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ABSTRACT: The application of digital twin technology in high-rise buildings provides a comprehensive approach to maintaining 

construction safety, tracking project advancement, and evaluating service conditions. This paper proposes a novel multi-scale 

digital twin framework for high-rise structures. The macro-scale model is constructed using spring elements, taking into account 

the dynamic behavior of flexure-shear coupling in high-rise structures. The macro-scale digital twinning is achieved by updating 

the macro-scale model through the integration of modal monitoring data with Artificial Neural Networks (ANN). A multi-scale 

analysis method from the structural macro-level to components of the substructure is developed through information transfer at 

boundary nodes, achieving a balance between computational efficiency and the demand for accuracy of the local components. 

Integrated with multiple monitoring data sources, the proposed framework provides a technical pathway for multi-scale model 

updating, real-time response acquisition, and disaster risk assessment of high-rise structures. 

KEY WORDS: High-rise building; Flexure-shear coupled behavior; Multi-scale analysis; Structural health monitoring; Artificial 

Neural Networks. 

1 INTRODUCTION 

Digital twins are increasingly recognized as pivotal innovations 

within the Architecture, Engineering, Construction, and 

Facility Management (AEC-FM) industry [ 1 , 2 ]. As an 

advanced representation that bridges the digital and physical 

realms, digital twins enable researchers and practitioners to 

gain a more intuitive and in-depth understanding of the real-

time state and operational principles of objects. 

Incorporating mechanical information of the structure into 

the building's digital twin can provide an approach to 

maintaining construction safety, tracking project advancement, 

and evaluating service conditions. Typically, modal monitoring 

data of the building is used to correct the parameters of the 

structural design model [ 3 , 4 ]. The advantage lies in the 

maturity and convenience of the monitoring methods, and the 

structural design model can be detailed to the component level, 

offering a high degree of adjustability. However, the 

computational efficiency of the design model is low, and model 

updating typically requires a large number of iterative 

calculations or reference samples.  

The updating of macro-scale models is a very promising 

research direction, aimed at improving the efficiency of model 

updating while fully utilizing structural modal monitoring data 

[5,6]. However, the coupling effects of bending and shear in 

high-rise structures as well as the complex inter-story force 

distribution can significantly affect the dynamic characteristics 

of macro-scale models. The mapping of macro-scale 

characteristics to model updating through modal monitoring 

data is also significantly influenced by the identification 

algorithms [7,8]. Therefore, researching suitable macro-scale 

model carriers and model updating algorithms are the two main 

research directions in the identification of macro-scale models. 

Macro-scale models can only represent the overall 

deformation of the structure and cannot delve into the load-

bearing status of local components. There are certain special 

components and critical load-bearing areas where there is a 

higher demand for monitoring and digital twin accuracy. To 

balance computational efficiency and simulation precision, a 

multi-scale structural model is an ideal research approach 

[ 9 ,10 ]. Information transfer or coupling between different 

scales is key to implementing this technology. The multi-scale 

twin model that combines macro-scale models with 

component-scale substructure models is still an area that 

requires further research. 

This paper proposes a multi-scale digital twin method that 

integrates both macro-scale and component-scale 

substructures. First, a macro-scale twin is realized through 

Artificial Neural Networks (ANN) and modal monitoring data, 

and then a substructure component-scale twin is achieved by 

constructing a floor boundary condition transmitter. Integrated 

with multiple monitoring data sources, the proposed framework 

provides a technical pathway for multi-scale model updating, 

real-time response acquisition, and disaster risk assessment of 

high-rise structures. 

 

2 MACRO-SCALE MODEL UPDATING 

 Floor deformation characterization 

Story response is often used to quantify the overall behavior of 

high-rise buildings. Therefore, the primary focus is on the 

displacements of the floor boundary nodes to represent the 

overall deformation situation of the high-rise buildings. 

Characterizing the displacements of the numerous boundary 

nodes on each floor is key to building a macro-scale model of 

high-rise structures. 

