD and also TRUST data (which does include 

geographical human-readable locations) the creators of these 

sites have been able to infer the position of berths relative to 

stations and junctions. Although these track diagrams do not 

show bridge locations (except for intersection bridges where 

one railway track crosses another) by using these track 

diagrams it is nevertheless possible to narrow the search when 

attempting to identify TD berths located either side of a bridge. 

Table 3 shows the berth transitions that most closely 

correspond in time to observed train crossings for the four 

instrumented bridges. For Bridges IB5 and UB11, these could 

be confirmed using the installed bridge monitoring system, 

while for Bridge HDB-19 these times were verified using 

historical data as displayed on the OpenRail Data website [24] 

and comparing the actual arrival times of trains travelling 

between Enfield Chase station and Gordon Hill station, the two 

stations either side of the bridge which are not far apart. There 

are however points (or switches) north of HDB-19 allowing 

trains to cross the tracks to access the third platform at Gordon 

Hill station. Trains heading to or from the third platform have 

a slightly different berth number transition in the TD feed. For 

Bridge CFM-5 the crossing times of a few trains were observed 

and recorded in person during a site visit. 

The TD data provides a very good correspondence with 

bridge crossings for Bridges IB5 and UB11. However, the only 

useful information provided by the feed besides the timestamp 

is the signalling ID, known as the headcode, of each train. This 

provides no train information such as the type of train or 

possible loading. This must be found either from the TRUST 

feed or via a third-party website such as OpenRail Data. 

Since most of the data from the monitoring systems on these 

bridges dates from before the authors began logging the TD and 

TRUST feeds, the possibility of using historical data from 

OpenRail Data alone was investigated. For Bridges CFM-5 and 

HDB-19, this turns out to be relatively simple. For Bridge 

CFM-5 there are no intervening junctions between Church 

Fenton and Micklefield stations – so any train that reports at 

both locations consecutively must have crossed the bridge. The 

only complication is in calculating the most likely time of the 

crossing as the two stations are approximately 8 km apart, with 

the bridge located slightly closer to Church Fenton station. 

Table 3. TD berth movements that correspond with observed 

bridge crossings 

Crossing Region From Berth To Berth 

IB5 northbound R3 4331 4333 

IB5 southbound R3 4334 4332 

UB11 westbound R3 5611 5615 

HDB-19 northbound Y8 

Y8 

865 

865 

869 

X872 

HDB-19 southbound Y8 

Y8 

870 

872 

864 

864 

CFM-5 eastbound Y2 709 711 

CFM-5 westbound Y2 714 708 
 

Likewise in the case of Bridge HDB-19, any train reporting at 

both Enfield Chase and Gordon Hill stations will have crossed 

the bridge. However, it was noted that in the archived data 

several services are not shown stopping or passing Enfield 

Chase station at all. Trains do however all appear to report at 

Bowes Park station, slight further to the south, so both stations 

were used when searching for trains crossing the bridge. 

For Bridges IB5 and UB11 however, the situation is slightly 

more complicated. Figure 8 shows the layout of the railway in 

the Norton Bridge area. Northbound trains travelling between 

Stafford and Madeley stations either use the West Coast Main 

Line through Norton Bridge Junction and under Bridge IB5, or 

they bypass Norton Bridge Junction entirely by crossing 

Bridge UB11.  Northbound trains travelling between Stafford 

and Stone must cross Bridge IB5, but southbound trains from 

Stone to Stafford may travel either via Bridge IB5 or via Norton 

Bridge Junction.  

