
13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-182 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1210 

 

ABSTRACT: Cables and external post-tensioning tendons are key elements of modern strategic bridges; however, their structural 

integrity has been questioned due to some structural collapses registered during the last decades. In this context, cost-effective 

vibration-based monitoring strategies can be implemented to improve their maintenance by continuously estimating their tension 

force (a key damage indicator) from their natural frequencies. These frequencies may vary in time due to environmental changes, 

modification of the service loads, and tensioning processes produced during cable substitution manoeuvres. In monitoring systems 

that only use one accelerometer per cable (the most common situation in practice), a robust and accurate peak-picking method is 

required to adequately identify which are their actual almost harmonic natural frequencies and to which modal order they 

correspond to. Ideally, this method should be automated (to run continuously), autonomous (with as few hyperparameters as 

possible) and self-regulating (to discard poor quality spectra and outliers). Additionally, the method must be able to cope with two 

well-known phenomena experienced in practice that dirt cable spectra: i) the double peak effect, and ii) the presence of bracing 

belts between cables. Thus, this paper works on developing an autonomous peak-picking procedure to cope with the 

aforementioned phenomena for enabling a reliable tension force estimation method in cable structures. This methodology has 

been applied to a one-week monitoring data set of measurements of real external post-tensioning tendons of a road bridge in Spain. 
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1 INTRODUCTION 

Cables and tendons are crucial elements in bridge engineering 

but also are vulnerable structural elements because they are 

usually subjected to fatigue and corrosion problems. Thus, 

vibration-based non-destructive techniques have been used for 

external post-tensioning tendon assessment. The main 

parameter to assess in these cases is the tension force, as this 

performance indicator can give a clear idea of the condition of 

the cable and thus, the overall condition of the structure. The 

tension force is usually estimated from the measured natural 

frequencies, which are used to inversely solve the dynamic 

equation of an elastic tensioned cable.  

The higher the number of natural frequencies identified, the 

better the tensile force estimation, Indeed, the estimation of 

several natural frequencies results compulsory when the 

bending stiffness of the cable is not negligible. However, this 

frequency identification is especially challenging when only 

one accelerometer is employed for monitoring the element, as 

in these cases, it has to be performed by detecting peaks on the 

vibration signal's power spectral density (PSD). In the case of 

simply-supported cables, when their bending stiffness is 

negligible, the frequencies of these peaks should be perfectly 

periodical (which corresponds to the blue straight line in Figure 

1, where the frequency values are represented against their 

modal orders). When the bending stiffness has a considerable 

influence on the cable dynamics, these frequencies are quasi-

periodical, gradually increasing the distance between 

consecutive peaks. This effect can be clearly seen in the orange 

line of Figure 1. 

 

 

Figure 1: Effect of bending stiffness on natural frequencies. 

Although peak-picking may appear to be simple, some issues 

make difficult the identification procedure and its 

automatization. First, the variation over time of the natural 

frequencies to be identified makes more suitable methods that 

do not use initial guessing values to detect these peaks. Second, 

the presence of double peaks (doublets) within the PSD. This is 

caused due to the fact that the cable section may not be perfectly 

symmetric and thus, certain bending modes may decompose in 

couples of closely-spaced peaks. Third, the presence of bracing 
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belts between homologous cables may couple their similar but 

not identical vibration, also contributing to create doubles. 

Fourth, in external post-tensioning tendons running through 

several spans, the vibration of the different sections of the cable 

between deviators (with different span lengths) may be 

coupled, providing dirty spectra in which harmonics of 

neighbouring cable segments are mixed. Finally, interactions 

between the measured cable and other structural elements may 

dirt the PSD signals, thus, perturbing the frequency 

identification process and provoking an unreliable tension 

estimation. A typical situation of this type occurs in cable 

stayed bridges, when the vibration of the deck is transmitted to 

the stay cables or hangers.  

Some authors have faced in the past the problem of 

developing a real-time and automatic frequency identification 

methodology for performing an accurate tension estimation in 

cable elements. This automatization has been solved in a 

variety of ways within the literature. Most of them detect these 

frequencies by performing an automatic peak-picking process 

from the signal’s PSD. Initially, Cho et al. [5] belowproposed 

a simple iterative process that lacked the necessary robustness.  

Then, Sim et al. [6] studied a frequency tracking method based 

on providing reference initial guessing values around which the 

peak search is performed. They claim its validity based on two 

facts: i) the frequencies variation due to environmental changes 

are small, and ii) the searched peaks are well-separated. 

