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ABSTRACT: High fidelity finite element model updating plays a critical role in ensuring the accuracy and reliability of structural 

models for complex infrastructure systems. This study focuses on the application of a cooperative game theory model to update 

high fidelity finite element model of a pedestrian suspension bridge. By treating the model updating process as a cooperative game 

model, game theory provides a novel framework for distributing and balancing multiple objectives inherent in this process. The 

proposed approach is compared with conventional finite element model updating methods to assess its efficiency, accuracy, and 

robustness. Key performance indicators, such as the reduction in discrepancy between experimental and numerical modal 

parameters and computational efficiency are evaluated. The cooperative game theory framework is shown to enable an optimized 

and balanced resolution of conflicting requirements in high fidelity model updating, resulting in improved alignment with observed 

structural behavior. The primary objective of this research is to demonstrate the potential of game theory as an innovative and 

effective tool for solving optimization problems in high fidelity FE model updating. The findings are expected to contribute to 

advancements in structural health monitoring by providing a robust methodology for enhancing the reliability of numerical models. 

KEY WORDS: High Fidelity Finite Element Model Updating; Cooperative Game Theory; Structural Optimization; Structural 

Health Monitoring, Dynamic parameters 

 

1 INTRODUCTION 

High-fidelity numerical modelling has become essential in 

modern structural engineering for simulating complex physical 

behavior with a high degree of accuracy. High-fidelity finite 

element (FE) models are characterized by detailed geometric 

definitions, fine mesh discretization, and many physically 

meaningful parameters. These models enable precise structural 

simulations but also significantly increase computational effort 

and sensitivity to modelling assumptions. Despite their 

accuracy, high-fidelity FE models often fail to perfectly 

represent real structural behavior due to uncertainties in 

boundary conditions, material properties, and idealizations 

made during the modelling process. To reduce these 

discrepancies, the Finite Element Model Updating (FEMU) 

procedure is employed. FEMU involves adjusting selected 

model parameters based on experimental data—typically 

obtained from static tests, dynamic modal analysis, or 

continuous structural health monitoring—to improve 

correlation between the numerical model and the actual 

structural behavior [1]. The updating process becomes 

particularly challenging for high-fidelity models, where 

computational demands are high, and the solution space is 

large. In such cases, effective and reliable optimization 

strategies are critical. FEMU methods can be broadly classified 

into direct (non-iterative) and indirect (iterative) approaches 

[2]. Direct methods update the numerical model by modifying 

mass or stiffness matrices in a single step but may lack physical 

interpretability [3][4]. In contrast, indirect (iterative) methods 

adjust physical parameters through successive approximations 

until numerical predictions align with experimental data [5]. 

One of the most widely used formulations is the Maximum 

Likelihood Method, which treats FEMU as an optimization 

problem (Eq. (4)) aimed at minimizing the difference between 

predicted and measured structural responses (Eq. (1)- (3)) [6]. 
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These residuals are then combined into a single-objective 

function (Eq. (4)) using weighting factors: 

𝐹(𝜽) = ∑ 𝑤𝑡𝐹𝑡(𝜽)2

𝑛𝑟

𝑡=1

 

𝐹(𝜽) = (∑ w𝑡
𝑓

𝑟𝑡
𝑓(θ)2𝑛𝑓

t=1
+ ∑ w𝑡

𝑚𝑟𝑡
𝑚(θ)2𝑛𝑚

t=1 ), 

𝜃𝑙 < 𝜃 < 𝜃𝑢 

(4) 

This discrepancy is mathematically expressed using residuals 

based on modal parameters—most commonly natural 
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frequencies (Eq. (1)) and mode shapes (Eq. (3)). The residuals 

are defined as: optimization problem into a cooperative game 

structure, enabling a more robust and adaptive solution process 

suitable for updating complex and high-fidelity FE models. 

The performance of this approach is highly dependent on the 

proper selection of the weighting factors and, which balance the 

influence of different types of residuals. However, determining 

these weights is non-trivial—typically requiring trial-and-error 

procedures, sensitivity analyses, and expert judgment [7–11]. 

