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ABSTRACT: Structural Health Monitoring of bridges is being used increasingly to ensure safe operation of bridges. Non-iterative 

and mechanics-based algorithms that were developed in the past to find the material property of a bridge or the live load moving 

over the bridge use the static strain response of the bridge. However, the field strain measurement of these response quantities has 

both static and dynamic components. To apply these non-iterative methods for live load or material property estimation, it is 

important to decouple the static components of the strain from its dynamic components. Hence, in the current study, the dynamic 

components of the bridge strain response are filtered to extract the static components using a low-pass filter.  The adequacy of 

filtering is then measured based on the probability of the static maximum axial strain and average shear strain contained in the 

probabilistically determined dynamic response corresponding to different road roughness. The idea of relating the cutoff frequency 

to the bridge natural frequency is investigated. It is concluded that using a cutoff frequency of half the bridge natural frequency, 

one can sufficiently filter out the dynamic components under any case of vehicle speed, road roughness, and bridge natural 

frequency. 

KEY WORDS: System identification; Dynamic response filtering; Monte Carlo simulation; Vehicle bridge interaction; Low-pass 

filter. 

1 INTRODUCTION 

Bridges play a critical role in a country’s development. The 

bridges built in the past are deteriorating due to degradation 

from the environment and varying operational conditions. 

Although the current method of visual inspection is simple in 

procedure, it has some disadvantages when dealing with many 

bridges. It is time-consuming and subjective.  Hence, structural 

health monitoring (SHM) is emerging as a viable alternative.  

SHM uses technology to access the current state of the bridge.  

The current state of the bridge here refers to either the current 

stiffness or the strength of the bridge.  The strength is 

determined by non-destructive testing, like the rebound 

hammer and ultrasonic pulse velocity. In contrast, stiffness is 

determined by knowing the material parameters, boundary 

conditions, geometric parameters, and live load spectrum.   

In the present study, the focus is on determining the current 

stiffness of the bridge.  This can be computed by finding the 

current material properties and geometrical quantities like the 

moment of inertia and the cross-sectional area.  To do so, the 

usual approach is to minimize the error between the measured 

response and the computed response using an optimization 

algorithm.  But this involves computational costs, the problem 

being ill-posed, and other disadvantages.  So, a mechanics-

based non-iterative algorithm was proposed [1] to estimate the 

material property.  This method has been proven effective for 

quasi-static loading conditions, neglecting vehicle-bridge 

interaction (VBI) dynamics.  However, when it comes to 

realistic traffic scenarios and road roughness profiles, VBI is 

present and leads to a deviation of the measured response from 

the actual static response.  So, one needs to filter out the 

dynamic components to arrive closer to the static response.   

Now, the input to the material parameter estimation 

algorithm can be given in two ways.  Either a known vehicle 

load will move over the bridge, as in [1] or the vehicle load also 

needs to be found using some appropriate measured response 

quantity [2].  The latter is more advantageous than the former 

in the case of continuous monitoring.  So, identifying the 

moving load is also focused on.  In general, moving load 

identification literature again involves optimization-based 

algorithms with the above-mentioned disadvantages. The 

numerous vehicles and bridge parameters must be known or 

optimized to find the axle loads. Such an approach increases 

the uncertainty involved in fixing the parameter values or ill-

posed problem and hence reduces the accuracy of the 

identification.   Instead, an algorithm for load estimation in a 

railway bridge was proposed by [2], which uses a composite 

strain response for estimating the moving load.  An important 

property of this composite response is that it remains constant 

over a period for a single vehicle to pass over the bridge.  But 

once again, the field-measured value of this composite strain 

response quantity can potentially include the dynamic 

components due to VBI and does not remain constant.  

To overcome the above-mentioned difficulties, one of the 

approaches followed is to filter out the dynamic components 

from the measured response to get the static response.  Few 

works on filtering can be found in the literature.   For instance, 

in [3], a digital filtering technique was employed to obtain the 

static bridge response from the dynamic weigh-in-motion data.  

A low-pass filter of frequency ranging from 0.25 Hz to 1.0 Hz 

was used.   But later it was shown that no proper criteria can be 

found for cutoff frequency, and a new technique called the 

equivalent digital filtering technique (EDFT) was proposed [4].  

