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ABSTRACT: This study addresses the need for high-fidelity system identification in Digital Twin (DT) applications for Structural 

Health Monitoring (SHM). As infrastructure ages, its material properties may degrade due to various factors, including damage, 

corrosion, and fatigue. Accurate assessment of material properties is critical for ensuring safety and reliability. High-fidelity 

identification enables the detection of localized damages that traditional methods may not detect, directly impacting maintenance 

strategies and public safety. In this work, we present a formulation of the optimization problem that minimizes errors between 

observed and simulated displacements by varying material properties. Additionally, we utilize adjoint-based sensitivity analysis, 

combined with regularization techniques such as Vertex Morphing, to enhance the efficiency and robustness of the optimization 

process. Our case studies, which include detailed analyses of 2D and 3D structures using real-world data, demonstrate the 

effectiveness of our methods in accurately inferring material properties and revealing structural integrity. By implementing this 

advanced methodology, practitioners can achieve timely and accurate assessments of structural integrity, leading to better-

informed decision-making regarding maintenance and safety protocols. This research contributes to the ongoing advancement of 

Digital Twin technology, promoting safer and more efficient infrastructure management. 

KEYWORDS: High-fidelity Digital Twin, Inverse Problems, Regularization, Adjoint sensitivity analysis. 

1 INTRODUCTION 

Throughout the lifecycle of structures, their material properties 

can deteriorate due to various factors, including damage, 

corrosion, and fatigue. Advances in sensor technology and 

numerical simulation techniques now enable the creation of 

Digital Twins (DT) — dynamic digital representations of 

complex structures. DT  can be defined as follows [7-10]: 

 

“A set of virtual information constructs that mimic the 

structure, context, and behavior of an individual/unique 

physical asset, or a group of physical assets, is dynamically 

updated with data from its physical twin throughout its life 

cycle and informs decisions that realize value.” 

 

A key component in developing DT is system identification, 

which involves evaluating the current state of material 

properties and identifying areas of weakness. This process 

often requires solving inverse problems through appropriate 

parameterization, typically framed as an optimization 

challenge. The formulation steps of the system identification 

problem can be outlined as follows: 

1. System Description: Analyze all available information 

about physical objects and numerical models, including 

documentation, numerical models, or data from the design 

phase, for instance, testing data from wind tunnels or 

experiments with material samples. 

2. State Information: Collect and analyze available sensor 

data, measurements, load tests, and visual inspections to inform 

the assessment. 

3. Definition of Optimization Problem: Define the objective 

function that incorporates the available measured data and 

select system parameters to minimize the errors between 

measured and computed data points. 

Figure 1 illustrates the “twinning” process schematically. In 

real-world applications, the structure can be used under various 

conditions. A digital model can predict performance and 

provide feedback about the structure, indicating whether it 

requires maintenance or can be safely used further. To enhance 

the feedback provided by the digital model, the system 

identification process aligns the real and virtual worlds. 

 
Figure 1. Twinning real and digital worlds. 
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In system identification, various fidelities can be applied, 

which can be categorized into two main types: analysis and 

identification, as shown in Figure 2. Low-fidelity analysis is 

represented by simplified finite element (FE) models, such as 

using beam elements to describe the structure. In contrast, high-

fidelity models incorporate detailed geometry, complex 

material laws, and other intricate characteristics.  

Similarly, low-fidelity identification involves a limited number 

of parameters that typically reflect the overall structural 

behavior of the system. Low-fidelity system identification is 

well solved using artificial neural networks. For instance, in 

[14], the identification parameters are the coordinates of the 

damaged regions and the stiffness reduction factor. This setup 

allows for the localization of damage, but it is limited to a single 

region. In [16], the three-floor structure is studied, where each 

floor has its own set of global identification parameters, which 

describe the structure's properties. As a result the damage 

localization is limited to the floor.  

In high-fidelity identification, however, many system 

parameters need to be determined, for example, a unique set for 

each finite element in the model. Consequently, while low-

fidelity identification can indicate an average weakening in the 

structure, high-fidelity identification can localize many 

damaged regions with different shapes and damage intensity.  

In this work, we focus on high-fidelity FE models and high-

fidelity identification as the most challenging case. However, 

the proposed methodology can also be applied to other fidelity 

cases. 

 
Figure 2. Fidelity levels in the FE model and system 

identification. 

 

An adjoint analysis is an essential component of solving high-

fidelity system identification problems with many parameters. 