Regarding deep learning applications, Kim et al. [7] have 

developed a tool based on object detection for performing 

automatic peak-picking from PSDs images with a region based 

convolutional neural network (a similar method is researched 

by Chen et al. [9]). The main advantage of this approach lays 

on the fact that no guessing values need to be provided, 

although the robustness of these tools rely on their training data 

set. Later, Jeong et al. [8] applied this latter method for 

performing automatic tension estimation on cables. They worry 

about the detection of undesired peaks not corresponding to 

cable natural frequencies. For that, they use the frequency 

distance between peaks, also named as ‘interval’. The main 

drawbacks of such a methodology will be discussed later. 

However, they do not cover issues as: i) how to correctly assign 

the modal order to each peak,  ii) how to manage missing peaks 

that interrupt a series of consecutive frequencies, and iii) how 

optimize the computational cost for its proper in-line 

implementation in continuous monitoring systems.  

One of the most revealing contributions is the one by Zhang 

et al. [10] that provided a clear explanation of the main 

challenges arising when performing tension estimation from 

cable vibration data, namely: i) detection of useful PSDs with 

recognizable peaks, ii) automatic and robust identification of 

frequency peaks, and iii) assignation of modal orders to the 

identified frequencies. They proposed a simple methodology 

based on updating a threshold prominence value till a minimum 

number of peaks has been identified. After this, they discard 

fake peaks if their frequency is not a multiple of the most 

common value for the interval. With this same principle, they 

assign the modal order to the peaks. This method results quite 

applicable to cables with low-bending stiffness (EI), however, 

when EI is remarkable, its applicability is limited, as 

proportionality is lost for higher modes. Another important 

contribution is the one of Jin et al. [2] in which the automated 

peak-picking is covered in detailed, remarking important facts 

such as the necessity of removing the baseline from the PSD 

curve to assess all the peaks with the same floor level. Their 

proposal is based on the application of a breakthrough 

multiscale-based peak detection algorithm (previously 

developed by [1]) combined with a criterion based on the 

median absolute deviation of the detected peaks. They 

compared this method with the one developed by Jeong et al. 

[8] confirming a substantial enhancement. Despite this, they do 

not provide any strategy to detect false peaks apart from the 

robustness of the method.  

The present research provides a modified methodology for 

performing autonomous peak-picking detection based on the 

findings by Jin et al. [2]. To the authors knowledge, all the 

contributions covering autonomous tension estimation of cable 

structures have dealt with long cables of cable-stayed bridges 

with EI not influencing their dynamic. This paper, for the first 

time, addresses this automatization problem in much shorter 

external post-tensioning tendons with non-negligible EI 

influence.  

This paper has been structured as follows: after the present 

section, Section 2 presents the autonomous peak-picking 

methodology. Section 3 illustrates a variation of the 

methodology for its in-line integration into a continuous 

monitoring system. Section 4 demonstrates the application of 

the methodology to data obtained from a week-long continuous 

monitoring measurement in an in-service post-tensioning 

tendon. Finally, Section 5 provides some conclusions and 

future works.  

2 AUTONOMOUS PEAK PICKING METHODOLOGY 

As mentioned before, an autonomous peak-picking method is 

an essential previous element to continuously estimate the 

tension force of cables from a single vibration measurement 

registered within a continuous monitoring application. The 

present paper proposes a method for that, based on the 

contribution of Jin et al. [2] in which the main innovation is the 

implementation of the so-called multi-scale peak detection 

algorithm previously developed by [1]. This algorithm, which 

is the core of the method, was conceived to detect periodic 

peaks within signals (indeed, it has been applied to detect heart 

beats). This is done through building the so-called local 

maximum scalogram (LMS) of the signal being analysed. A 

scalogram is a graphical representation of a given signal’s 

magnitude, resulting from analysing it using moving windows 

of different scale (number of samples). With the LMS, it can be 

detected the particular scale related to the interval of the 

periodic peaks being searched. Jin et al. [2] applied this concept 

to successfully analyse the PSDs of cable vibrations.    

On the one hand, for smoothly detecting environmental 

changes on the natural frequencies of cables, a great frequency 

resolution, ∆𝑓 = 1/𝑇 (𝑇 being the duration of the time-domain 

measured signal) and high sampling frequencies are required to 

detect a significant number of harmonics, are needed within the 

PSDs to be analysed. On the other hand, if these PSDs are such 

long vectors, the computational cost and memory involved on 

computing their LMS matrices may prevent from performing 

this process in real time within a continuous monitoring loop 

(the complexity of the problem is O(n2/2)). To cope with this 

issue, a two-step procedure has been proposed: i) developing 
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the LMS of a low-resolution PSD for roughly detecting the 

frequencies of the harmonic peaks. Then, frequency bands for 

later searching them more precisely are created, and ii) 

searching the final frequency values within a high-resolution 

PSD using these bands. Apart from these aspects, the following 

sections cover other considerations which are capital for 

successfully implementing the methodology in practice when 

dealing with post-tensioning tendons.  