This uses the pseudo-static response of the bridge and the fact 

Efficacy of decoupling techniques to extract the static strain response from the 

dynamic response of a bridge under a moving vehicle using a low pass filter 
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that the dynamic response (pseudo-static response + dynamic 

effects) and the static response in the frequency domain are 

approximately equal at 0 Hz. It was shown to be highly accurate 

in estimating static vehicle weight on dynamic response 

untainted by other miscellaneous vibrations.  [5] used an 11-

point and 21-point moving average low-pass filter to improve 

the accuracy of identified moving loads by eliminating the 

noise effect.  It was found that the percentage errors were 

significantly reduced, and hence filtering was highly 

recommended.  [6] used a low-pass filter to filter out the 

dynamic components from the identified bridge influence lines.   

In [7], the noise and dynamic components are removed to get 

static strains for moving load identification. It was found that 

when the cutoff frequency is equal to six to eight times the 

fundamental frequency of the train load, the peaks of the second 

derivative of the strain measurements can be identified.   

Recently, [8] used a low-pass filter to isolate the bridge 

response from the vehicle dynamics and other excitation 

sources (the asphalt roughness).  The acceleration signal from 

a vehicle moving at 140 km/h was filtered to obtain the static 

response for identification of the bridge's elastic modulus using 

the correlation method.  A cutoff frequency of 0.5 Hz, much 

less than the vehicle's first natural frequency of 2 Hz, was used. 

It was shown that proper filtering could adequately filter out the 

vehicle dynamics and other excitations.  Now, even though 

many studies on filtering are available, there are not many 

studies that extensively deal with measuring the efficacy of 

filtering algorithms for various vehicle bridge parameters.    

Hence, in the present study, a methodology to filter out the 

dynamic components from the measured strain response is 

developed.  A numerical simulation is performed by modeling 

the vehicle bridge interaction dynamics.  Using a half-car 

model and a classical Euler-Bernoulli beam model, the 

dynamic characteristics of the bridge strain response are 

obtained.  Then, using a low-pass filter based on a cutoff 

frequency, the high frequency components are filtered out. The 

degree of closeness of the static response is measured using a 

probabilistic measure.  The working of the proposed method is 

checked for the practical range of vehicle and bridge 

parameters.   

In this paper, the methodology adopted in the study is 

explained in Section 2, followed by the implementation details 

of VBI modelling, code validation, numerical data taken in the 

study, and modal convergence in Section 3.  The investigation 

relating the cutoff frequency to the bridge natural frequency 

and the effect of various VBI parameters is illustrated in 

Section 4. Finally, the study is summarized, and the findings 

from the study are listed in Section 5. 

2 METHODOLOGY 

The Fast Fourier Transform (FFT) of the bridge response was 

computed to understand its various frequency components.  

The FFT of the mid-span bridge acceleration response and the 

bridge mid-span axial strain response is shown in Figure 1.  It 

is observed that the dynamic components are predominant in 

the acceleration FFT, whereas the static components are 

predominant in the strain FFT.  Hence, it can be observed that 

when one uses strain response, the feasibility of getting the 

static response is much higher than that of using the 

acceleration response.  So, through a threshold frequency called 

“cutoff frequency”, one can segregate the static and dynamic 

components.    First, the dynamic analysis is performed using a 

half-car vehicle model. The dynamic responses of concern in 

the study are the maximum mid-span axial strain and the mean 

of the sum of shear forces at the quarter span and the three-

quarter span.  The reason for choosing them is because of their 

applicability in non-mechanics-based SHM algorithms. The 

maximum mid-span axial strain is used in finding the material 

property of the bridge [1] and the average shear strain is used 

in estimating the moving load [2]. A Monte Carlo simulation of 

1000 random trials is performed to account for the random 

nature of road roughness.  Assuming a typical population 

standard deviation of 2 to 3 micro-strain, a 95% confidence 

interval yields an estimated margin of error of approximately 

0.1–0.2 micro-strain. The best fit distribution and the maximum 

likelihood estimate parameters for the filtered dynamic 

response are then found using the Kolmogorov–Smirnov (KS) 

test in MATLAB.    The adequacy of filtering is then measured 

using the value of the probability for the filtered signal to 

contain the static response.  A bound of ±1 micro-strain is 

considered as a tolerance value for the static response, since it 

is the least resolution one can achieve in the field for electrical 

strain gauges.    