The adjoint-based technique for localizing damages in 

structures using displacement and strain measurements is 

presented in [1]. A combination of several sensor approaches 

would also appear highly promising in future applications [11], 

including risk measures and uncertainty quantification [12]. 

Additionally, recent research has demonstrated the potential for 

restoring the temperature field based on displacement and 

strain measurements [13]. 

Frequent updates between numerical and physical assets are an 

essential property of the digital twin in practical applications. 

Live monitoring requires a fast solution to the system 

identification problem to analyze and update the system. In [3], 

the authors studied the possible computational cost reduction 

using various optimization algorithms.  

This study addresses the minimization problem associated with 

identifying material properties within numerical models. The 

cost function is formulated based on the aggregated errors 

between observed and simulated displacements across multiple 

locations. To enhance the robustness of the minimization 

process, we employ various smoothing and filtering techniques, 

including the Vertex Morphing approach, which helps 

regularize the optimization problem. 

We present both 2D and 3D structural case studies, where one 

of the cases are represented by a testing bridge “Concerto”. Our 

examples utilize real-world data alongside numerical 

simulations to demonstrate the effectiveness of our methods in 

accurately inferring material properties and revealing structural 

integrity. This work contributes to the ongoing advancement of 

Digital Twin technology for effective structural health 

monitoring, ultimately promoting safer and more reliable 

infrastructure. 

2 METHODOLOGY 

The system identification of material properties, such as 

damage, can be formulated as an optimization problem 

involving unknown material parameters 𝒑 = [𝑝1, 𝑝2, … 𝑝𝑛]. 
Depending on the applied material model, the unknown 

material parameters can be Young's modulus, Poisson's ratio, 

or other, at each of the elements in the finite element model 

(FEM). Figure 3 illustrates the components of generalized 

system identification, which includes a digital twin and the 

optimization problem. 

The digital twin comprises a physical object, measured data, 

and a numerical model. The key components of the 

optimization process are material parameters, a regularization 

technique, an optimization algorithm, and the formulation of 

the objective function, which incorporates the available 

measured data. The following sections describe details of each 

component and its challenges. 

 
Figure 3. System identification process. 

 Objective function 

One of the key components in setting up the optimization 

process is defining the objective function. Based on the 

available data, the generalized objective function can be 

formulated as a weighted sum of the errors between measured 

and computed quantities. Given l number of the different sensor 

types and n given load cases 𝑭𝑖 , 𝑖 = 1. . 𝑛; 𝑛 ∙ 𝑙 corresponding 

measurements at m measuring points of their respective data 𝜑. 

The variable 𝜑 can represent different quantities based on the 

sensor type, for instance, displacement, strain, temperature, 

acceleration and etc. The generalized objective (cost) function 

is formulated as: 
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𝐽(𝒑, 𝝋(𝒑))

= ∑ ∑ ∑ Φ(𝜔𝑘𝑖𝑗 , 𝝋𝑘𝑖𝑗
𝑚𝑑 , 𝑰𝒌𝒊𝒋

𝒅 𝝋𝒌𝒊(𝒑), 𝒑)

𝑚

𝑗=1

𝑛

𝑖=1

𝑙

𝑘=1

 
(1) 

where 𝜔𝑘𝑖𝑗 are the measurement weights; 𝑰𝒌𝒊𝒋
𝒅  are interpolation 

matrices that are used to obtain the computed value from the 

finite element mesh at the measurement locations. 

Φ (𝜔kij, 𝝋kij
md, 𝐈kij

d 𝝋ki(𝐩)) is a weighted aggregation function, 

for instance, weighted square sum: 

Φ =
1

2
𝜔𝑘𝑖𝑗[𝝋𝒌𝒊𝒋

𝑚𝑑 − 𝑰𝒌𝒊𝒋
𝒅 𝝋𝒌𝒊(𝒑)]

2
 (2) 

In case, only one load case is considered with one sensor type 

with displacement measurements, and the material parameter 

of interest is Young’s modulus, then the objective function 

defined in Equation (1) simplifies to: 

𝐽(𝒖(𝑬)) =
1

2
∑ 𝜔𝑗 (𝒖𝒋

𝑚𝑑 − 𝑰𝒋
𝒅𝒖(𝑬))

2
𝑚

𝑗=1

 (3) 

 