This process is especially inefficient and unreliable when 

applied to high-fidelity FEMU, where each function evaluation 

involves high computational cost. To overcome these 

limitations, this paper proposes a novel formulation of the 

single-objective FEMU problem using Cooperative Game 

Theory (CGT). In the proposed approach, each residual is 

modelled as a player in a cooperative game. Instead of 

manually assigning weights, the optimization seeks a 

compromise solution by introducing a weighted objective 

function and a super-criterion that captures collective 

performance. This eliminates the need for manual tuning of 

weighting factors and enables a more automated and adaptive 

updating process. The optimization is performed using the 

Harmony Search (HS) algorithm—a population-based 

metaheuristic known for its balance between exploration and 

exploitation, and for its computational efficiency in solving 

nonlinear problems [12]. The proposed CGT-based method is 

applied to the updating of a high-fidelity finite element model 

of a pedestrian suspension bridge, providing a relevant and 

demanding benchmark for testing performance. The results are 

compared to those obtained using conventional optimization 

algorithms, highlighting the benefits of the proposed approach 

in terms of accuracy, robustness, and efficiency. 

The paper is structured as follows. Section 2 introduces the 

cooperative game theory model applied to single-objective 

optimization in the context of high-fidelity finite element 

model updating (FEMU). Section 3 describes the case study 

structure, including numerical modelling and experimental 

testing that define the target structural behavior. Section 4 

presents the FEMU process, including sensitivity analysis and 

comparison between conventional and game theory-based 

optimization. Section 5 discusses the results, and Section 6 

provides concluding remarks based on the findings. 

2 COOPERATIVE GAME THEORY MODEL FOR HIGH 

FIDELITY FINITE ELEMENT MODEL UPDATING 

Game theory (GT) is a mathematical framework used to model 

decision-making, conflict, and cooperation among multiple 

agents, or "players" [13]. Recent trends in optimization 

highlight the transformation of classical optimization problems 

into game-theoretic formulations [14]. Within this framework, 

the fundamental components include players, strategies, utility, 

information, and equilibrium [15]. In the context of 

optimization, objective functions can be interpreted as players, 

with their design variables acting as strategies, and their 

respective function values as utilities [16]. Cooperative game 

models are particularly suitable for complex engineering 

problems, where conflicting objectives need to be aligned into 

a compromise solution through a negotiation model or a super-

criterion [17]. This study applies the cooperative game theory 

(CGT) approach to high-fidelity finite element model updating 

(FEMU)—a process characterized by computationally 

intensive models and the need for precise alignment with 

experimental data. CGT has been successfully combined with 

various soft computing techniques in the literature: Dhingra 

and Rao [18] integrated CGT with fuzzy set theory; Xie et al. 

[19] developed a four-step GT-based multi-objective method; 

Monfared et al. [20] formulated Pareto-optimal equilibrium 

(POE) points via two-player games; and Cheng and Li [21] 

incorporated genetic algorithms into the CGT framework. 

Annamdas and Rao [22] proposed a modified CGT model using 

Particle Swarm Optimization (PSO), which is adapted in this 

work for single-objective optimization. 

 Single- Objective optimization using Cooperative Game 

Theory 

To update high-fidelity FEM models without explicitly 

analysing the impact of weighting factors, this study uses a 

single-objective optimization approach based on the CGT 

model introduced by Annamdas and Rao [22]. In this adapted 

method, Harmony Search (HS) is used instead of PSO to reduce 

computational cost [23]. The procedure includes four main 

steps: 

▪ definition of the objective function; 

▪ minimization, maximization, and normalization of 

objective function residuals; 

▪ formulation of a weighted objective function; 

▪ optimization of the weighted objective function. 

Initially, the HS algorithm is used to minimize the objective 

function and obtain optimal residual values - 𝑓𝑡(𝜽𝑡
∗). Next, 

maximization via HS yields the worst-case residuals -  𝑓𝑡(𝜽𝑡
∗∗). 