 

Figure 1. FFT plots of (a) bridge dynamic strain response (b) 

acceleration response. 

3 IMPLEMENTATION DETAILS 

 Vehicle Bridge Interaction Modeling 

The vehicle is modeled using a half-car model (HCM) as shown 

in Figure 2.  The bridge is modeled as a simply supported Euler-

Bernoulli beam. In HCM, four degrees of freedom are 

considered – vertical displacement (𝑧𝑣) and pitching rotation 
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(𝜃𝑣) of the vehicle’s center of gravity (CG), vertical 

displacement of the front (𝑧𝑡𝑓) and rear tires (𝑧𝑡𝑟). The vehicle’s 

sprung mass is represented by 𝑀𝑣, pitching moment of inertia 

as 𝐼𝑣 , front and rear suspension stiffness  𝑘𝑠𝑓 and  𝑘𝑠𝑟 and front 

and rear suspension damping as  𝑐𝑠𝑓 and  𝑐𝑠𝑟  respectively.  The 

axle spacing between the two axles is ‘𝑠’ and the distances of 

CG from the front axle and the rear axle are denoted by  𝑠1 and  

𝑠2. The displacements of the bridge at the contact points 

corresponding to the front and rear tires are  𝑢𝑐𝑓 and   𝑢𝑐𝑟  

respectively. The road roughness profile at the contact points is 

represented by  𝑟𝑐𝑓 and  𝑟𝑐𝑟 .  The equation of motion for the 

vehicle’s bouncing motion can be given by taking vertical force 

equilibrium as,  

𝑀𝑣𝑧̈𝑣 +  𝑐𝑠𝑓  (𝑧̇𝑣 + 𝜃̇𝑣𝑠1 − 𝑧̇𝑡𝑓) +  𝑘𝑠𝑓(𝑧𝑣 + 𝜃𝑣𝑠1 − 𝑧𝑡𝑓) 

   + 𝑐𝑠𝑟 (𝑧̇𝑣 − 𝜃̇𝑣𝑠2 − 𝑧̇𝑡𝑟) + 𝑘𝑠𝑟(𝑧𝑣 − 𝜃𝑣𝑠2 − 𝑧𝑡𝑟) = 0        (1) 

 

Figure 2. Half car model. 

The equation of motion for the vehicle’s pitching motion can 

be found by taking moment equilibrium about the vehicle’s CG 

axis as: 

𝐼𝑣𝜃̈𝑣 + 𝑐𝑠𝑓 (𝑧̇𝑣 + 𝜃̇𝑣𝑠1 − 𝑧̇𝑡𝑓)𝑠1 +  𝑘𝑠𝑓(𝑧𝑣 + 𝜃𝑣𝑠1 − 𝑧𝑡𝑓)𝑠1 

− 𝑐𝑠𝑟  (𝑧̇𝑣 − 𝜃̇𝑣𝑠2 − 𝑧̇𝑡𝑟)𝑠2 

                             − 𝑘𝑠𝑟(𝑧𝑣 − 𝜃𝑣𝑠2 − 𝑧𝑡𝑟)𝑠2 = 0                     (2) 

The equation of motion for the vertical displacements of the 

front and rear tires can be found as:  

𝑚𝑡𝑓𝑧̈𝑡𝑓 − 𝑐𝑠𝑓  (𝑧̇𝑣 + 𝜃̇𝑣𝑠1 − 𝑧̇𝑡𝑓) −  𝑘𝑠𝑓(𝑧𝑣 + 𝜃𝑣𝑠1 − 𝑧𝑡𝑓) 

    + 𝑐𝑡𝑓 (𝑧̇𝑡𝑓 − 𝑢̇𝑐𝑓 − 𝑣𝑟′𝑐𝑓) + 𝑘𝑡𝑓(𝑧𝑡𝑓 − 𝑢𝑐𝑓 − 𝑟𝑐𝑓) = 0   (3) 

𝑚𝑡𝑟𝑧̈𝑡𝑟 −  𝑐𝑠𝑟 (𝑧̇𝑣 − 𝜃̇𝑣𝑠2 − 𝑧̇𝑡𝑟) −  𝑘𝑠𝑟(𝑧𝑣 − 𝜃𝑣𝑠2 − 𝑧𝑡𝑟) 

