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EXTENDED ABSTRACT 

ABSTRACT: This study presents a physics-informed surrogate modeling approach for the SCSHM Benchmark bridge using a 

dual-path LSTM Autoencoder architecture. By combining synthetic data from a finite element model and real strain measurements, 

the model effectively reconstructs structural responses under moving truck loads. Results show good agreement between predicted 

and measured strains. Limitations such as the absence of vehicle–structure interaction effects are discussed, with directions for 

future improvements. 
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1 INTRODUCTION 

This study presents preliminary results obtained using bridge 

strain data measured on the Society of Civil Structural Health 

Monitoring (SCSHM) bridge benchmark [1]. The benchmark 

dataset contains strain measurements and photos collected over 

nine months by strain gauges and a fixed camera during 

passages of heavy vehicles. A Finite Element (FE) model of the 

Benchmark is also made available together with the dataset. In 

this study, the FE model and the data have been utilized to build 

a surrogate model of the Benchmark structure. 

Traditionally, FE models and detailed simulations have been 

employed to estimate the structural response with high-fidelity 

structural properties. While these models are accurate, they are 

computationally expensive. To address this challenge, 

surrogate models have emerged as an efficient alternative to 

approximate the structural response. Surrogate models in 

structural engineering have gained attention in applications 

such as response estimation, probabilistic assessment, and 

damage detection. Among data-driven methods, neural 

networks have demonstrated strength in capturing nonlinear 

mappings as well as learning from the data. Deep learning 

models have successfully predicted the response of the bridges 

subjected to dynamic train loads, demonstrating the potential of 

these models in emulating complex structural behavior [2]. 

Compared to traditional simulations, these models provide 

rapid and scalable analysis, which is particularly crucial for 

operational digital twins or near-real-time decision-making 

support systems.  

In this context, Long Short-Term Memory (LSTM) networks 

have been an especially powerful tool to learn from time series 

data, thanks to their capabilities to capture long-term temporal 

dependencies in sequential data. LSTMs have been shown to 

work well in response prediction for bridge [3]. In addition to 

the capability to capture the long-term dependencies, LSTM 

Auto-Encoders (AE) learn an efficient representation of the 

input space by compressing and reconstructing data, enabling 

simultaneous learning and data compression. These fusion 

LSTM-AE models are ideal for surrogate modeling of bridge 

behavior under vehicle loading.  

In this study, two parallel LSTM-AE architectures are 

combined and trained through strain simulated by the FE model 

and strain measured on the Benchmark. The architecture is 

conditioned using specific physical conditions such as gross 

weight and velocity of the vehicles.  

2 METHODOLOGY 

The proposed methodology integrates physics-based finite 

element (FE) simulations with deep learning to accurately 

predict strain responses of a bridge under moving vehicle loads. 

A dual-path architecture is built, integrating two parallel 

LSTM-based Autoencoders (LSTM-AEs). The first is trained 

using strain responses obtained from a reduced-order FE 

model, and the second is trained on measured strain data. These 

parallel encoders are fused in a physics-informed manner to 

enable robust learning, even in the presence of sparse or noisy 

real-world measurements.  

The reduced-order FE model of the bridge is created using 

the modal decomposition of mass and stiffness matrices 

derived from a high-fidelity FE model. Reduced matrices are 

then used in a state-space formulation to simulate the bridge’s 

dynamic response under moving truck loads. The moving load 

is applied along the bridge using a defined vehicle path, 

velocity, and gross vehicle weight (GVW) estimated using the 

area method [4]. For unique combinations of GVW and 

velocity observed in the dataset, simulated time series are 

generated at specific sensor locations using the bending 

moment and structural geometry. These are then converted into 

macrostrain using the known strain gauge positions.  

The proposed architecture consists of several key 

components: two parallel encoders, latent representations, 

conditions, and a decoder, as indicated in Figure 1. The first 

Encoder encodes the simulated strain signals into a latent 

representation. These synthetic signals are generated offline for 

each GVW-velocity pair, corresponding to the conditions 

observed in the real measurement dataset. The second Encoder 

encodes the measured strain data into a latent representation. 

The parameters GVW and vehicle velocity are used as inputs 

to the FE model and are inherently included in the real bridge 

measurements, since each truck has its own physical properties. 

They are also used as condition vectors, as they are fed into the 

decoder architecture. Finally, the decoder reconstructs the 

strain measurements using the combined latent representations 

from both the Encoders and the Condition Vector. The model 

is trained end-to-end to minimize the reconstruction error 

between the predicted and the actual measured strain time 

series. 
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Figure 1. Flowchart of the proposed LSTM-AE architecture. 

3 IMPLEMENTATION ON THE SCSHM BENCHMARK  

The proposed methodology is implemented using strain data 

collected as part of the SCSHM bridge benchmark study [1]. 

The structure is a single-span, simply supported bridge with a 

length of 22.71 m, carrying two lanes. The selected bridge span 

is instrumented with 32 electric resistance strain gauges to 

monitor strains under the deck. Strain gages are placed at 

several cross-sections (end of spans, midspan, and ¾ of the 

span) and different locations within each section. The dataset 

includes measurements recorded during controlled load tests as 

well as under normal traffic conditions. For this study, 

operational truck data is utilized due to its high volume and 

variability, which are essential for effectively training a deep 

learning-based architecture. To build the surrogate model, the 

structural responses measured by strain gauges located at the 

midspan section are selected. These midspan measurements are 

representative of the critical section where bending moments 

are typically maximal, making them well-suited for surrogate 

modeling.  

Figure 2 and Figure 3 show the comparison between the 

predicted and measured strain time series at midspan gauges. 

They closely align both in shape and amplitude, showing that 

the model effectively learns the relationship between condition 

parameters and response evolution. Figure 2 illustrates the 

model’s performance on the training set while Figure 3 on the 

testing set. The comparison highlights the ability of the LSTM 

to generalize to unseen data in the test set, where it maintains 

consistent accuracy even on condition pairs not explicitly 

encountered during training.  

The proposed surrogate model integrating physics-informed 

simulations and measurement-based encoders via a dual LSTM 

Autoencoder architecture demonstrates good predictive 

performance in reconstructing bridge strain responses. Even 

though the model is trained using the full dual LSTM-AE 

architecture, only the trained latent representation and decoder, 

together with condition inputs, are used during prediction, 

providing a computationally efficient solution. Despite relying 

on a reduced portion of the architecture for prediction, which 

enhances computational efficiency, the model successfully 

captures the dynamic characteristics of the structural response 

across varying vehicle loading scenarios.  

However, it is worth noting that the current model does not 

account for the effect of the inertia of the moving vehicle, 

which may explain the absence of the fluctuations observed in 

the real measurement data. Neglecting this interaction can 

result in underestimation of transient strain fluctuations or 

increased scatter in the predicted responses. Therefore, this 

study should be considered as an initial attempt to build a 

surrogate model. The future work will focus on incorporating 

vehicle-bridge interaction into the simulation framework to 

enhance the fidelity. 

 
Figure 2. Strain prediction results for the training set.  

 

Figure 3. Strain prediction results for the validation set 
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