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ABSTRACT: The estimation of vehicle speed is a critical first step in deriving vehicle weight from bridge responses. Various 

strategies have been developed to extract the speed of passing vehicles, primarily relying on sensors that capture signals with 

features related to the vehicle's axles. These signals are processed through diverse methods; however, existing strategies often fail 

to perform optimally across different structural configurations. To address these challenges, the convoluted reciprocity (CR) 

relationship was recently proposed, which was verified numerically and validated experimentally in a laboratory setting. In this 

document, the novel speed estimation strategy based on CR is applied to an operational bridge using signals from the SCSHM 

benchmark. The results confirm that CR provides a robust speed estimation method for cases when the signals lack individual 

axle features. 
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1 INTRODUCTION 

Instrumented bridges can be utilised for weighing vehicles as 

they pass over them, enabling the estimation of Gross Vehicle 

Weight (GVW) based on the integral of the recorded signal [1]. 

When integrated into Bridge Weigh-in-Motion (BWIM) 

systems, such instrumentation allows for the identification of 

individual axle loads and axle spacing. This technology has 

gained significant attention in recent years ([2], [3], [4], [5]) 

due to the valuable site-specific traffic data it provides, as well 

as its potential applications in structural health monitoring [6]. 

A crucial first step in any weighing solution based on bridge 

responses is determining the speed of the passing vehicle. This 

requires signals that provide reliable speed estimation. 

Standard approaches include FAD (Free of Axle Detectors) and 

NOR (Nothing on the Road) methods, which utilise specific 

signal features to estimate vehicle speed, axle count, and axle 

spacing [4]. Additionally, alternative methods have 

successfully employed acoustic signals generated by tyres 

passing over bridge expansion joints to determine vehicle 

speeds [7]. 

A recent study by the author [8] investigated various speed 

estimation strategies using strain sensors, demonstrating that 

existing methods perform well in most practical scenarios. 

However, a consistent theoretical framework for speed 

estimation was lacking. The standard approach relies on the 

cross-correlation of signals at different bridge locations, which 

is effective when distinct axle signatures are present but fails in 

certain cases, particularly for simply supported bridges. To 

address this limitation, [8] introduced the Convoluted 

Reciprocity (CR) relationship, developing a novel speed 

estimation method. This approach does not require signals to 

exhibit distinct axle features, making it more widely applicable. 

The Convoluted Reciprocity framework was theoretically 

derived, numerically verified, and experimentally validated in 

[8]. 

This document aims to present the limitations of the 

correlation-based method for speed estimation and to illustrate 

the effectiveness of the novel Convoluted Reciprocity (CR) 

approach. First, the shortcomings of the correlation method are 

visually demonstrated. Then, the CR concept is introduced and 

verified through numerical examples. Finally, the method is 

validated using real bridge measurements from the publicly 

available SCSHM dataset [9]. 

2 THE PROBLEM WITH CORRELATION 

Arguably, the most common strategy for estimating the speed 

of a passing vehicle using bridge responses is based on 

correlating signals recorded at two separate locations along the 

bridge. The key idea is to determine the time lag that maximises 

the correlation between the signals, which indicates the time 

taken by the vehicle to travel between the sensor locations. 

Given the known sensor distance, the vehicle speed can then be 

directly estimated. This method assumes that the signals are 

shifted versions of each other and has been successfully applied 

in many cases. However, its effectiveness relies on the presence 

of distinct peaks corresponding to individual axles in the 

signals, which is not always guaranteed. 

To illustrate this, synthetic bridge responses are used from a 

numerical simulation of a two-axle vehicle traversing a bridge, 

modelled using the open-source VBI-2D tool [10]. The 

vehicle's axles have equal weights and are spaced 5 m apart. 

The bridge has a span of 20 m, with strain measured at sensors 

located at ¼ and ¾ of the span, denoted as S25 and S75, 

respectively. The vehicle travels at a constant speed of 20 m/s 

(72 km/h). For verifying purposes, only the quasi-static 

response is simulated, excluding dynamic effects and noise. 

For a bridge with fixed-fixed boundary conditions, the 

resulting signals are shown in Figure 1(a). The peaks 

corresponding to each axle are clearly distinguishable. 

Although the signals are not perfect shifted versions of each 

other, the correlation method performs accurately. By 
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computing the correlation and identifying the time lag that 

maximises it, the exact travel time between sensor locations is 

obtained, as illustrated in Figure 1(b). Consequently, the 

estimated speed in this case is precise. 