These results are used to normalize the residuals: 

𝑓𝑛𝑡(𝜽) =
𝑓𝑡(𝜽) − 𝑓𝑡(𝜽𝑖

∗)

𝑓𝑡(𝜽𝑡
∗∗) − 𝑓𝑡(𝜽𝑡

∗)
 (5) 

The normalized values are then used to define a weighted 

objective function: 

𝐹𝑤,𝑡 = 𝐾1𝑓𝑛1(𝜽) + 𝐾2𝑓𝑛2(𝜽) + ⋯

+ 𝐾𝑘−1𝑓𝑛(𝑘−1)(𝜽)

+ (1 − 𝐾1 − 𝐾2 − ⋯
− 𝐾𝑘−1)𝑓𝑛𝑘(𝜽) 

(6) 

with the constraints 

0 ≤ 𝐾𝑡 ≤ 1,  ∑ 𝐾𝑡 = 1𝑘
t=1  (7) 

To ensure that residuals are as far as possible from their worst-

case values, a super-criterion is introduced: 

𝑆𝐶 = ∏[1 − 𝑓𝑛𝑡(𝜽)]

𝑘

t=1

 (8) 

The final optimization problem is thus defined as: 

𝐹𝑤,𝑡(𝜱) = 𝐹𝐾 − 𝑆𝐶,      

𝛷 = [𝜃1   𝜃2   …  𝜃𝑛   𝐾1   K2   …  K𝑘−1]𝑇 
(9) 

Minimizing 𝐹𝑤,𝑡(𝜱) yields the optimal set of design 

parameters and weighting factors, effectively enhancing the 

correlation between the high-fidelity FEM predictions and 

experimental observations. 
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3 CASE STUDY ON REAL STRUCTURE 

Suspension bridges, though efficient for spanning long 

distances and visually striking, are prone to damage 

mechanisms such as corrosion and fatigue, especially in their 

main cables and hangers. Due to limitations in traditional local 

damage detection methods, global vibration-based approaches 

combined with high-fidelity finite element model updating 

(FEMU) have proven to be a promising solution for monitoring 

such complex structures.  

 Description of the structure 

To evaluate the proposed model updating methodology 

presented in the previous section, a pedestrian suspension 

bridge over the Drava River in Osijek (Figure 1.) was selected 

as the case study. Constructed in 1980, the bridge features a 

single span of 209.5 m, suspended by a parabolic cable 

anchored behind 24 m high steel pylons. 

 

 

Figure 1. a) View on the bridge from the right bank b) 

Longitudinal section and the ground plane of the bridge 

The 5 m wide pedestrian deck is composed of 50 prefabricated 

concrete slabs of three different types, characterized by 

reinforced longitudinal and transverse ribs. The slabs are 

supported by inclined hangers (ϕ 21 mm) on one side and 

longitudinally movable connections (ϕ 28 mm) on the other, 

allowing for limited displacement and load redistribution.  

 

Figure 2. Cross section of the bridge (all dimensions are in 

millimetres) 

The structural system includes two ϕ 61 mm pre-tensioned 

cables on each side, anchored at the base of the pylons to reduce 

deck deformations and mitigate vibrations (Figure 2.). During 

the 1990s war, the bridge sustained damage to its hangers and 

several slabs. It was subsequently rehabilitated to its original 

state. In 2009, an asphalt layer was added and the slab 

connections repaired. Further rehabilitation work in 2022 

included replacement of upper cable connections, reprofiling of 

slab beams, sealing of joints, corrosion protection renewal, and 

repair of the handrail. This real-world example, with its 

complex structural behavior and history of interventions, 

provides an ideal scenario for applying and validating advanced 

model updating techniques within a structural health 

monitoring context. 

 Initial numerical model 

An initial finite element (FE) model of the pedestrian 

suspension bridge was developed using ANSYS software, 

consisting of 20,787 elements (Figure 3.). The structural 

components were modelled as follows: main and transverse 

beams, handrails, and rigid joints with BEAM188 elements; 

concrete slabs with SHELL181 elements; cables and hangers 

with LINK180 elements; and interconnections via COMBIN14 

spring-damper elements. Boundary conditions were applied to 

restrict translations at anchor points and pylons in all directions. 