 Sensitivity analysis 

An important step in the optimization process for identifying 

material parameters is computing the derivative of the objective 

function with respect to the material parameters. Considering 

the objective function introduced in Equation (3), we can apply 

the chain rule: 
𝑑𝐽

𝑑𝑬
=

∂𝐽

∂𝑬
+

∂𝐽

∂𝒖

𝑑𝒖

𝑑𝑬
 (4) 

where 
∂𝐽

∂𝑬
= 0 because 𝐽 does not depend directly on 𝑬, 

Equation (4) can be further developed: 

𝑑𝐽

𝑑𝑬
=

∂𝐽

∂𝒖

𝑑𝒖

𝑑𝑬
= − (∑ 𝜔𝑗(𝒖𝒋

𝑚𝑑 − 𝑰𝒋
𝒅𝒖)

𝑚

𝑗=1

)
𝑑𝒖

𝑑𝑬
 (5) 

In general, 
𝑑𝐽

𝑑𝑬
 can be computed using either the finite difference 

approach or the adjoint approach. Due to a large number of 

material parameters to identify, the adjoint approach is 

preferred because it is computationally more efficient by 

avoiding the direct computation of 
𝑑𝒖

𝑑𝑬
. Adjoint approach 

requires first solving a primal problem, which is depicted in 

Equation (6) in the residual form, where 𝑲 is the stiffness 

matrix, 𝒖 is the displacement vector, and 𝑭 is the load vector:  

𝑹 = 𝑲𝒖 − 𝑭 (6) 

Then, the adjoint problem is solved for 𝛌 Lagrange multipliers: 

(
∂𝑹

∂𝒖
)

𝑇

𝛌 = − (
∂𝐽

∂𝒖
)

T

 (7) 

and the Lagrange multipliers are used in a post-processing step 

to compute the final sensitivities: 
𝑑𝐽

𝑑𝑬
=

∂𝐽

∂𝑬
+ 𝛌𝑇

∂𝑹

∂𝑬
 (8) 

We would like to note that the Equation (7) is independent of 

the choice of the material parameter. Hence, the adjoint 

approach can be used for various material parameters and 

Young’s modulus 𝑬 has been used as an example. A lot of 

performance and implementation optimization can be achieved 

by solving the adjoint system, because (
∂𝑹

∂𝒖
)

𝑇

= 𝑲𝑇 and 𝑲 is 

symmetric, hence we can re-use the existing left-hand side of 

the primal problem and only have to change the right-hand side 

(i.e. pseudo-load)to obtain 𝛌. 

 Regularization 

Similarly to node-based shape and topology optimization, to 

avoid high-frequency noisy results, we need to apply 

appropriate regularization techniques [2]. Therefore, one 

option is to subject the raw gradients to smoothing using filters. 

In [1], the authors reviewed various gradient smoothing 

techniques for material identification problems, such as simple 

element averaging, weak Laplacian smoothing, and pseudo-

Laplacian smoothing, where the last one has been chosen as a 

better technique. In [3], the authors apply an explicit filter 

called Vertex Morphing to smooth material gradients. In the 

context of Vertex Morphing, thus, the physical material 

properties, for instance, Young’s Modulus 𝑬 are indirectly 

controlled by an unsmoothed control field 𝒑 and a kernel (or 

filter) function ℱ, for example, on the surface Γ with surface 

coordinates (𝜉, 𝜂, 𝜁): 

(ξ0, η0, ζ0) = ∫ℱ
Γ

(ξ − ξ0, η − η0, ζ − ζ0)𝒔(ξ, η, ζ)𝑑Γ (9) 

After discretization of the structural geometry 𝑬 =
[𝐸1, 𝐸2, … , 𝐸𝑛] and control function 𝒔 = [𝑠1, 𝑠2, … , 𝑠𝑛] by 

standard techniques such as the finite element method, Vertex 

Morphing appears as: 

𝑬 = 𝑨𝒔 (10) 

Where 𝑬 is Young's modulus of elements, and they are 

arranged sequentially. 𝑨 is the filter operator matrix, and 𝒔 is 

the vector of discrete control field parameters, again arranged 

sequentially. The most straightforward approach is to add 

control parameters to every element.  