In this paper, a high-rise frame core tube structure shown in 

Figure 1a is used as an example, The structure has 40 stories, 

each with a height of 4.0 meters. The columns and beams were 
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modeled using Euler-Bernoulli beam elements, and the core 

wall was modeled using shell elements. To simplify the 

complexity of constructing the macro-scale models, uniform 

member sizes and materials were adopted for all structural 

components. All columns were 800×800 mm² rectangular C40-

RC columns and all beams were 500×1000 mm² rectangular 

C30-RC beams, except for the coupling beams in the core wall, 

which have a cross-section of 700×1400 mm².   The material 

properties are: C30 concrete (E = 3.0×10⁷ kN/m², ν = 0.25, ρ = 

25 kN/m³) and C40 concrete (E = 3.25×10⁷ kN/m², with ν and 

ρ assumed identical to C30). The wall thickness of the core tube 

is 900 mm. This model also incorporates simplified simulations 

of infill walls, exterior curtain walls, and rigid panel zones, 

which, due to space limitations, are not discussed in detail in 

this paper. However, these structural details significantly 

increase the computational demands and time costs of the 

model. The multi-scale modeling approach proposed in this 

study is specifically designed to optimize this issue. 

The structural analysis software OpenSees was used to 

model the structure (shown in Figure 1b) for batch extraction 

of the deformation of nodes. Modal analysis of the structure 

was performed (shown in Figure 2) under the assumption that 

deformations are restricted to the x-direction, with rigid 

constraints applied in the other two directions. 

The deformation of the planes where the floor boundary 

nodes are located is illustrated in Figure 3. Due to the rigid floor 

assumption, the horizontal displacement is uniform at all points, 

while the vertical deformation and torsional deformation vary 

from point to point. Therefore, it is proposed to use two 

hypothetical planes to represent the overall situations of 

vertical displacement and torsional displacement, respectively. 

The vertical displacement of each node was fitted to a 

Hypothetical Vertical Displacement Plane (HVDP) using the 

least squares method. The bending deformation of the nodes in 

each slab was averaged to form a Hypothetical Bending 

Displacement Plane (HBDP). The angle of rotation of HBDP 

(αHBDPi for the ith floor) and HVDP (βHVDPi for the ith floor) 

shown in Figure 3 represents their degree of displacement. For 

a given mode, the vertical and bending modal vectors of the 

boundary nodes of each story were fitted to an HVDP and 

HBDP, respectively.  Examples of this fitting for the 1st floor 

of the 1st mode are given in Figure 4. Examples of the angles of 

the HBDPs and the HVDPs of the 1st and 2nd modes were 

calculated and shown in Figure 5. 

 

  

(a) Story plan 
(b) OpenSees 

model 

Figure 1. High-rise frame core tube structure. 

 

 
1st 2nd 3rd 4th 5th 

Figure 2. Mode shapes of the high-rise frame core tube 

structure. 

 

 

Figure 3. Displacements of the story nodes. 

 

 
(a) HBDP 

 
(b) HVDP  

Figure 4. Hypothetical plane of the 1st mode of the 1st 

floor. 
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(a) 1st mode 

 
(b) 2nd mode 

Figure 5. HBDP and HVDP 

 

HBPV offers a way to isolate the displacement components 

induced by bending. The displacement Bi  induced by bending 

for the ith floor  can be approximated by the equation 

 

 (tan + tan )Bi iH   =  (1) 

 

where φ is the angle of HBDP of the story below; ω is the 

change in angle of HBDP of the story; Hi is the height of the 

story; and λ is a correction coefficient (set as 0.5 in the present 

study). 

The displacement induced by shear Δsi for the ith floor can be 

calculated as  

 
1

N

Si Ti Bi

i=

 =  −   (2) 

where ΔTi is the lateral displacement, and N is the total number 

of floors.  

Two normalized difference parameters DVBi and DBTi are 

defined to represent the relationship of the boundary nodes. 
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The introduction of these two hypothetical planes, along with 

the two normalized difference parameters, provides the 

theoretical foundation for the subsequent updating of the 

macro-scale model. 

 

 Model construction and recognition 

To account for the coupling of bending and shear in high-rise 

structures, a macro-scale model framework was constructed 

using spring elements, as shown in Figure 6. Each floor is 

composed of four identical vertical members, two identical 

outside horizontal members, and one inside horizontal member. 

Spring elements that represent the axial, shear, and bending 

stiffnesses of each member are shown in Figure 7. The 6×6 

member stiffness matrix relating the axial, transverse, and 

rotational degrees-of-freedom for each node of the 2-node 

member with spring elements is given in Equation (5) and (6). 

 

 

Figure 6. Macro-scale model of the high-rise structure. 