  
(a) (b) 

 
(c) 

 
(d) 

Figure 3. Initial numerical model of pedestrian suspension 

bridge over Drava River a) 3D view b) y-z plane c) x-z plane 

d) x-y plane 

Material properties and cross-sectional dimensions were 

assigned based on project documentation, and initial tensile 

forces in cable elements were derived from previous 

experimental measurements. Hangers were grouped into four 

categories based on mean axial force values and standard 

deviations (ranging from 30.4 kN to 52.1 kN), while the upper 

main cables were divided into four groups with forces between 

4744 kN and 4852 kN. The lower main cables were assigned a 

prestress force of 1300 kN. A numerical modal analysis was 

performed to extract natural frequencies and mode shapes 

(Figure 4). 

𝜙1
𝑛𝑢𝑚- torsional 

𝑓1
𝑛𝑢𝑚 = 0.335 𝐻𝑧 

𝜙2
𝑛𝑢𝑚- vertical 

𝑓2
𝑛𝑢𝑚 = 0.428 𝐻𝑧 

𝜙3
𝑛𝑢𝑚-torsional 

𝑓3
𝑛𝑢𝑚 = 0.641 𝐻𝑧 

   

Figure 4. First three numerically determined natural 

frequencies (𝑓𝑡
𝑛𝑢𝑚) and mode shapes (𝜙𝑡

𝑛𝑢𝑚) of pedestrian 

suspension bridge over Drava River (t=1, …,3) 
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These results served as a reference for subsequent model 

updating and were compared with experimentally obtained 

modal parameters to assess the model's initial accuracy. 

 Experimental campaign 

A comprehensive experimental campaign was conducted to 

identify the dynamic properties of the pedestrian suspension 

bridge and its key structural components. The investigation 

included determination of axial forces in all hangers (Figure 5.) 

and main anchor cables, natural frequencies of the down main 

cables and pylons, as well as dynamic parameters of 

characteristic edge and span slabs. 

 
Figure 5. Calculated force values in the hangers on the 

upstream and downstream side of the bridge 

Global dynamic properties of the entire bridge were determined 

under ambient excitation from pedestrian walking. Axial forces 

in the hangers were determined using the resonant vibration 

method [24] by measuring the natural frequency of each hanger 

following a manual excitation. These frequencies were 

correlated to tensile force using string vibration theory [25]. 

The results showed highest force values in the mid-span 

hangers and noticeable deviations between upstream and 

downstream pairs. A similar procedure was used to determine 

force magnitudes in the main anchorage cables on both banks, 

with calculated values showing good agreement with historical 

measurements and design data. Dynamic testing of the down 

main cables and pylons was performed using impulse 

excitation with a rubber hammer. Natural frequencies were 

identified using frequency domain decomposition based on 

acceleration measurements in orthogonal directions. To assess 

local behavior, dynamic parameters of a representative edge 

slab and a central span slab (Figure 6.) were identified through 

ambient vibration testing induced by random pedestrian 

walking [26]. 

  
(a) (b) 

Figure 6. Arrangement of the measurement points on 

characteristic slab (a)edge (b) span 

Acceleration responses were recorded at 13 and 29 

measurement points, respectively, and modal properties were 

extracted using FDD. For global structural identification, 

vertical excitation due to pedestrian traffic was used to excite 

the entire structure. Acceleration was measured at 100 nodes 

(50 upstream and 50 downstream) in two directions, resulting 

in 200 degrees of freedom. Natural frequencies, mode shapes, 

and damping ratios (Figure 7.) were extracted using Enhanced 

Frequency Domain Decomposition (EFDD). 