The entries Aij of the filter matrix 𝑨 reflect the filter effect as 

the interaction between two different centers of the elements i 

and j, their center's spatial position vectors 𝑥𝑖 and 𝑥𝑗, and their 

Euclidean distance ‖𝑥𝑖  − 𝑥𝑗‖. For the case of the Gauss 

distribution as kernel function and approximating integration 

by summation, it holds: 

𝐴𝑖𝑗 = ℱ(𝑥𝑖 , 𝑥𝑗)/𝑠𝑢𝑚 

𝑠𝑢𝑚 = ∑ ℱ(𝑥𝑖 , 𝑥𝑗)

𝑗

 (11) 

ℱ(𝑥𝑖 , 𝑥𝑗) = {
𝑒−‖𝑥𝑖−𝑥𝑗‖

2
/2𝑟2

, ‖𝑥𝑖 − 𝑥𝑗‖ ≤ 𝑟 

0.0, ‖𝑥𝑖 − 𝑥𝑗‖ > 𝑟
 (12) 

and 𝑟 is the filter radius. By changing the filter radius, one can 

adjust the filtering intensity. 

 Generalized workflow 

Figure 4 shows the generalized workflow of the optimization 

process for system identification. Every optimization iteration, 

we need to evaluate objective function value and it’s gradients. 

Then, we apply Vertex Morphing (or other filtering technique) 

on the computed gradients and compute the control parameter 

update using optimization algorithm. Then, we apply one more 

time Vertex Morphing on the computed control parameter 

update to compute new model parameters state. This process 

continues till the convergence criteria are met or maximum 

number of optimization iterations are reached.  
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Figure 4. Generalized system identification workflow as an 

optimization process. 

 

Relevant optimization convergence criteria for system 

identification are: 

1. Relative reduction of objective function: 

𝐽(𝒑𝑖)

𝐽(𝒑0)
≤ 𝜀 (13) 

2. Absolute reduction of objective function: 

𝐽(𝒑0) − 𝐽(𝒑𝑖) ≥ 𝜀 (14) 

3. Maximum sensor error: 

max
j

𝑎𝑏𝑠(𝒖𝒋
𝑚𝑑 − 𝑰𝒋

𝒅𝒖(𝒑)) ≤ 𝜀 (15) 

In general, a lot of standard techniques from optimization 

theory can be apply to solve system identification problems, 

including convergence criteria, optimization algorithms, 

aggregation techniques, variable scaling, line search techniques 

and globalization strategies. 

3 CHALLENGES IN SYSTEM IDENTIFICATION 

In this section main challenges of the method are summarized. 

 Modeling the objective function 

The choice of the objective can play a crucial role in system 

identification because various types of measured data have to 

be combined. That require a proper scaling of the measured 

information to keep the objective function dimensionless and it 

allows to find a “correct” solution. Additionally, in 

minimization of the sum of the errors, the component with the 

highest error would have the highest contribution to the search 

direction. The sensor with highest error may change in the 

sequential optimization iterations leading to zig-zagging 

behavior. In [1], authors reviewed few weighting strategies to 

combine strains and displacements. In case of Equation (3), 

these techniques compute weights for displacements as 

follows: 

1. local weighting: 

𝜔𝑗 = (𝒖𝒋
𝑚𝑑)

−2
 

This method may lead to an ‘over-emphasis’ of small 

displacements, that are in regions of marginal interest. 

2. average weighting: 

𝜔𝑗 = [
∑ |𝒖𝒋

𝑚𝑑|𝑚
𝑗=1

𝑚
]

−2

 

This method may lead to an ‘under-emphasis’ of small 

displacements that may occur in important regions. 

3. max weighting: 

𝜔𝑗 = [max
𝑗

|𝒖𝒋
𝑚𝑑|]

−2

 

This method may lead to an ‘under-emphasis’ of smaller 

displacements that can occur in important regions; 

 

4. local/max weighting: 

𝜔𝑗 = max [ε max
𝑗

|𝒖𝒋
𝑚𝑑| , |𝒖𝒋

𝑚𝑑| ]
−2

 

where ε = [0.01, 0.1]. This method works best of all, as it 

combines local weighting with a max-bound minimum for local 

values. 

The weights for strain components (or other measured values) 

can be computed in a similar manner.  

 Large design space 

In our approach, we aim to identify the material parameters for 

each element individually. As a result, there are various spatial 

distributions of material properties that can produce similar or 

identical deformations under a fixed load case. This type of 

optimization problem is known as “multimodal,” meaning it 

has multiple optimal solutions with the same objective function 

values. Consequently, engineering expertise is necessary to 

"narrow" down the design space. For example, if the material 

is expected to weaken over time, we can impose an upper limit 

on Young’s modulus to prevent stiffening of the structure, as 

illustrated in Figure 5. 

 

 
Figure 5. Results of the system identification problem with 

(right) and without (middle) stiffening in the material. 