 

(a) 

 
(b) 

 

Figure 1. (a) Simulated fixed-fixed beam responses due to a 2-

axle vehicle; (b) Cross-correlation of signals. Vertical lines 

indicate the time lag giving maximum correlation and the one 

that should have been obtained for correct speed estimation. 

In contrast, for a simply supported bridge, the responses do 

not exhibit distinct peaks, leading to poor speed estimates using 

the correlation method. Figure 2(a) presents the simulated 

bridge responses for the same vehicle and bridge configuration 

but with simply supported boundary conditions. Applying the 

correlation method in this case (Figure 2(b)) results in a 

significantly inaccurate speed estimate. Specifically, the 

estimated speed is 47.62 m/s, corresponding to a 138% error. 

Therefore, the correlation method is poorly suited for simply 

supported bridges due to the absence of distinct axle features. 

However, even in cases where clear axle features are present, 

such as fixed-fixed bridges, the method does not always 

guarantee perfect results. The speed estimation based on 

maximum correlation may still be imprecise, depending on the 

vehicle configuration and span length. This limitation is not 

new, and various correction strategies exist, but they are either 

specific to certain vehicle types or rely on signal processing 

techniques. A more detailed analysis can be found in [8]. 

Nevertheless, until now, no theoretically sound alternative had 

been established. This gap is addressed by the speed estimation 

method based on Convoluted Reciprocity. 

(a) 

 
(b) 

 
Figure 2. (a) Simulated simply supported beam responses due 

to a 2-axle vehicle; (b) Cross-correlation of signals. Vertical 

lines indicate the time lag giving maximum correlation and the 

one that should have been obtained for correct speed 

estimation. 

3 CONVOLUTED RECIPROCITY 

This section introduces the concept of Convoluted Reciprocity 

and its application to speed estimation, originally presented in 

[8]. Here, a step-by-step example is provided to further explain 

and verify the method. The verification is performed using 

VBI-2D [10] under ideal conditions, considering perfect quasi-

static signals without noise or dynamic disturbances. The 

analysis follows the same case as presented in Section 2, 

ensuring direct comparison with the correlation-based 

approach. 

In [8], it was shown that a relationship exists between bridge 

responses at two different locations (A and B) for two different 

vehicle passages, say Vehicle 1 (V1) and Vehicle 2 (V2). This 

relationship is expressed in Eq. (1). 

 𝑆𝐴,𝑉1(𝑡) × 𝑆𝐵,𝑉2(𝑡) = 𝑆𝐵,𝑉1(𝑡) × 𝑆𝐴,𝑉2(𝑡) (1) 

where 𝑆𝑖,𝑗 represents the measured load effect at location i 

due to the passage of vehicle j, and × denotes the convolution 

operation. This relationship follows from the fact that any 

bridge response to a passing vehicle can be expressed as the 

convolution of the vehicle's forcing function with the 

corresponding influence line. By taking advantage of the 

commutative property of convolution, the expression is derived 

(see [8] for a detailed derivation). This result establishes a 

reciprocal relationship between signals recorded at different 

sensor locations and vehicle passages when convolved 

together, leading to the adopted term Convoluted Reciprocity 

(CR). The expression can be further simplified to: 

 𝐶𝑅𝐴𝐵(𝑡) = 𝐶𝑅𝐵𝐴(𝑡) (2) 

This relationship is rather powerful, as it connects any two 

load effects for any two vehicle passages. It holds under the 
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standard assumption that vehicles travel at a constant speed. 

Using this relationship, the speed of an unknown vehicle 

passage can be estimated if the response of a reference event is 

known. In practice, signals from a vehicle event with a known 

speed are stored as a reference, enabling the speed estimation 

of subsequent vehicle passages. 

For example, Figure 3 presents the signals for a five-axle 

truck with axle spacing and load distribution as specified in 

[11], representing a typical European configuration for a fully 

loaded articulated five-axle truck. Since the vehicle speed is 

known for this reference event, the signals can be transformed 

into the spatial domain. This event serves as a calibration or 

reference event, providing a basis for speed estimation of other 

vehicle passages. 

 

 

Figure 3. Simulated simply supported beam response due to a 

5-axle truck. 