 Signal pre-processing 

This process has been depicted in Figure 2. First, the time signal 

obtained from the monitoring system is detrended to eliminate 

any drifting caused by many factors, such as instrumental 

nonlinearity or signal offsets. Then, a low-pass filter is applied 

to eliminate peaks belonging to unimportant high frequency 

vibration that might shadow the actual peaks of interest. 

Furthermore, the filter cutoff frequency should be in 

accordance with the higher frequency order of interest for the 

posterior tension force estimation. Finally, the data is 

resampled (first interpolated and then decimated) to convert the 

original low-filtered signal to a lower rate in accordance with 

the low cutoff frequency.   

 
 

Figure 2: Signal pre-processing steps. 

 Low-resolution PSD of the signal 

As previously mentioned, a low-frequency-resolution PSD is 

employed as a workaround to mitigate the high computational 

cost associated with generating a LMS from a PSD with 

sufficient frequency-resolution to capture the variation of 

natural frequencies with temperature. This first PSD is obtained 

applying the Welch’s method using a high averaging of short 

time windows.  

 Baseline correction 

Baseline correction is a crucial step in the methodology, as the 

shape of the spectrum can affect the algorithm's ability to detect 

certain peaks. Figure 3 provides an example of this process for 

a cable PSD. To ensure optimal performance, various methods 

such as polynomial-based, morphological, and asymmetric 

least squares have been investigated within the literature. 

For the baseline correction there are many alternatives such 

as using the Savitsky-Golay filters, as mentioned in [2], but as 

indicated in [3], a better alternative is to rely on the use of 

asymmetric least squares smoothing. 

 

The idea is that for a signal vector 𝑦̅ with a number of samples 

equal to m, there should be a ‘baseline’ signal 𝑧̅ of equal length 

that meets the two following characteristics: i) being enough 

faithful to 𝑦̅, and ii) being smooth. Hence, the following least 

squares function, S, can be built to add together these two 

effects:  

                        𝑆 = ∑ 𝜔𝑖(𝑦𝑖 − 𝑧𝑖)
2 + 𝜆 ∑ (Δ2𝑧𝑖)

2 ,  𝑚
𝑖

𝑚
𝑖           (1) 

where 𝑖 is an index corresponding to each sample of the signal, 

and 𝜔𝑖 and λ are a penalty parameter, and a smoothing  

parameter, respectively, both controlling the balance between 

these two characteristics. The first term of this equation 

measures the baseline ‘fidelity’ to the original signal, while the 

second one regulates the ‘roughness’ of the baseline. 

The higher the value of S, the less these two requirements are 

fulfilled. Thus, S must be minimized in terms of 𝑧̅, to find an 

optimal baseline (d𝑆/d𝑧̅ = 0). After that, the following matrix 

expression can be derived, from which the vector 𝑧̅ can be 

obtained: 

                                  (𝑾 + 𝜆𝑫′𝑫)𝑧̅  =  𝑾𝑦̅ ,                    (2) 

where 𝑫 is a backward second-order-finite-difference matrix 

and 𝑫′ its transpose. 𝑾 is a weighted penalty diagonal matrix 

composed of 𝜔𝑖 values obtained as follows:  

 

                             𝜔𝑖 = {
𝑝    , 𝑦𝑖 > 𝑧𝑖

1 −  𝑝, 𝑦𝑖 < 𝑧𝑖
 ,                          (3)   

 

where 𝑝 is a small value between [0.1, 0.001] which represents 

an asymmetry factor to consider the fact that a PSD baseline is 

usually underneath the original PSD. This factor determines a 

low penalty for positive residuals (𝑦𝑖 > 𝑧𝑖) compared to a high 

penalty applied to negative residuals (𝑦𝑖 < 𝑧𝑖). 

The baseline correction is an iterative process that starts 

assigning initial values to 𝜔𝑖. After that,  𝑧̅ and 𝜔𝑖 are 

iteratively computed using (2) and (3) till achieving 

convergence. Among all, λ is the most influential factor in this 

process. Its value must be manually set between [102, 109].  

 

 

Figure 3: Baseline and baseline corrected PSD. 
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 Local maxima scalogram and optimal scale selection 

From the low-resolution baseline-corrected PSD a LMS is 

created. This is done by analysing the PSD with a series of 

moving windows with different number of samples 𝑤𝑘, defined 

as two times the ‘scale’ of the window 𝑘 (𝑤𝑘 =  2𝑘). This scale 

is a natural number ranging from 1 to 𝐿, being defined as 𝐿 =
ceil(𝑁/2) − 1, being N the total length of the PSD. 