 

Using data from a typical day: 
 

Create set U of all timestamped train movements from 
TD data 

Create a list X of timestamped bridge crossing events 
inferred from SHM data 

Create initially empty set C of candidate TD berth 
transitions 

Identify train movements in U that coincide (within a 
tolerance) of the first timestamped crossing event in X 
and add these movements (without timestamps) to set C 

For each further crossing event E in X: 

Identify train movements in U that coincide (within 
a tolerance) with E and intersect these 
movements (without timestamps) with set C 

Output candidate TD berth transitions from set C 
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Figure 8. Map showing locations of Bridges IB5 and UB11, 

railway layout and junctions. (Map data © OpenStreetMap 

available under Open Database License) 

Nevertheless, by inspecting details of several trains crossing the 

bridges, identifying their headcode ID from TD data, and then 

looking up details of each train on the OpenRail Data website, 

sets of rules were developed to identify trains crossing Bridge 

IB5 and UB11 using only historic data available from the 

OpenRail Data website. 

 Train and route information 

Information available from the TRUST and Schedule feeds, or 

the historical data, includes data such as: The Train UID, the 

train operator code, signalling id (headcode), power, timing 

load, speed, catering code, seating class, train status etc. and the 

planned and actual arrival, departure and passing times at each 

timing point or station along the route.   

Of these the power type, timing load and train status are the 

most useful for train identification. Power type refers to diesel, 

diesel multiple unit, electric, electric multiple unit or (for the 

New Measurement Train) ‘HST’. Timing load is an overloaded 

field. It usually contains a number which if greater than 999 

describes the declared load in tonnes. Otherwise, this number 

may indicate the declared load in tonnes, or the class of train – 

e.g. 350, 390 etc. There are some exceptions: a value of 506 

indicates Class 350 upgraded to run at 110 mph (approx. 175 

km/h) while a ‘V’ indicates a Class 220 or 221 train. The train 

status field indicates whether the train is a passenger or freight 

train. Any of the fields may be blank. 

 Comparison with Monitoring data 

For the railway bridge monitoring systems that are operational 

24/7, such as those on Bridges IB5 and UB11, there should be 

SHM data for each train that crossed the bridges, and there 

should also be trains identified from TD, TRUST, or historic 

train movement data corresponding to each event. Where this 

is not the case, this indicates a possible fault with the 

monitoring system. For Bridge IB5 it is also possible to assess 

the coverage of the B-WIM system. 

As can be seen from Table 1 the t-SNE+DBSCAN algorithm 

results in many different groupings for otherwise similar trains 

or combinations of similar trains. However, the train class 

information derived from the timing load field in archived data 

from OpenRail Data does not distinguish between Class 220 

and 221 trains and lists these as a single class. Similarly, these 

data do not distinguish between 9 or 11-car Class 390 trains, or 

the different types of Class 350. 

To allow for easier comparison between the loads classified 

using t-SNE+DBSCAN and traffic identification based on the 

archived data, similar load classifications from the 

t-SNE+DBSCAN results for crossings in July 2023 were added 

together. The results are shown in Table 4.   

The classification of trains using groups found by the 

t-SNE+DBSCAN algorithm shows generally good agreement 

with the identifications derived directly from open data. The 

archived data deduced ten more train crossings than trains 

processed by the t-SNE+DBSCAN algorithm. This 

discrepancy is partly accounted for by double-crossing events 

where two trains cross the bridge in opposite directions within 

a few seconds of each other. The SHM system treats these 

double crossings as a single event prior to any processing by 

the B-WIM system.  

Table 4. Comparison of B-WIM t-SNE load classifications 

and traffic identified from historic open data for trains 

crossing Bridge IB5 in July 2023 

Description B-WIM (t-SNE) Archived data 

Class 220/221 650 50.94% 658 50.04% 

Class 350 401 31.43% 421 32.02% 

Class 390 154 12.07% 139 10.57% 

Other passenger   7 0.53% 

Freight 52 4.06% 60 4.56% 

Tamping machine 2 0.16%   

NMT 1 0.08% 1 0.08% 

Outliers 16 1.25%   

Total 1276 100.00% 1286 100.00% 

  

Both methods are able to distinguish the New Measurement 

Train (NMT) from other trains. This train is a modified 

Class 43 High Speed Train, formerly used to carry passengers, 

but now instrumented with sensors to measure track alignment 

and gauge, and photograph defects while travelling at line 

speed. In the t-SNE+DBSCAN data it appears as its own 

(small) group labelled as ‘E’ in Figure 5. In the archived train 

movement data it is the only train with a train status of ‘freight’ 

but with a power type of ‘HST’ and a speed of 125 mph 

(approx. 200 km/h).  