Applying the Convoluted Reciprocity (CR) relationship in 

the time domain, we estimate the speed of the unknown vehicle 

by iteratively testing different speed guesses and evaluating the 

CR relationship. For each guessed speed, the signals from 

Figure 3 are transformed accordingly into the time domain. By 

applying the relationship in Eq. (2), together with the signals in 

Figure 2(a), results are obtained for each speed guess. Figure 4 

presents the left-hand side and right-hand side of Eq. (2) for 

different guessed speeds. The speed estimate that results in a 

match between both curves corresponds to the actual speed of 

the unknown vehicle event. 

To systematically quantify the differences between both 

sides of Eq. (2), we evaluate the norm of their difference (see 

Eq. (3)). The study in [8] explored various norm choices and 

suggested that the 1-norm could be a suitable option. However, 

other p-norms may also yield good results. The best speed 

estimate can be determined by finding the speed that minimises 

the norm of the difference. 

 ‖𝐶𝑅𝐴𝐵 − 𝐶𝑅𝐵𝐴‖ = 0 (3) 

Figure 5 presents the norm of the difference between both 

sides of Eq. (2) for a range of guessed speeds. The minimum of 

this norm corresponds to the speed that best matches the actual 

speed of the unknown vehicle event. This example was 

conducted using ideal quasi-static responses, free from noise 

and disturbances. As a result, the speed estimation is exact, 

confirming the validity of the methodology. However, when 

applying this approach to real signals affected by noise and 

disturbances, the accuracy of the estimated speed may be 

impacted. 

 

(a) 

 
(b) 

 
(c) 

 

Figure 4. Detail of the CR for various speed guesses: (a) 10 

m/s; (b) 20 m/s; (c) 30 m/s. 

 

 

Figure 5. Norm values for a range of speed guesses. 

4 VALIDATION USING SCSHM 

The CR method for speed estimation was verified in the 

previous section using ideal quasi-static bridge responses. This 

section focuses on validating the method under realistic 

conditions by applying it to data from a real bridge, where 

signals include noise and dynamic effects. The CR approach is 

tested using bridge responses from the SCSHM dataset [9], 

specifically for cases where the signals do not exhibit clear axle 

features. 
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 The SCSHM dataset 

The dataset introduced in [9] corresponds to a nine-span bridge 

with a total length of 291 m, located in Manitoba, Canada. The 

bridge carries two lanes of traffic, one in each direction, and its 

superstructure consists of four lines of I-girders supporting a 

reinforced concrete (RC) deck. Of particular interest is Span 2, 

a simply supported span of 22.71 m, which is instrumented 

with strain gauges and thermocouples at various locations. The 

signals are sampled at 200 Hz, and only events exceeding a 

predefined strain threshold are recorded. 

For this study, key sensors are those located at the ends of the 

span (Sections AA and EE), where strain gauges attached to the 

deck capture signals with clear individual axle features. These 

signals were used in [9] to accurately estimate vehicle speeds, 

and these estimates will be taken as the reference speeds in this 

work. Additionally, two other instrumented sections, FF (at 

approximately ¼ span) and BB (at approximately ½ span), 

contain multiple strain gauges on each girder. Here, only the 

strain measured at the soffit will be considered. The dataset 

includes both strain measurements and vehicle photographs 

from several monitoring campaigns, totalling over 3,000 heavy 

vehicle crossing events. For further details on the 

instrumentation setup, refer to [9]. 

 Example for one event 

As an example, this section estimates the speed of a vehicle 

passage using the signals from a reference event with a known 

speed. Specifically, the analysis focuses on vehicles travelling 

in the westbound lane, where strain gauges located on girder 

G2 are considered (channel 10 in section FF and channel 22 in 

section BB). The reference event corresponds to file 04/E00003 

(event 3 in folder 04), with a recorded speed of 17.2 m/s 

(61.92 km/h) and a GVW of 433.3 kN. The signals used for the 

CR-based speed estimation are shown in Figure 6. For speed 

estimation, these signals are first transformed into the spatial 

domain using the known speed of the reference vehicle. 

 

 

Figure 6. Signals of reference event (04/E00003). 

The goal is to estimate the speed of an event with an unknown 

speed using the CR method. The event under analysis is 

05/E00001, corresponding to a truck with a GVW of 319.9 kN. 

The signals for this event are shown in Figure 7. The dataset 

provides a recorded speed of 14.5 m/s (52.2 km/h), which will 

be used as the reference value for validation. 

 

Figure 7. Signals of event to determine its speed (05/E00001). 