Every window of scale 𝑘 runs though the signal sample by 

sample. Considering 𝑗 as the sample index on which the 

window is centrally positioned, for a given scale 𝑘, 𝑗 will vary 

from [𝑘 + 1, 𝑁 − 𝑘]. The LMS is a matrix of dimensions      

𝐿 × 𝑁 composed of 𝑚𝑘,𝑗  elements resulting from moving 

different windows along the PSD samples. Each 𝑚𝑘,𝑗  is 

obtained using a subset of three samples contained within a 

given window, namely, the two window edges and the central 

sample [𝑦𝑗−𝑘,  𝑦𝑗 , 𝑦𝑗+𝑘] (see  Figure 4). Thus, 𝑚𝑘,𝑗 is computed 

as follows:  

 

       𝑚𝑘,𝑗 = { 
0,

𝑟 + 1,
 
   if     𝑦𝑗 = max (𝑦𝑗−𝑘,  𝑦𝑗 , 𝑦𝑗+𝑘)

otherwise
          (4) 

 

where 𝑟 is a random number between 0 and 1. Finally, the LMS 

matrix, 𝑴, gets the form: 

𝑴 = 𝑚𝑘,𝑗 =  [

𝑚1,1 ⋯ 𝑚1,𝑁

⋮ ⋱ ⋮
𝑚𝐿,1 ⋯ 𝑚𝐿,𝑁

]                     (6) 

Thus, 𝑴 is a matrix whose elements 𝑚𝑘,𝑗 indicate whether the 

current PSD 𝑗th value is higher than the neighbours at the edges 

of the corresponding window with scale 𝑘. A graphical 

representation of  𝑴 is given in Figure 5 (white colour 

corresponds to zero values around the peak regions). 

 

 

Figure 4: Subset value.  

 Once the LMS has been created, a row-wise summation is 

performed in the matrix to obtain the vector 𝛾𝑘̅̅ ̅ (represented in 

Figure 6 as a function of 𝑘) as follows:  

                                     𝛾𝑘̅̅ ̅ = ∑ 𝑚𝑘,𝑗
𝑁
𝑗=1 .                                   (6) 

 

The scale for which the value of this vector is minimum, 𝑘𝑚𝑖𝑛 

is the one accounting with more zero values, thus, it 

corresponds to the rate of appearance of quasiperiodic peaks in 

the PSD. This value is obtained as follows:  

𝑘𝑚𝑖𝑛 =   {𝑘 ∈ ℕ | 𝛾𝑘𝑚𝑖𝑛
= min(𝛾𝑘̅̅ ̅)}                 (7)     

 

Figure 5: Complete scalogram of baseline-corrected low-

resolution PSD.                                 

 

 

Figure 6: Minimum k scale identification. 

Although the methodology works reasonably well, there 

might detect fake peaks near the PSD borders. To address this 

issue, it is recommended to add zero-padding to each side of 

the baseline-corrected-PSD. The extension of this padding 

must be in proportion with the length of the PSD.    

 Rescaled LMS and column-wise sum 

After obtaining 𝑘𝑚𝑖𝑛 the scalogram is ‘cut’ only considering 

scales ranging from 1 to 𝑘𝑚𝑖𝑛.  In this reduced version of the 

LMS a column-wise summation is performed to identify PSD 

samples whose overall sum is zero. This means that for every 

scale from 1 to 𝑘𝑚𝑖𝑛 these particular samples with index 𝑗𝑛,𝑙𝑜𝑤  

have a zero value in the scalogram, and therefore, they can be 

identified as peaks corresponding to cable’s natural frequencies 

𝑓𝑛,𝑙𝑜𝑤 = 𝑗𝑛,𝑙𝑜𝑤 ∆𝑓 in the PSD. Figure 7 shows the reduced LMS 

with red vertical lines indicating the columns where the 

𝑗𝑛,𝑙𝑜𝑤 values are located.  

0 500 1000 1500 2000

PSD index j [-]

0

200

400

600

800

1000

S
ca

le
k

[-
]

0

1

2

k
min



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-182 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1214 

 

 
Figure 7: Rescaled LMS. 

 High-resolution PSD peaks identification 

Once the peak regions have been located within a low-

resolution PSD, the final peaks positions need to be precisely 

identified within a high-resolution PSD. This high-resolution 

PSD is computed using the Welch’s method, considering much 

longer window lengths (half of the overall signal length) with a 

50% of overlapping. Additional zero-padding is applied to each 

signal segment to improve the frequency resolution. 