 

 

Figure 7. Member with springs 
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The macro-scale model of the typical 40-story frame core 

tube structure is constructed using ANN and simulated modal 

monitoring data. As shown in  Figure 8, natural frequencies, 

lateral mode vectors, angular mode vectors of the HBDP, DVB 

and DBT were selected as the features. The stiffness of the 

springs was the target to be recognized, i.e., a total of 7 stiffness 

coefficients (𝑘𝑎 ,  𝑘𝑏 , 𝑘𝑠,  𝑘ℎ𝑏 , 𝑘ℎ𝑠,  𝑘𝑖ℎ𝑏  and 𝑘𝑖ℎ𝑠 ). 𝑘𝑎  is the 

axial stiffness, 𝑘𝑏 and 𝑘𝑠 are the bending and shear stiffness of 

the column, 𝑘ℎ𝑏 and 𝑘ℎ𝑠 are the bending and shear stiffness of 

the outside horizontal members, while 𝑘𝑖ℎ𝑏  and 𝑘𝑖ℎ𝑠  are the 

bending and shear stiffness of the inside horizontal members. 

The initial values of the stiffness parameters were roughly 

estimated through a small number of trial calculations, as 

shown in Table 1. 20000 samples were generated through Latin 

square sampling with the combination of different stiffness 

change ranges as shown in Table 2 and batch modal analysis. 

A type of ANN that is conducive to utilizing the spatial 

information between data, Convolutional Neural Networks 

(CNN) incorporating channel and spatial attention mechanisms 

(CBAM-CNN) [11] were used, and a (non-learnable) Fixed 

attention layer (FixAL) was selectively added to manually 

assign weights to different features [12]. The specific network 

architecture and hyperparameter settings of the ANN are shown 

in  

Table 3 and Table 4, respectively. 

 

 

Figure 8. ANN model construction. 

 

Table 1. Stiffness parameters 

Stiffness Initial Recognized  

𝑘𝑎 7.00×107 6.92×107 

𝑘𝑏 1.50×1014 1.58×1014 

𝑘𝑠 1.00×1012 9.87×1011 

𝑘ℎ𝑏 8.00×1013 7.90×1013 

𝑘ℎ𝑠 1.00×1014 9.87×1013 

𝑘𝑖ℎ𝑏  4.00×1013 3.94×1013 

𝑘𝑖ℎ𝑠 1.00×1014 9.88e×1013 

The units of 𝑘𝑠, 𝑘𝑎, 𝑘ℎ𝑠, 𝑘𝑖ℎ𝑠 are N/mm; and the units of 𝑘𝑏, 

𝑘ℎ𝑏, 𝑘𝑖ℎ𝑏  are N-mm/rad 

 

 

 

 

Table 2. Sample set stiffness variation ranges 

Dataset Variation ranges (%) Size 

1 (80-120) 10000 

2 (90-110) 10000 

 

Table 3. The main structure of the ANN 

Layer Type Output sizea 

Input Modal data bs×1×5×5×40 

FixALb Weight matrix-1 

Weight matrix-2 

bs×1×5×5×40 

bs×1×5×5×40 

CBc Conv3d 

ReLU 

Max pooling 

bs×16×5×5×40 

- 

bs×16×2×2×20 

CB Conv3d 

ReLU 

Max pooling 

bs×32×2×2×20 

- 

bs×32×2×2×10 

CB Conv3d 

ReLU 

Max pooling 

bs×64×2×2×10 

- 

bs×64×1×1×5 

CBAMd Channel attention 

Spatial attention 

bs×64×1×1×5 

bs×64×1×1×5 

DLe - - 

FCf Flatten 

FC cells 

ReLU 

FC cells 

ReLU 

FC cells 

bs×320 

bs×320 

- 

bs×1000 

- 

bs×256 

Output Stiffness parameters bs×7 
a bs = batch size; b FixAL = Fixed Attention Layer; c CB = 

Convolutional Block; d CBAM = Convolutional Block 

Attention Module; e DL =  Dropout Layer;  f FC  =  Fully 

Connected Layer 

 

Table 4. Hyperparameter settings of the ANN 

Parameters Value 

Number of epochs 50 

Batch size 256 

Learning rate 0.0001-0.00001 

Kernel size of Conv3d 3×3×3 

Weight decay 

(L2 regularization) 

1.0e-3 

Dropout rate 0.2 

 

The learning curve is shown in Figure 9, and the recognized 

stiffness parameters with the developed ANN model are shown 

in Table 1. With the recognized stiffness parameters, the 

macro-scale model of the typical high-rise frame core tube 

building was constructed. The modal analysis of the macro-

scale model was carried out as shown in Figure 10. Comparison 

of the dynamic characteristics of the macro-scale model and 

original full-order model is shown in Table 5, Figure 11, Figure 

11 and Figure 12.  It is evident that the recognized model 

provides a good fit for the macro-scale mechanical properties 

of the original full-order model. 

https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
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Figure 9. Maximum Absolute Percent Error (MAPE) 

difference. 