    + 𝑐𝑡𝑟 (𝑧̇𝑡𝑟 − 𝑢̇𝑐𝑟 − 𝑣𝑟′𝑐𝑟) + 𝑘𝑡𝑟(𝑧𝑡𝑟 − 𝑢𝑐𝑟 − 𝑟𝑐𝑟) = 0     (4) 

Finally, the bridge’s flexural vibration equation is given by, 

𝐸𝐼 𝑢𝑖𝑣(𝑥, 𝑡) + 𝑚 𝑢̈(𝑥, 𝑡) + 𝑐 𝑢̇(𝑥, 𝑡) =  [−
𝑀𝑣𝑔

2
− 𝑚𝑡𝑓𝑔 +

𝑐𝑡𝑓 (𝑧̇𝑡𝑓 − 𝑢̇𝑐𝑓 − 𝑣𝑟′
𝑐𝑓) + 𝑘𝑡𝑓(𝑧𝑡𝑓 − 𝑢𝑐𝑓 − 𝑟𝑐𝑓)] 𝛿(𝑥 −

𝑣𝑡) +  [−
𝑀𝑣𝑔

2
− 𝑚𝑡𝑟𝑔 + 𝑐𝑡𝑟 (𝑧̇𝑡𝑟 − 𝑢̇𝑐𝑟 − 𝑣𝑟′

𝑐𝑟) +

                   𝑘𝑡𝑟(𝑧𝑡𝑟 − 𝑢𝑐𝑟 − 𝑟𝑐𝑟)] 𝛿(𝑥 − (𝑣𝑡 − 𝑠))                       (5) 

Using the modal superposition technique, the displacement 

𝑢(𝑥, 𝑡) can be represented using,  

                            𝑢(𝑥, 𝑡) =  ∑ 𝑞𝑛(𝑡)𝜑𝑛(𝑥)𝑁
𝑛=1                       (6) 

where 𝑞𝑛(𝑡) is the modal coordinate and 𝜑𝑛(𝑥) represents the 

nth mode shape of the simply supported beam, and N represents 

the total number of modes used. Now, substituting Equation (6) 

in Equations (1), (2), (3), (4), and (5), and then using the modal 

orthogonality principle, the vehicle bridge interaction system 

can be represented in a matrix form as follows:  

 

                    [𝑀]{𝑋̈} + [𝐶}{𝑋̇} + [𝐾]{𝑋} = {𝑅}                    (7) 

 

where [𝑀], [𝐶] and [𝐾} represent the mass, damping, and 

stiffness matrix of the VBI system of size (𝑁 + 4) × (𝑁 + 4). 

{𝑅} represents the force vector and {𝑋}̈, {𝑋̇} and {𝑋} represents 

the acceleration, velocity, and displacement vector, 

respectively, of size (𝑁 + 4) × 1.  This equation is coded in 

MATLAB and solved using Newmark’s technique (constant 

acceleration).  In this study, road roughness is modeled as a 

random process with a normal distribution.  The wavelength 

characteristics are characterized using the spectral density of 

the profile height. The power spectral density coefficients from 

[10] are adopted to represent various classes of road roughness.    

A typical roughness profile is shown in Figure 3. 

 

Figure 3. A typical roughness profile. 

 Validation of the HCM code 

The code for vehicle bridge interaction is validated using data 

from the literature [9].  The values of the VBI parameters taken 

are as follows.  

Vehicle: 𝑀𝑣 = 1794.4 kg; 𝑚𝑡𝑓 = 87.15 kg; 𝑚𝑡𝑟 = 140.4 kg; 

𝑠1 = 1.271m; 𝑠2 = 1.713 m; 𝐼𝑣 =3443.03 kgm2; 𝑘𝑠𝑓 =66.824 

kN/m; 𝑘𝑠𝑟 =18.615 kN/m;  𝑘𝑡𝑓 = 𝑘𝑡𝑟 = 101.12 kN/m; 𝑐𝑡𝑓 =

𝑐𝑡𝑟 = 0 Ns/m;  𝑐𝑠𝑓 = 1190 Ns/m; 𝑐𝑠𝑟 = 1000 Ns/m; 𝑣 = 40 

km/h; Bridge:  𝑚 =20000 kg/m; 𝐿 =100 m; 𝐸 = 207 GPa; 𝐼 =
 0.174 m4;  Roughness: Smooth. The mid-span displacement of 

the bridge obtained using the developed code matched well 

with that from the literature, as shown in Figure 4. 