Within the high-resolution PSD, a precise search is 

performed in frequency bands associated to each 𝑓𝑛,𝑙𝑜𝑤 within 

the intervals [𝑓𝑛,𝑙𝑜𝑤 − 𝛥𝑓 ∙ (
𝑘𝑚𝑖𝑛

4
) , 𝑓𝑛,𝑙𝑜𝑤 + 𝛥𝑓 ∙ (

𝑘𝑚𝑖𝑛

4
) ]. The 

final natural frequency 𝑓𝑛 is the one associated to the maximum 

of the high-resolution PSD value within the above interval. 

Figure 8 illustrates the aforementioned high-resolution PSD 

peak identification procedure. 

 

 

Figure 8: High-resolution PSD peaks identification scheme. 

Appling this methodology to a PSD resulting from the 

vibration measurement of a cable, the results obtained are 

displayed in Figure 9.  

 

Figure 9: High-resolution PSD with the identified peaks. 

3 EXAMPLE OF APPLICATION 

The procedure presented in the previous section has been 

performed using the data obtained during 7 days of continuous 

monitoring of an external post-tensioning tendon belonging to 

a highway road bridge in Spain. The bridge monitored is a 

precast segmental externally post-tensioned bridge consisting 

of simply supported spans. The tendons monitored were 

grouted tendons made of 31 high-strength steel post-tensioning 

strands, each one made of 7 twisted wires of 6 mm of diameter. 

These strands were embedded inside a HDPE duct of 140 mm 

of diameter. Once tensioned, the duct was filled with grout to 

provide corrosion protection. This grout provides a monolithic 

effect to the tendon’s section, which confers it a non-negligible 

bending stiffness. The accelerometers used were PCB-393B12 

and were mounted using a clamp system attached to the tendon 

duct with bolts. Figure 10 depicts the bridge object of the study. 

The cable section being monitored is highlighted in red.  Figure 

11 shows the accelerometer mounted on the tendon. 

 

 

Figure 10: Description of the tendon being monitored 
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Figure 11: Accelerometer mounted on a tendon. 

 Analysis of a single data block 

A single 10-minute data block has been analysed here to 

demonstrate the usefulness of the presented autonomous peak-

picking methodology. The signal was acquired with a sampling 

frequency of 1651 Hz. The time-history and the corresponding 

PSD of this data block is shown in Figure 12.  

 

Figure 12: Analysis of a 10-minute data block. 

The peaks detected present the noticeable effect of the 

bending stiffness, this effect can be seen in Figure 13, where 

the first 4 natural frequencies show a linear trend while starting 

from the fifth natural frequency the data starts to show a non-

linear trend. 

 

Figure 13: Modal order vs Frequency of a single data block. 

 Analysis of a one-day long data set 

The variation of the different natural frequencies on the cable 

due to the temperature effect through one day has been firstly 

analysed. For that, the absolute frequency variation with 

respect to the initial frequencies being identified (those of the 

first 10-minutes record at 00:00) has been computed. Figure 14 

shows this variation. It can be appreciated that the 4th modal 

order presents a slightly different behaviour this is due to its 

associated doublet. From this analysis, it can be also recognized 

how this variation is higher for higher modal orders.  

 

 

Figure 14: Temperature variation relative to the ones recorded 

at 00:00. 

 Analysis of a one-week long data set 

Figure 15 shows the first 12 natural frequencies identified using 

the presented methodology. From the analysed data set, it can 

be confirmed the influence of temperature variation over 

frequency. While this variation is small, knowing its magnitude   

is fundamental to distinguish between environmental or 

damage variations. These results confirm the validity of the 

methodology applied and its use within a continuous 

monitoring loop.  
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Figure 15: Complete frequency distribution along the week-long continuous monitoring. 
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4 CONCLUSIONS 

An autonomous pick-picking procedure based on two PSDs 

(low and high resolution PSDs) combined with the use of a 

LMS procedure has been presented. The methodology has been 

conceived for its inclusion in continuous monitoring systems 

and to perform in-line tension force estimation since 

computation costs have been considered within the proposed 

methodology. From the results obtained from the one-week 

long monitoring data, it has been shown the performance of the 

proposed methodology. 

Finally, some future works may include the autonomous 

identification of missing frequencies by the method, which can 

difficult cable tension estimation as this calculation depends on 

the natural frequencies and their corresponding modal orders 

correctly identified. Aside from this, the inclusion of the 

optimized asymmetric least squares (O-ALS) [4] baseline 

correction method which does not need hyperparameters fine 

tuning could be included.  
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