 

To improve the convergence of the system identification 

process, authors in [4] suggest using a zoom-in approach, 

where they start with a limited number of design variables and 

then gradually reparametrize the problem to zoom into the 

damaged region by switching from low-fidelity identification 

to high-fidelity. This approach improves the robustness of the 

method by better finding the weak areas globally and afterward 

identifying damages on a smaller scale. 

 Discrete gradients 

To localize damage effectively, it is necessary to consider 

many material parameters, such as modifying Young's modulus 

for each element. This results in a large number of parameters 

and the need for gradient-based optimization algorithms. 

Consequently, adjoint analysis is essential. Section 2.2 

discusses the use of adjoint analysis to compute the gradients 

of the objective function. 

The gradients obtained through adjoint methods can be discrete 

and noisy, which may lead to high-frequency solutions. To 

address this issue, regularization techniques are required. One 

such technique is Vertex Morphing, which is introduced in 

Section 2.3. Figure 6 illustrates the effect of Vertex Morphing. 
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Figure 6. Young’s Modulus distribution: top – without, 

bottom – with Vertex Morphing. 

 Optimization algorithm 

The difference between classical mathematical optimization 

problem and system identification problem is that evaluation of 

the objective value typically requires solving the FEM-based 

structure analysis. Therefore, robust and efficient optimization 

algorithms are required with minimal functional and gradient 

evaluations. In [3], the authors compare various optimization 

algorithms and their performance. It has been shown that a 

significant amount of computational cost can be avoided by 

selecting a well-suited algorithm.  

Figure 7 shows the performance of the various algorithms. 2D 

Plate with a hole (Section 4.1) has been used as a benchmark to 

study the performance. The tested algorithms are: SciPy 

Broyden-Fletcher-Goldfarb-Shanno (BFGS), SciPy Limited 

memory Broyden-Fletcher-Goldfarb-Shanno bounded 

algorithm (L-BFGS-B), SciPy conjugate gradient algorithm 

(CG), SciPy Trust-Region Constrained Algorithm (TRC), 

PyRol the steepest descent method with back-tracking line 

search, PyRol Lin-More trust region algorithm (LM-TR) and 

Kratos Nesterov accelerated gradient method with Quasi-

Newton Barzilai-Borwein correction line search (NAG-

QNBB). 

 

 
Figure 7. Convergence rate of the tested algorithms [3]. 

4 NUMERICAL EXAMPLES 

This section demonstrates two examples of the system 

identification process. A simple 2D plate with a hole example 

is a numerical benchmark from [3], which is introduced to help 

the reader better understand the introduced methodology. The 

second example demonstrates the usability of the method on a 

real-world structure, and its measured performance is shown. 

The measured data were obtained from [5]. 

 2D Plate with a hole 

The FE model of the 2D plate with a hole is shown in Figure 8, 

where the left side is fixed, and the distributed force is applied 

on the right side. Figure 9 (left) shows displacements of the 

damaged model and the mapped displacements to the sensors. 

These displacements are used as “measured” displacements to 

identify the given damage. The virtual sensor is modeled as a 

point with x- and y- spatial coordinates, and the measured value 

is associated with its location. The damaged material is visible 

in Figure 9 (right). 

 

 
Figure 8. FEM model [3]. 

 

 
Figure 9. Measured displacements (left ) and 

predefined damage (right) [3]. 

 

The objective function is defined similarly to Equation (3), and 

it is based on the measured and computed displacements in the 

x-direction: 

𝐽(𝒖(𝑬)) =
1

2
∑ 𝜔𝑗 (𝑢𝑥𝑗

𝑚𝑑 − 𝑢𝑥𝑗
(𝑬))

2
𝑚

𝑗=1

 (16) 

The filtering radius is chosen to be constant, and 𝑟 = 5, 

covering approximately 4 FE elements. The optimization 

process stops when the maximum error in the sensor reaches 

10−5, Equation (15). 

Figure 10 shows the found damaged areas using the system 

identification process. Due to the applied filtering, the found 

damage areas have smoothed boundaries in contrast to the ideal 

predefined damage model (Figure 9).  
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Figure 10. Found damaged areas using the NAG-QNBB 

algorithm [3] 

 Concerto bridge 

For the long-term evaluation of innovative Structural Health 

Monitoring (SHM) techniques, the experimental plate girder 

bridge "Concerto" was constructed in 2005. The bridge 

measures 17.5 m in total length, 4.0 m in width, and 0.8 m in 

height [5, 6]. Figure 11 shows the support positions (A, B), the 

ground anchors (C), the transducers (C, D), and the cantilever 

arm (E). In the lower part of Figure 11, the instrumentation and 

reference point signalization are depicted. 