The B-WIM classifier identified two tamping machines. One 

of these on 7th July 2023 was mis-classified and was actually a 

16-axle Class 350 passenger train, as verified by inspecting 

video of the crossing. However, only 10 axles were detected by 

the B-WIM system, which may have resulted in the train being 

incorrectly grouped. The second tamping machine on the 
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14th July as shown in Figure 9 was correctly identified from the 

B-WIM derived data. However, it was listed in the archived 

train movement data as a 715-tonne diesel freight train. The 

accompanying route information for the train showed that it 

originated at Whitacre Tamper Sidings, which would indicate 

that it was probably a tamping machine. The declared load of 

715 tonnes is significantly larger than the load as shown on a 

placard on the side of the vehicle (99 tonnes) or the load as 

measured by the B-WIM system (102 tonnes).  

 

 

Figure 9. Tamping vehicle heading after crossing Bridge IB5 

on 14 July 2023 

The archived train movement data are based on SCHEDULE 

and TRUST data. As previously discussed, these data alone are 

not able to distinguish between Class 220 and Class 221 trains.  

Table 5. Comparison of trains deduced to have crossed 

Bridge HDB-19 and the FBG strain events recorded by the 

SHM system. 

 TRUST 

data 

FBG 

events 

Proportion 

recorded 

Passenger    

Class 387 35 2 5.7% 

Class 700 11 0 0.0% 

Class 717 1353 330 24.4% 

Class 800/805 11 0 0.0% 

Class 802 1 0 0.0% 

Other electric 1 0 0.0% 

Sub total 1412 332 23.5% 

    

Freight    

400 tonnes 6 6 100.0% 

600 tones 17 8 47.1% 

715 tonnes 4 0 0.0% 

800 tonnes 3 0 0.0% 

1200 tonnes 19 2 10.5% 

1235 tonnes 12 1 8.3% 

1400 tonnes 9 7 77.8% 

1600 tonnes 67 17 25.4% 

Not declared 17 2 11.8% 

Sub total 154 43 27.9% 

    

Other    

NMT 2 1 50% 

    

Total 1567 369 23.5% 

 

However, other datasets available on the Rail Data Marketplace 

may solve this issue. CrossCountry Trains, which operates the 

Class 220 and 221 trains, makes the planned train formation of 

each train available. The data are available as daily CSV files 

and include serial numbers of the individual trainsets to be used 

for any given service. This is sufficient to determine the train 

class. Other train operating companies also make train 

formation data available. 

For monitoring systems such as those used on Bridges 

HDB-19 and CFM-5 where power is supplied by solar panels 

and batteries, the monitoring system is likely to miss a 

significant fraction of train crossing events while the system is 

powered down. Using the data from TD or TRUST can provide 

an indication of which trains are missed, and whether the 

crossings that are recorded are likely to be indicative of the 

loads that typically cross the bridge. 

FBG strain events from the SHM system on HDB-19 were 

compared with trains crossings from archived TRUST data for 

the period 1st–15th July 2023. When comparing timestamps 

between the SHM system and the archived TRUST data, it 

became apparent that the FBG data did not indicate whether the 

times had been recorded using UTC or daylights savings time. 

Since the trains mostly follow a repeating hourly timetable, 

most train crossings occurring at approximately the same times 

each hour. When the SHM system was initially installed there 

was no requirement for the system to synchronize with any 

external system or data. There was also nothing to prevent 

clock drift other than an intermittent Internet connection to 

time.microsoft.com using the NTP client available on 

Windows. However, after some investigation it appeared that 

the correlation between crossings and logged FBG events fit 

better with the archive TRUST data if it was assumed that the 

FBG timestamps were recorded using daylight savings time 

and not UTC. This illustrates the importance of looking ahead 

when specifying and commissioning SHM systems. 