𝜙1
𝑒𝑥𝑝

 - Torsional / X; 𝑓1
𝑒𝑥𝑝

= 0.337 ± 0.011 Hz; 𝜁1
𝑒𝑥𝑝

= 3.83 ± 1.23 

 
𝜙2

𝑒𝑥𝑝
 - Vertical / Z; 𝑓2

𝑒𝑥𝑝
= 0.587 ± 0.06 Hz; 𝜁2

𝑒𝑥𝑝
= 1.746 ± 0.95 

 
𝜙3

𝑒𝑥𝑝
 - Torsional; 𝑓3

𝑒𝑥𝑝
= 0.850± 0.011 Hz; 𝜁3

𝑒𝑥𝑝
1.216 ± 0.52 

 

Figure 7. First three experimentally determined natural 

frequency (𝑓𝑡
𝑒𝑥𝑝

), damping ratio (𝜁𝑡
𝑒𝑥𝑝

) with their standard 

deviation (𝜎𝑡
𝑓

, 𝜎𝑡
𝜁

) and mode shapes (𝜙𝑡
𝑛𝑢𝑚) of pedestrian 

suspension bridge over Drava River (t=1, …,3) 

The analysis revealed distinct global mode shapes consistent 

with the expected behavior of a suspension bridge, providing 

essential input for finite element model updating (FEMU). 

These experimentally obtained dynamic parameters form the 

basis for calibrating and validating the numerical model, as 

described in the following chapter. 

 Comparison of Numerical and Experimental Results 

A comparison between the initial numerical model and 

experimental results was conducted to evaluate model 

accuracy. Natural frequencies and mode shapes were compared 

using relative differences and the MAC coefficient (Table 1.). 

While the initial model showed acceptable agreement, some 

deviations indicated the need for refinement. To improve 

accuracy, finite element model updating (FEMU) was 

performed using two approaches: a conventional multi-

objective (MO) optimization method and a Cooperative Game 

Theory (CGT)-based method. 
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Table 1. Comparison of the pedestrian suspension bridge modal 

parameters predicted by initial numerical model and its actual 

modal parameters based on the absolute relative difference 

between the natural frequency values (∆ft) and modal 

assurance criterion MAC (ϕt
exp

, ϕt
num) 

Mode 

shape 

t 

𝑓𝑡
𝑛𝑢𝑚 

[Hz] 

𝑓𝑡
𝑒𝑥𝑝

 

[Hz] 

|∆𝑓𝑡| 

[%] 

MAC (𝜙𝑡
𝑒𝑥𝑝

,𝜙𝑡
𝑛𝑢𝑚) 

[/] 

1 0.335 0.337 0.597% 0.995 

2 0.569 0.587 3.163% 0.967 

3 0.862 0.850 1.392% 0.960 

4 1.170 1.013 13.419% 0.937 

5 1.142 1.150 0.701% 0.845 

6 1.530 1.400 8.497% 0.870 

7 1.694 1.663 1.830% 0.964 

8 1.791 1.925 7.482% 0.802 

9 2.061 2.188 6.162% 0.974 

10 2.582 2.475 4.144% 0.967 

11 2.661 2.737 2.856% 0.953 

12 2.881 3.037 5.415% 0.812 

13 3.197 3.313 3.628% 0.943 

4 FINITE ELEMENT MODEL UPDATING 

 Sensitivity Analysis 

To identify the most influential parameters for the model 

updating process, a sensitivity analysis was performed using 

the ratio of modal strain energy (MSE) associated with each 

physical parameter to the total MSE of the structure. Initially, 

17 parameters were considered, but based on the analysis 

results (Figure 8.), 13 were selected for updating. The selected 

parameters include material properties (e.g., Young’s modulus 

of concrete and handrails), connection stiffnesses, and cable 

pretension forces (down main cables, hangers, and upper main 

cables).  

 

Figure 8. Results of sensitivity analysis performed on the 

pedestrian suspension bridge finite element model for initial 

selected (𝜃1,…,17
𝑖 ) 17 updating parameters 

To ensure physical feasibility, each parameter was constrained 

within predefined lower and upper bounds. Following 

parameter selection, the optimization problem was structured 

by partitioning the residuals of natural frequencies and mode 

shapes. Using a sorting-based approach [14], the influence of 

each parameter was quantified, and two strategy spaces were 

defined: for natural frequency, 𝑆𝑓 = {𝜃1,  𝜃2, 𝜃3,  𝜃4,  𝜃5,  𝜃6, 𝜃7,

𝜃8,  𝜃9,  𝜃11} and for mode shape, 𝑆𝑚𝑠 = {𝜃10, 𝜃12,  𝜃13}. This 

selection guided the subsequent model updating process to 

achieve more accurate and efficient calibration of the FE 

model. 