 Numerical data taken in the study 

The half-car vehicle model values are taken from the 

representative vehicle data set from TruckMaker software.  For 

the bridge, the values of a typical 50m span prestressed box 
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girder for three lane traffic are considered.  And, for road 

roughness, the parameter values were taken from [10], [11] and 

[12].  The numerical values are given below.  

Vehicle: 𝑀𝑣 =22700 kg; 𝑚𝑡𝑓 = 𝑚𝑡𝑟 =1500 kg; 

𝐼𝑣 =71,761.1 𝑘𝑔 𝑚2⁄ ; 𝑠1 = 3.133 m; 𝑠2 =1.667 m; 

𝑘𝑠𝑓 =25000 𝑁 𝑚⁄ ; 𝑘𝑠𝑟 =30000 𝑁 𝑚⁄ ;   𝑘𝑡𝑓 = 𝑘𝑡𝑟 = 1.273 ×

 106 𝑁 𝑚⁄ ; 𝑐𝑡𝑓 = 𝑐𝑡𝑟 = 6000 𝑁𝑠 𝑚⁄ . Bridge: 𝑚 =

11880 𝑘𝑔 𝑚⁄ ; 𝐿 = 50 𝑚; 𝐴 = 4.87 𝑚2; 𝐼 = 4.923 𝑚4; 𝐸 =
31.62 𝐺𝑃𝑎; 𝜈 = 0.2; 𝑓𝑏1 = 2.31 𝐻𝑧 

 

Figure 4. Validation of HCM code. 

 Modal Convergence study 

As the method uses modal superposition, the minimum number 

of modes required to accurately represent the results are found 

using a convergence study.  Towards this, absolute (𝛿𝑎𝑏𝑠) and 

relative (𝛿𝑟𝑒𝑙) convergence is checked wherein the definition 

used is, 

 

                      𝛿𝑎𝑏𝑠 = ∥ ∈𝑁=𝑁𝑚𝑎𝑥
− ∈𝑁=1∥                              (8) 

 

                      𝛿𝑟𝑒𝑙 = ∥
∈𝑁=𝑁𝑚𝑎𝑥− ∈𝑁=1

∈𝑁=𝑁𝑚𝑎𝑥

∥ × 100%                  (9) 

 

where 𝑁 represents the number of modes used; 𝑁𝑚𝑎𝑥  represents 

the maximum number of modes used; 𝜖 represents the 

maximum strain value at the given number of modes. The 

tolerance limit was kept at 0.01 micro-strain for absolute 

convergence and 0.01% for relative convergence.  The 

convergence study was performed for various vehicle speeds 

ranging from 20 km/h to 120 km/h and for four roughness 

classes as per [10].  The minimum number of modes required 

to achieve convergence of the maximum axial strain response 

is shown in Table 1 and Table 2 respectively. It was found that 

53 modes were adequate to satisfy the tolerance.  Hence, further 

in the study, 60 modes were considered for all the 

computations.   

Table 1. Modal convergence study based on absolute 

convergence for maximum axial strain at L/2. 

Roughness  Speed (in km/h) 

Class 20 40 60 80 100 120 

Class A 31 27 17 23 11 27 

Class B 29 19 11 23 13 27 

Class C 27 11 11 21 11 29 

Class D 27 11 13 11 29 15 

4 RESULTS 

 Filtered and Unfiltered response 

To demonstrate the filtering process, as a reasonable estimate, 

a cutoff frequency of half the bridge's natural frequency is 

taken.  The dynamic response of the bridge is simulated for 

1000 random trials of road roughness.  Assuming the velocity 

to be 50 km/h and road roughness as class D, the maximum 

midspan axial strain and average shear strain sum of the 

unfiltered and filtered signals are shown in Figure 5 and Figure 

6 respectively.   

Table 2. Modal convergence study based on relative 

convergence for maximum axial strain at L/2. 