Table 5 shows the results of the comparison. It can be seen 

that approximately three quarters of the trains deduced to have 

crossed Bridge HDB-19 were not recorded by the FBG strain 

gauges. As the SHM system is solar powered, it only records 

data when the solar panels have charged the battery sufficiently 

for the system to operate, usually from mid-morning to mid-

afternoon. Nevertheless, despite missing some classes of train 

completely, the system was able to record strain data during the 

crossings of a broadly representative sample of the total 

population of trains crossing Bridge HDB-19, including freight 

trains with the heaviest declared loads. However, if all that is 

required is a ‘standard’ train with which to compare data 

recorded on the structure from one day to the next to check 

whether the structural response is changing over time, then the 

Class 717 train would seem to be a good choice. 

4 NETWORK-LEVEL INSIGHTS 

The Network Rail data feeds cover the movement of trains 

throughout England, Scotland and Wales. Once subscribed to 

the feed, data is available for all train movements on the 

network, not just in the locations originally of interest. One 

potential use case of these feeds would therefore be to derive 

bridge specific traffic models (if not necessarily load models) 

for every underline bridge, intersection bridge or viaduct on the 

network. For those bridges located up or down the track from a 
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bridge instrumented with a B-WIM system, it may even be 

possible to produce a bridge-specific load model, assuming the 

bridges have sufficient traffic in common. This however would 

require knowledge of the location of the bridges on the 

network, and ideally the locations of berth numbers either side 

of every bridge. 

 Bridge Locations 

Through a series of Freedom of Information (FoI) requests 

made by members of the public, Network Rail have released 

lists of structures on each line of the network. Data from these 

FoI requests are available in a curated form on the RailwayData 

website [21]. The bridges listed do not typically have either 

WGS84 coordinates, or UK Ordnance Survey (OS) grid 

reference, but instead are described using the number of miles 

and yards (or sometimes miles and chains) from some datum 

which is specific to each line. 

Recently however, because of work done within Network 

Rail as part of its Bridge Strike Prevention Strategy, Network 

Rail has released a list [22] of low bridges at risk of being struck 

by road vehicles. As the intended use for the data is that they 

are incorporated into in-vehicle or smartphone-based GPS 

systems, this list includes bridge headroom data together with 

WGS84 and OS grid references coordinates in addition to the 

usual line/miles/yards location. It provides such coordinates for 

5792 bridges, but as it only lists vulnerable bridges it is not a 

complete list of all underline or intersection bridges, or 

viaducts. The list includes Bridges CFM-5 and HDB-19, both 

rail-over-road bridges. It does not however list Bridges IB5 or 

UB11 as the first is an intersection bridge carrying the railway 

over another rail line, while the second carries the railway over 

a stream. 

Another option is to use data from OpenStreetMap. 

OpenStreetMap is a collaborative volunteer organisation that is 

building a database of mapping data that is released under the 

permissive Open Database License. However, as a volunteer 

effort, there are no guarantees as to the accuracy of the data, or 

that they are consistently labelled in a way that makes it 

possible to query specific features, such as railways and bridges 

carrying railways. 

As an open project, there are services that build upon 

OpenStreetMap to allow additional functionality such as 

searching for specific features within the data using simple 

queries. Overpass Turbo [26] is one such service. It includes a 

‘wizard’ to compose queries from simple prompts. 

A prompt such as: 

 
“((bridge=yes or bridge=viaduct) and railway=rail) in England” 

will result in a query that can be passed to the Overpass API 

with the matching features displayed on a map, as shown in 

Figure 10. 