 Solution of the MO FEMU problem based on the 

conventional optimization method 

To assess the computational efficiency of the proposed CGT-

based model for high-fidelity FEMU of complex structures, a 

benchmark analysis was conducted using a conventional multi-

objective optimization method sine previous research [23] has 

confirmed its effectiveness and accuracy. The Harmony Search 

(HS) algorithm was adopted for this comparison. The 

optimization process was implemented by coupling ANSYS 

for FE analysis with MATLAB for optimization. Key HS 

parameters were population size (PS = 50), maximum iterations 

(Iₘₐₓ = 100), objective function tolerance (10⁻⁴), pitch 

adjustment rate (PAR = 0.3), and harmony memory 

consideration rate (HMCR = 0.9). The resulting Pareto front of 

the two objective function residuals is shown in Figure 9, 

highlighting the “knee point” as the most balanced solution. 

This optimal solution corresponds to a set of updated model 

parameters that improved the accuracy of the numerical model. 

The total computational time required to reach this solution 

using HS was approximately 192,783 seconds, providing a 

reference for evaluating the performance of the CGT approach. 

 Solution of the FEMU problem based on the CGT model 

Following its proven efficiency and accuracy on a laboratory-

scale bridge model, the Cooperative Game Theory (CGT) 

model was applied to solve the high-fidelity FEMU problem of 

a complex pedestrian suspension bridge. The optimization 

began from an initial strategy vector 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑃𝑆𝐵𝑂
0 =

[1  1  1  1  1  1  1  1  1  1  1  1  1] and iterations were carried 

out until the convergence criterion 𝜉 = 0.001 was met. 

Cooperation weights were set symmetrically w11= w22= w12= 

w21= 0.5 based on the established rules. Upon convergence, the 

optimal parameter set θCGT_PSBO
*

= [0.9997 0.8917 1.0585 

1.0305 0.8686 1.2281 1.7530 1.0488 0.8219 1.0221 1.0086 

0.9969 1.0020] showed strong alignment with physical 

properties, leading to significantly improved correlation with 

experimental data. The CGT model completed the optimization 

in 89,758 seconds, demonstrating both computational 

efficiency and robustness in handling the multi-objective 

FEMU problem for a real-world, large-scale structure. 

5 DISCUSSION 

To evaluate the performance of the proposed Cooperative 

Game Theory (CGT) method for multi-objective finite element 

model updating (FEMU), a comparative analysis was 

conducted against a conventional Harmony Search (HS) multi 

objective optimization approach. Two main criteria were 

considered: solution accuracy and computational time. As 

illustrated in Figure 9, the solution obtained using the CGT 

method closely matches the optimal solution (“knee point”) 

identified by the conventional HS method. Importantly, this 

level of accuracy was achieved with significantly lower 

computational effort. The CGT model required 89,758 seconds, 

compared to 192,780 seconds for the HS algorithm—

demonstrating a reduction in computational time of over 50%, 

without compromising result quality. This efficiency is 
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achieved through the direct identification of the knee point 

using game theory principles, eliminating the need to compute 

the entire Pareto front, as required in conventional methods.  

 

Figure 9. Comparison of the “knee” point obtained based on the 

Pareto front (conventional method) with the position of the 

optimal solution obtained using CGT model 

Furthermore, Table 2 and Table 3 presents the updated natural 

frequencies and MAC values for both methods. The CGT 

approach (Table 3.) yields comparable accuracy in terms of 

relative frequency differences and mode shape correlation 

(MAC factors), confirming its robustness and suitability for 

high-fidelity FEMU of complex structures such as suspension 

bridges. 