Roughness  Speed (in km/h) 

Class 20 40 60 80 100 120 

Class A 31 29 17 31 15 29 

Class B 31 31 17 31 31 31 

Class C 29 19 13 31 29 31 

Class D 29 11 31 17 29 15 

 

 

Figure 5. Monte Carlo simulation of (a) unfiltered and (b) 

filtered dynamic response of 1000 random trials for maximum 

axial strain at L/2 (dashed line represents the static response). 

 

Figure 6.  Monte Carlo simulation of (a) unfiltered and (b) 

filtered dynamic response of 1000 random trials for average 

shear strain sum at L/4 and 3L/4 (dashed line represents the 

static response). 

The histogram plot for the maximum axial strain and average 

shear strain sum for 1000 trials is shown in Figure 7(a) and 

Figure 7(b) respectively.  One can observe that filtering makes 

the unfiltered response come closer to the static response.  This 

observation was not much in the case of the average shear strain 

sum. Various probability distributions that can sufficiently fit 

the filtered histogram data were checked using the maximum 

log likelihood values in MATLAB.  The plot of various 

distributions fitting the histogram data is shown in Figure 8.  



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-160 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1068 

A Kolmogorov-Smirnov (KS) test is used to check whether 

two samples come from the same distribution or not.  Here, one 

sample is from the Monte-Carlo simulation data, and the other 

sample is from the fitting distribution (Normal, Lognormal, 

Logistic, Weibull, Gamma, etc.).   The null hypothesis is that 

both come from the same distribution, and the alternative 

hypothesis is that both come from different distributions. A p-

value of 0.05 is used to denote the significance level for the null 

hypothesis to be true.  The distribution that gives the highest p-

value and the log likelihood value is chosen as the best fit 

distribution, and its probability density value at the static 

response is calculated.   

 

Figure 7. Histogram plot for the (a) Maximum axial strain (b) 

Average shear strain sum data. 

 

Figure 8. Best fit probability distribution for strain data. 

The maximum likelihood estimates (MLE) parameters, KS2 

test results, and their corresponding p-value for various 

distributions are shown in Table 3 and Table 4.  One can 

observe that for the unfiltered response, the Generalized 

Extreme Value (GEV) distribution has passed the test with the 

highest p-value of 0.9104.  For the case of filtered response, all 

the distributions tested gave the pass results, but again, GEV 

has the highest p-value of 0.7167.  Hence, the probability that 

the GEV distribution contains the static response ± 1 micro-

strain for the filtered and unfiltered response will be 1.0000 and 

0.0086, respectively.  

 Study of static response probability for different cutoff 

frequency coefficients 

The cutoff frequency was taken as a multiple of the bridge's 

natural frequency.  This multiple will be referred to as the cutoff 

frequency coefficient.  The range of coefficients from 0.2 to 1.5 

was studied.  The variation of the probability value of the static 

response for this range of coefficients is shown in Figure 9(a) 

and Figure 9(b) for a given vehicle speed of 50 km/h and road 

roughness class D.  For the case of axial strain in Figure 9(a), it 

is observed that the probability value becomes zero at very low 

cutoff frequency (here for 0.1 and 0.15).  This implies that there 

are not enough frequency components in the filtered response 

to represent the static value.   Hence, the distribution of the 

filtered response will lie much farther away from the static 

response.   A typical histogram plot for this case is shown in 

Figure 10(a) and Figure 10(b) for a cutoff frequency of 0.15fb1.   

One can observe that the filtered values are much lower than 

the static value.  For all the values after 0.1, the probability 

becomes greater than 0.  This means that the probability of 

static response lying in ±1 micro-strain bound of the filtered 

response is greater than that of the unfiltered response.  This 

demonstrates the effect of filtering.  The maximum effect is 

observed at the one with the highest probability value.  i.e., in 

this case, for a cutoff frequency of 0.45 fb1.  For the case of 

shear strain sum shown in Figure 9(b), the static response 

probability becomes almost close to 1.0 for all the cutoff 

coefficients above 0.1. This is because, for shear strain sum, the 

average value was taken. Even for the case without filtering, 

one can achieve a response value closer to the static value, as 

evident from Figure 7(b).  Hence, filtering doesn't have much 

of an effect in this case. 