 

 

 
(a) 1st  (b) 2nd  (c) 3rd    (d) 4th  (e) 5th  

Figure 10. Mode shapes of the recognized macro-scale 

model. 

 

 Table 5. Comparison of the dynamic characteristics  

Mode 

Frequency (Hz) 
MAC 

(%) 

HBDP 

MAC 

(%) 
Original 

model  

Recognized 

model  

Differe

nce (%) 

1 0.35 0.36 -2.15 1.000 0.9997 

2 1.43 1.46 -2.15 0.9999 0.9978 

3 3.00 2.97 1.02 0.9999 0.9986 

4 4.67 4.67 0.11 0.9999 0.9986 

5 6.54 6.55 -0.17 0.9996 0.9884 

 

 

 
(a) 1st mode 

 
(b) 2nd mode 

Figure 11. Lateral mode vectors of the models. 

 

 
(a) 1st mode 

 
(b) 2nd mode 

Figure 12. HBDP angles of the models. 

 

 

 

 
(a) 1st mode 
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(b) 2nd mode 

Figure 13. HVDP angles of the models. 

 

3 MULTI-SCALE DIGITAL TWIN 

 Multi-scale model 

The macro-scale model proposed above can only analyze the 

structural response at the overall level of each floor. However, 

for certain special structural components or critical load-

bearing areas, it is desirable to analyze the structural response 

of specific components.  

Based on the proposed macro-scale model, this paper 

employs the transmission of boundary condition information to 

perform structural response calculations at the component level 

for substructures, thereby achieving multi-scale digital twins. 

The key to the method lies in constructing a boundary condition 

transmitter, as shown in Figure 14, which can expand and map 

the macro-scale deformation of a certain floor to the 

deformation of each boundary node on that floor. This paper 

constructs the boundary condition transmitter using the 

proposed HBDP, HVDP, and the proportional relationships of 

the modal vectors corresponding to each floor's boundary nodes 

under their first-order modes, as shown in Equations (7), and 

(8). 

 

 Bi HBDPi BiM =  (7) 

 Vi HVDPi ViM =  (8) 

 

where ΔBi and ΔVi are the bending and vertical displacements of 

the ith node of the story in question, respectively; Mbi and Mvi 

are the displacements of the ith node of the story in question per 

unit angle of αHBDPi and βHVDPi, respectively. 

The lateral displacement of each node is consistent with the 

lateral displacement of the macro-scale model. Using the 

displacements of the macro-scale model to map the 

displacements of the boundary nodes of the substructure model, 

the substructure's deformation can now be realized. The 

construction of the boundary condition transmitter can be 

refined according to the requirements, and can even further 

consider the coupling relationship between displacements of 

different degrees of freedom, which will be a subject of further 

research. 

 

 

Figure 14. Deformation transfer from boundary nodes to the 

substructure. 

 

 Substructural response 

To verify the feasibility and accuracy of the proposed multi-

scale model, the 20th and 21st floors of the high-rise frame core 

tube structure were selected as the objects of study. The 

mapping relationship MB19,  MV19 and MB21, MV21 were 

established and the substructure model of the 20th  and 21st  

floors was built. A static analysis was employed for an initial 

attempt (as shown in Figure 15a), specifically by applying a 

1000 kN force in the horizontal direction on the topmost floor 

of the macro-scale model. The lateral deformations and HBDP 

and HVDP angles of the 19th and 21st floors were calculated. 

Subsequently, the displacements of the boundary nodes of the 

substructure were calculated using Equations (7) and (8) and 

applied to the substructure. The deformations of the 

substructure were further calculated and are depicted in Figure 

16. 

 

  
(a) Macro-scale model (b) Original model 

Figure 15. Deformation of the models. 
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Figure 16. Deformation of the substructure (magnified). 

 

For reference, a static analysis was performed on the original 

full-order model under the same loading condition. Meanwhile, 

the displacements of all nodes on the 20th  floor for each degree 

of freedom were extracted from both the original full-order 

model and the substructure model for comparative study. Their 

absolute mean values and relative errors are shown in Table 6. 