Table 2. Correlation between experimental and updated natural 

frequencies and mode shapes using conventional HS 

Mode  

t 

𝑓𝑡
𝑒𝑥𝑝

 

[Hz] 

𝑓𝑡
𝑢𝑝𝑑,𝐻𝑆

 

[Hz] 

∆𝑓𝑡
𝐻𝑆 

[%] 

𝑀𝐴𝐶 𝑡
𝐻𝑆 

[/] 

1 0.337 0.335 -0.46 0.997 

2 0.587 0.596 1.53 0.985 

3 0.850 0.842 -0.94 0.984 

4 1.013 1.025 1.18 0.954 

5 1.150 1.142 -0.70 0.986 

6 1.400 1.386 -1.01 0.982 

7 1.663 1.634 -1.74 0.957 

8 1.925 1.896 -1.51 0.972 

9 2.188 2.215 1.23 0.996 

10 2.475 2.427 -1.94 0.987 

11 2.737 2.692 -1.64 0.993 

12 3.037 3.054 0.56 0.964 

13 3.313 3.258 -1.65 0.993 

Table 3. Correlation between experimental and updated natural 

frequencies and mode shapes using CGT model 

Mode  

t 

𝑓𝑡
𝑒𝑥𝑝

 

[Hz] 

𝑓𝑡
𝑢𝑝𝑑,𝐶𝐺𝑇

 

[Hz] 

∆𝑓𝑡
𝐶𝐺𝑇  

[%] 

𝑀𝐴𝐶 𝑡
𝐶𝐺𝑇 

[/] 

1 0.337 0.334 -0.89 0.997 

2 0.587 0.597 1.70 0.984 

3 0.850 0.843 -0.82 0.984 

4 1.013 1.025 1.18 0.954 

5 1.150 1.141 -0.78 0.987 

6 1.400 1.384 -1.14 0.982 

7 1.663 1.635 -1.68 0.957 

8 1.925 1.898 -1.40 0.971 

9 2.188 2.223 1.60 0.996 

10 2.475 2.425 -2.02 0.987 

11 2.737 2.692 -1.64 0.993 

12 3.037 3.042 0.16 0.964 

13 3.313 3.269 -1.33 0.992 

These results validate the CGT method as a computationally 

efficient and accurate alternative to traditional optimization 

approaches for model updating in structural engineering 

applications. 

6 CONCLUSION 

This research presents a novel and efficient framework for 

high-fidelity finite element model updating (FEMU) by 

leveraging the principles of Cooperative Game Theory (CGT). 

The proposed approach was applied to a real-world pedestrian 

suspension bridge, providing a rigorous testbed to evaluate the 

effectiveness of the method in handling the complexity and 

precision demands of high-fidelity finite element analysis. Key 

contributions and findings include: 

• By formulating FEMU as a cooperative game, the method 

enables a targeted and efficient resolution of conflicting 

objectives, such as matching both natural frequencies and 

mode shapes, without the need to compute the entire Pareto 

front. This aspect is especially beneficial in complex, high-

fidelity models with many interdependent parameters. 

• Compared to the conventional Harmony Search (HS) 

method, the CGT approach achieved equivalent or better 

accuracy with a reduction in computational time of over 

50%. This demonstrates that high-fidelity analysis does not 

necessarily come at the cost of efficiency when advanced 

optimization strategies are applied. 

• The CGT-based method improved the correlation between 

the numerical and experimental modal parameters, 

confirming its suitability for high-fidelity finite element 

analysis where accuracy and detail are critical. The updated 

model captured the structural behavior of the bridge with 

remarkable precision, addressing discrepancies in natural 

frequencies and mode shapes. 

• The method was validated using extensive experimental 

data from a real suspension bridge, including local and 

global dynamic characteristics. The updated model reflects 

the true structural behavior with a high level of fidelity, 

even in the presence of structural uncertainties and 

historical modifications. 

In summary, the CGT-based FEMU framework proves to be a 

robust, accurate, and computationally efficient solution tailored 

to the needs of high-fidelity finite element analysis. Its 

adaptability and performance make it a promising tool for 

advancing structural health monitoring in complex and 

intelligent infrastructure systems. 
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