Using the CR relationship, the estimated speed must satisfy 

Eq. (2). To apply this method, the speed of the reference 

vehicle is assumed, and the signal is transformed back into the 

time domain by assuming a different speed. As an example, this 

calculation is repeated for three different assumed speeds, and 

the results are plotted in Figure 8. 

 

(a) 

 
(b) 

 
(c) 

 

Figure 8. Detail of the CR for various speed guesses: (a) 40 

km/h; (b) 50 km/h; (c) 60 km/h. 

This process can be repeated for many more guesses. To 

evaluate the similarity between both CRs, the norm of the 

difference between both could be used. For this study, we 

adopted the 1-norm. Only a few guesses are shown below in 
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Figure 9 for visualization purposes. More guesses can be easily 

computed to refine the final speed estimation. The speed that 

gives the minimum norm is considered as the estimated speed 

of the event. Increasing the number of guesses, one obtains an 

estimated speed of 14.44 m/s (51.98 km/h), which for this case 

is almost a perfect match (-0.38% error). 

 

 

Figure 9. Norm values for a range of speed guesses. 

 Database analysis 

This section applies the CR method to estimate the speed of all 

the valid events available in folder 05 in the database. Note that 

only events with a single vehicle are considered. Also, events 

with missing pictures are removed. Therefore, a total of 2149 

events are analysed below. 

To apply the CR method to a real bridge, we need to use a 

reference event for each lane. Speed estimation for each lane is 

done separately. The bridge response is different for each lane, 

so we need to define one reference event for each lane. When 

processing, we can identify which lane the vehicle is traveling 

on simply from the maximum response values across different 

girders. Once this is detected, the CR method is applied for the 

corresponding reference vehicle. 

Figure 10(a) shows all the speed estimation errors in terms of 

difference to those provided by the database. The same results 

can be visualized in a histogram in Figure 10(b). Overall, one 

can see that most of the speed estimates fall within the 5% band, 

which is reasonable for the goal of estimating the GVW of 

passing vehicles. However, there are some instances where 

much higher errors are observed. 

The results below show that the histogram is not centred 

around zero value, indicating an underlying bias related to the 

selected reference vehicles. In this calculation, the reference 

events correspond to normal events traversing at normal 

operational speeds. In practice, it should be possible to calibrate 

the calculation by obtaining signals from a reference event with 

very slow speeds, one for each lane. We can make the reference 

vehicle passages occur at slow speeds, making these events 

almost perfectly quasi-static. The unknown events will have 

dynamics, introducing some error, which is the dispersion 

observed in the results. Furthermore, the separation between 

section FF and BB is rather small; results would improve with 

sensors placed further apart. 

 

(a) 

 
(b) 

 

Figure 10. Single vehicle events speed estimation. (a) 

Estimation errors for each event; (b) Histogram of estimation 

errors. 

Not shown here, but the possibility of improving the 

performance by signal processing the results was explored. 

Low-pass filtering and moving average filtering were explored 

to try to reduce the contributions of bridge dynamics and noise. 

However, the CR method seems to be rather robust, with only 

marginal reductions in errors observed. On one hand, this 

shows that the idea is robust and can be applied directly to 

unprocessed signals. On the other hand, this indicates that there 

is no easy way of improving the performance of the method 

simply by pre-processing the signals. 

5 CONCLUSION 

In general, when the goal is to estimate the speed of passing 

vehicles, signals with individual axle features should be used. 

In those cases, the standard correlation method provides 

satisfactory results. Nonetheless, this method is not 

theoretically sound nor valid for all bridge configurations. 

This document has presented a methodology to estimate the 

speed of passing vehicles supported by the convoluted 

reciprocity relationship. First, an ideal numerical example is 

used to verify the concept. Then, the method is applied to the 

measured single vehicle events available in the SCSHM 

dataset. The reported speed estimation errors show some 

scatter, but most of them are within a 5% error band. 

The methodology presented here enables the speed 

estimation for a wider range of possibilities. It is not strictly 
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necessary to have signals with clear individual axle features. 

Therefore, the methodology can use sensors that capture the 

global behaviour of the bridge. This opens the possibility of 

having vehicle weighting capabilities on existing monitoring 

systems, with other load effects, or installing them on bridges 

that do not have local responses that would show individual 

axle features. Sometimes bridges do not have locations with 

responses that have clear individual axle features, or the bridge 

has an existing installation with the original intention of SHM 

and no sensors with axle features. CR opens the possibility of 

estimating the speed also in those cases. 
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