The results show that the lateral displacement exhibits good 

agreement, while certain discrepancies exist in the vertical and 

torsional displacements. This is because the applied load 

distribution differs from the inertial force distribution during 

structural vibration.  

 

Table 6. Comparison of the static deformation of the models 

DOF 

Absolute mean  

deformation  
Error (%) 

Original 

model  

Substructure 

model 

Lateral (mm) 4.40 4.54 3.26 

Vertical (mm) 0.55 0.45 20.63 

Torsional (rad) 9.03e-05 7.10e-05 21.40 

 

Incremental dynamic analyses were then conducted on both 

the original full-order model and the multi-scale model by 

applying the north-south component of the El Centro seismic 

wave with a total duration of 20 seconds. A Rayleigh damping 

ratio of 0.05 was assigned to the first five modes of the 

structures. Table 7 presents the absolute mean values and 

relative errors of time-history displacements for all degrees of 

freedom (DOF) at the 20th-floor nodes. Taking Node 10 on the 

20th floor (shown in Figure 1) as an example, Figure 17 presents 

a comparison of time-history displacements for three degrees 

of freedom. As can be observed, the substructure model can 

effectively replicate the deformation characteristics of the full-

order model. Some frequency shifts occur in the terminal 

vibration phase due to the minor omission of frequencies in the 

macro-scale model, as well as the accumulation over multiple 

cycles. 

Notably, the multi-scale model's dynamic analysis required 

only 20 minutes of computational time (16 minutes for macro-

scale model and 4 minutes for substructure model), 

significantly less than the full-scale model's 27 hours and 12 

minutes under identical hardware configuration, achieving a 

balance between computational efficiency and the demand for 

accuracy of the local components. 

 

Table 7. Comparison of the dynamic deformation of the 

models 

DOF 

Absolute mean  

displacement   
Error (%) 

Original 

model  

Substructure 

model 

Lateral (mm) 4.23 4.43 4.58 

Vertical (mm) 0.43 0.40 -7.23 

Torsional (rad) 7.29e-05 7.27e-05 -0.36 

 

 

 

 

(a) Lateral displacement 

 

(b) Bending displacement 

 

(c) Vertical displacement 

Figure 17. Time-history displacements of Node 10 on the 

20th floor 
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4 CONCLUSION  

This paper proposes a multi-scale digital twin method for high-

rise structures. Taking a high-rise frame core tube structure as 

an example, a macro-scale model of the high-rise structure was 

constructed using a combination of spring elements, 

considering the coupling of bending and shear as well as the 

impact of the horizontal members on the structure. The macro-

scale model was updated by combining Artificial Neural 

Networks (ANN) and modal monitoring data. Furthermore, an 

information transmitter was constructed using a linear mapping 

method to transfer the deformation from the macro-scale to the 

boundary nodes of the substructure at the story level, thereby 

enabling the calculation of deformations at the component scale 

of the substructure. The multi-scale digital twin method for 

high-rise buildings established in this study not only improves 

[1] Hosamo HH, Imran A, Cardenas-Cartagena J, Svennevig PR, Svidt K, 

Nielsen HK. A review of the digital twin technology in the AEC‐FM 
industry. Adv Civ Eng 2022;2022(1):2185170.  

[2] Park J, Lee JK, Son MJ, Yu C, Lee J, Kim S. Unlocking the potential of 

digital twins in construction: a systematic and quantitative review using 
text mining. Buildings 2024;14(3):702. 

[3] Ierimonti L, Venanzi I, Cavalagli N, Comodini F, Ubertini F. An 

innovative continuous Bayesian model updating method for base-isolated 
RC buildings using vibration monitoring data. Mech Syst Signal Process 

2020;139:106600. 

[4] Nguyen A, Kodikara K ATL, Chan THT, Thambiratnam DP. 
Deterioration assessment of buildings using an improved hybrid model 

updating approach and long-term health monitoring data. Struct Health 

Monit 2019;18(1):5-19.  
[5] Lam HF, Hu J, Adeagbo MO. Bayesian model updating of a 20-story 

office building utilizing operational modal analysis results. 

Adv Struct Eng 2019;22(16):3385-3394.  
[6] Prabakaran K, Kumar A, Thakkar SK. Comparison of eigensensitivity 
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Earthq Eng Eng Vib 2015;14:453-464. 

the efficiency of model updating and computation, but also 

meets the need for high-precision computation of local 

components. 
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