// fetch area “England” to search in 

area(id:3608484939)->.searchArea; 

// gather results 

( 

nwr["bridge"="yes"]["railway"="rail"](area.searchArea); 

nwr["bridge"="viaduct"]["railway"="rail"](area.searchArea); 

); 

// print results 

out geom; 

 

Figure 10. Result of running an Overpass API query to find 

locations of railway bridges and viaducts. (Map data © 

OpenStreetMap available under Open Database License) 

 Signalling berth locations 

There are various ways one could consider obtaining the 

locations of the signalling berths. One option would be to use 

the GPS position of trains on the network and compare this with 

the live TD feed. This would give the approximate location of 

each berth. These could then be compared with the GPS 

coordinates of the bridges, where known. These data are not 

provided in any currently available Network Rail open dataset, 

but third-party app developers of ‘Find My Train’-style apps 

may have GPS data generated by users of those apps as they 

travel by train. However, these data may not be open data. 

SignalBox.io have such a system but require users to sign up 

for an API key before accessing the data. Other companies such 

as Raildar, Tracksy.uk, Mistral-data and TrainPositions.com 

provide similar services under various subscription options. 

Train operators in some other European countries do make 

real-time location data available. Irish Rail (Iarnród Éireann) 

provide this data via a simple URL, while in Finland train 

locations may be retrieved using a Real-Time General Transit 

Feed Specification (GTFS RT) feed or a via a web-based API.  

Alternatively, as the location of each bridge is available from 

data in the FoI requests, albeit in line/mile/yards format, it may 

be more feasible to calculate TD berth positions in 

line/miles/yards format too. This could be done by looking at 

timestamps of TD berth transitions and comparing these with 

timestamps from TRUST data when trains report at locations 

with known positions, such as stations. Finding berths either 

side of a bridge could then be done simply by comparing berth 

miles and yards locations with bridge miles and yards locations. 

5 RECOMMENDATIONS 

• When planning to install a monitoring system, look for 

potentially useful open datasets early, whether related to 

traffic, weather, or anything else. 

• Consider any secondary uses that the planned monitoring 

system may have that could be enabled with relatively small 

additions. (E.g. Added axle detectors to enable B-WIM that 

https://www.openstreetmap.org/copyright
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then provides loading data for other bridges on the 

network.)  

• Treat streaming datasets like sensor data. Data that is used 

for operational purposes may have little long-term value to 

the network operator, and these data are often ephemeral. 

To avoid these data becoming digital waste, log them from 

day one (or before). Do not assume that somebody else will 

preserve them. 

• Log data first, process later. If datasets are difficult to 

interpret either because of the sheer volume of information 

or due to a lack of documentation, log them anyway. They 

can be processed later once the data are better understood. 

• Ensure clocks on any monitoring systems are set accurately. 

If a permanent connection to the Internet is available this is 

usually achieved using Network Time Protocol (NTP) to 

keep clocks synchronised, otherwise, if outdoors, a simple 

GPS receiver can be used to provide accurate time. When 

comparing data from multiple sources it is vital that 

timestamps of data logged by monitoring systems and data 

from one or more external datasets may be compared. Agree 

on a time zone.  

• Where data from monitoring systems is combined with 

as-designed and as-built data to form a digital twin, any 

additional data derived from open datasets should also be 

incorporated into the digital twin.  

6 CONCLUSION 

A wealth of data exists that can be used to better understand 

data generated by bridge monitoring systems on Britain’s 

railways. However, the data are unlikely to be generated in 

exactly the format needed by a monitoring project. They are 

instead created (and deleted) according to the needs of the 

network and train operators. 

Nevertheless, once a network-level data source has been 

identified and its potential benefits and limitations understood, 

it may have the potential to be used for train identification or 

bridge-specific load or traffic modelling for multiple 

monitoring projects. Identifying and logging potential data 

sources early mitigates issues relating to data retention. Data 

should be logged as early as possible in the project even if the 

ability to understand them and use them effectively comes later. 

Machine Learning and AI remain valuable tools with which to 

understand data generated from monitoring systems, but 

sometimes there are simpler ways, requiring less computational 

resources, to achieve the same goal. 

DATA AVAILABILITY 

Data supporting this paper are available from the University of 

Cambridge Repository:  

https://doi.org/10.17863/CAM.116750. 
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