Table 3. Maximum Likelihood Estimates, KS Test results, and 

probability values to contain the static response for various 

distributions of unfiltered responses. 

Distribution 
MLE 

parameter 

KS 

test 

p-value Probab

ility 

Normal 
μ=34.13 

 σ = 1.311 
Pass 0.1768 0.0282 

Log-normal 
μ=3.527 

 σ = 0.038 
Pass 0.3078 0.0240 

Weibull 
a=34.79 

 b = 23.82 
Fail 9.8e-6 0.0773 

Gamma 
α=686.3  

β =0.049 
Pass 0.2580 0.0253 

GEV 

μ=-0.1005 

σ = 1.146 

ξ = 33.57 

Pass 0.9104 0.0086 

EV 
μ=34.82 

 σ = 1.494 
Fail 4.6e-7 0.0815 

Logistic 
μ=34.07 

 β = 0.750 
Pass 0.3078 0.0351 
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Table 4. Maximum Likelihood Estimates, KS Test results, and 

probability values to contain the static response for various 

distributions of filtered response. 

Distribution 
MLE 

parameter 

KS 

test 

p-value Probab

ility 

Normal 
μ=31.05 

 σ = 0.18 
Pass 0.5295 0.9994 

Log-normal 
μ=3.435 

 σ = 0.006 
Pass 0.4938 0.9994 

Weibull 
a=31.14  

b = 189.7 
Pass 0.2355 0.9999 

Gamma 
α=29566 

β =0.0011 
Pass 0.5295 0.9994 

GEV 

μ=-0.368 

σ = 0.187 

ξ = 30.99 

Pass 0.7167 1.0000 

EV 
μ=31.14 

 σ =0.164 
Pass 0.2145 0.9999 

Logistic 
μ=31.03 

β = 0.106 
Pass 0.2355 0.9959 

 

 

Figure 9. Variation of cutoff frequency coefficients with the 

static response probability of the filtered signal – (a) 

Maximum axial strain at L./2 (b) Average shear strain sum at 

L/4 and 3L/4. 

 Effect of vehicle speed 

The effect of vehicle speed is studied by taking speed values as 

10 km/h, 25 km/h, 50 km/h, and 100 km/h.  The road roughness 

and bridge natural frequency were kept constant at class D and 

2.31 Hz. The static response probability values for different 

cutoff frequencies are shown in Figure 11 for maximum mid-

span axial strain and in Figure 12 for the average shear strain 

sum.  We can observe that the minimum cutoff required to 

attain a probability value of 1.0 increases with increasing speed. 

For instance, the minimum cutoff coefficients for speed values 

of 10, 25, 50, and 100 km/h are 0.1fb1, 0.15fb1, 0.25fb1, and 

0.4fb1, respectively.  This is because of the shifting of the 

driving frequency with the increase in speed.  Also, the region 

from 0.45 fb1 to 0.75 fb1 has the probability value of 1.0 in all 

the cases and is hence recommended. 

For shear strain sum, the effect of speed is observed in Figure 

12.  Again, the effect of driving frequency on the minimum 

cutoff coefficient can be observed.   Also, after the minimum 

cutoff, at all the cutoff coefficients, the static response 

probability is maintained at 1.0, which was not observed in the 

axial strain case.  This is because of the same advantage of 

taking the average value in the case of shear strain sum, as 

explained previously.  

 

Figure 10. Histogram plot for filtered and unfiltered response 

corresponding to cutoff frequency of 0.15fb1 for (a) Maximum 

axial strain at L/2 (b) Average shear strain sum at L/4 and 

3L/4. 
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Figure 11. Effect of vehicle speed (a) v=10 km/h (b) v = 25 

km/h (c) v = 50 km/h (d) v = 100 km/h – Maximum axial 

strain at L/2 for fb1 = 2.31 Hz and roughness class D. 

 Effect of road roughness 

The effect of road roughness is studied by varying the road 

roughness from class A (Very Good) to class D (Poor).  The 

vehicle velocity is kept constant at 50 km/h, and the natural 

frequency is at 2.31 Hz.   The static response probability values 

for different cutoff frequencies are shown in Figure 13 and 

Figure 14 for maximum mid-span axial strain and average shear 

strain sum, respectively.  It can be observed that for low 

roughness classes, the probability is 1.0 even at higher cutoff 

frequencies. As the roughness class increases, the static 

response probability decreases.  This is because a higher degree 

of roughness corresponds to increased dynamic noise in the 

signal and hence a decrease in the static response probability 

value. For the case of the average shear strain sum in Figure 14, 

there was not much observation.  The probability value reaches 

1.0 for all the cutoff coefficients above 0.15.  

 

Figure 12. Effect of vehicle speed (a) v=10 km/h (b) v = 25 

km/h (c) v = 50 km/h (d) v = 100 km/h – Average shear strain 

sum at L/4 and 3L/4 for fb1 = 2.31 Hz and roughness class D. 

 

Figure 13. Effect of road roughness (a) Class A (b) Class B (c) 

Class C (d) Class D – Maximum axial strain at L/2 for fb1 = 

2.31 Hz and v=50 km/h. 

 Effect of bridge natural frequency 

Finally, the effect of various bridge natural frequencies is 

studied.  The natural frequency of the bridge is varied by 

changing the value of the flexural rigidity of the bridge.  Four 

values of natural frequency – 2.31 Hz, 5 Hz, 7.5 Hz, and 10 Hz 

were studied, corresponding to four EI values – 157 GNm2, 753 

GNm2, 1693 GNm2, and 3008 GNm2.  

 

Figure 14. Effect of road roughness (a) Class A (b) Class B (c) 

Class C (d) Class D –Average shear strain sum at L/4 and 

3L/4 for fb1 = 2.31 Hz and v=50 km/h. 
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Figure 15. Effect of bridge natural frequency (a) fb1 = 2.31 Hz 

(b) fb1 = 5 Hz (c) fb1 = 7.5 Hz (d) fb1 = 10 Hz – Maximum 

axial strain at L/2 for v =50 km/h and roughness class D. 

For all the coefficients between 0.25 fb1 to 0.7 fb1, the static 

response probability for the case of maximum axial strain is 

1.0, irrespective of different natural frequencies, as shown in 

Figure 15. Also, it can be observed that for a given case of a 

cutoff frequency closer to the bridge's natural frequency, the 

static response probability depends upon the relative distance 

between the driving frequency and the bridge's natural 

frequency.   If this difference is high, the probability value 

becomes 1.0; otherwise, the value reduces.  The figure for the 

average shear strain sum is shown in Figure 16. As observed 

previously, the probability value for most of the cutoff 

coefficients is 1.0.  

 

Figure 16. Effect of bridge natural frequency (a) fb1 = 2.31 Hz 

(b) fb1 = 5 Hz (c) fb1 = 7.5 Hz (d) fb1 = 10 Hz – Average shear 

strain sum at L/4 and 3L/4 for v = 50 km/h and roughness 

class D. 

5 CONCLUSION 

The idea of cutting off the higher frequencies from the bridge 

strain response to get the static response of the bridge is 

investigated.  A half-car vehicle bridge interaction model was 

used to simulate the motion of a moving vehicle.  Newmark’s 

constant integration scheme was used to solve the program in 

MATLAB. 

A Monte Carlo simulation of 1000 trials is performed for 

random values of road roughness. A low-pass Butterworth filter 

is used to cut off higher frequencies.  Contrary to the literature 

studies wherein the cutoff frequency was related to the driving 

frequency, in this study, it is related to the bridge's natural 

frequency.  A detailed study on the influence of the cutoff 

frequency so that the filtered signal contains the static response 

±1 micro-strain is undertaken.  And finally, the effect of VBI 

parameters – vehicle speed, road roughness, and natural 

frequency was studied. From the study, the following is 

inferred: 

i. The cutoff frequency of 0.5 times the bridge natural 

frequency seems to have the highest probability of 

containing the static strain response across different 

vehicle speeds, road roughness, and natural frequency 

of the bridge.  

ii. The higher the vehicle speed, the higher is the driving 

frequency, and hence the cutoff frequency to contain 

the static response increases. 

iii. The higher the road roughness, the higher the dynamic 

noise in the response, and hence, the static response 

probability decreases for a given cutoff frequency.  

iv. Both the driving frequency and the bridge natural 

frequency determine the cutoff frequency, which 

would contain the static strain response.  

Further efforts are required to validate the study using field 

data. 
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