 

 
Figure 11. Experimental Bridge “Concerto”. Upper part: 

indication of support (A, B), ground anchor (C), Deformation 

transducer positions (C and D), and cantilever arm (E). Lower 

part: instruments (UAV, laser scanner, and transducer) and 

signalization of reference points [5]. 

 

Figure 12 shows the deformation of the bridge under the load 

from photogrammetric measurements. For more details on the 

measurement techniques, an interested reader is referred to [5]. 

In this study, we utilized data obtained through 

photogrammetric measurements. However, data from other 

measurement techniques can also be applied. We chose 

photogrammetric measurements because they provide 

continuous data, in contrast to the limited number of points 

obtained from tachymetry and transducer measurements. It is 

important to note that laser scanner measurements exhibit a gap 

between 12.5 meters and 15 meters. 

 
Figure 12. According to photogrammetric measurements, 

the deformation of “Concerto” under load is seen from the 

top. Lowered areas are colored in red, elevated areas in green, 

and no elevation change in black [5]. 

 

A finite element (FE) model has been created to model the 

bridge, as shown in Figure 13. This model consists of 77,000 

small-displacement 3D elements that represent the concrete 

domain (depicted in gray), 800 truss elements representing the 

tendons (shown in blue), and 107 small-displacement 3D 

elements that represent the elastomers (illustrated in yellow). 

The load is applied to the red surfaces. 

 

 
Figure 13. FE-model of the Concerto bridge: concrete part 

(gray), steel tendons (blue), elastomers (yellow), applied force 

(red). 

 

To utilize the measured data, we create a series of virtual 

sensors positioned along the x-axis at the midpoint of the 

bridge. Figure 14 illustrates the locations of these virtual 

sensors, represented as spheres, along with their corresponding 

values (displacement in the z-direction) that have been derived 

from the measured data. 

The objective function is defined similar to Equation (3) and it 

is based on the photogrammetric measurements and computed 

displacements in the z-direction: 

𝐽(𝒖(𝑬)) =
1

2
∑ 𝜔𝑗 (𝑢𝑧𝑗

𝑚𝑑 − 𝑢𝑧𝑗
(𝑬))

2
𝑚

𝑗=1

 (17) 

There are three various material domains to identify in the 

model. The largest domain is concrete, where we set the valid 

Young’s modules range to 𝐸 = [1𝑒9, 1𝑒11] 𝑃𝑎 and as the 

initial parameter 𝐸0 = 3𝑒10 𝑃𝑎. In this model, we set the upper 

boundary higher than the initial value because we want to keep 

large identification freedom. The second material domain is 

steel tendons, with parameter ranges 𝐸 = [1𝑒10, 1𝑒12] 𝑃𝑎 and 

𝐸0 = 2.1𝑒11 𝑃𝑎. The last model part is elastomers, which 

model the rubber supports with unknown material properties. 

We set 𝐸 = [1𝑒6, 1𝑒8]𝑃𝑎 and 𝐸0 = 1𝑒7 𝑃𝑎. All material 
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parameters are identified through a single system identification 

process.  

 

 
Figure 14. Applying the measured data to its numerical 

model: measured data at the center line (top graph), virtual 

sensors with mapped data (small circles). 

 

Figure 15-18 shows the final Young’s modulus of the materials. 

The results show that steel tendons are not damaged, and the 

elastomer material converges to 1𝑒8 𝑃𝑎. In Figure 16, we 

highlight the areas with damaged concrete and provide photos 

of these areas. Figure 17 shows the graph comparing the 

measured and computed displacement at the middle line before 

and after system identification. 

 

 
Figure 15.Young’s modulus of steel tendons shows no 

damage. 

 

 
Figure 16.Young’s modulus of elastomers converged to upper 

bound (1e8). 

 

The optimization process took 30 optimization iterations to 

reduce the objective function by 98.9 %. Further optimization 

iterations lead to overfitting the parameters (see Figure 19), 

where the material parameters converge to unphysical values, 

while the reduction of the cost function stays at similar level 

99.1 %. 

 

 
Figure 17. Top: Young’s modulus of concrete. Bottom: 

Pictures of the current state of the bridge in the weakened 

regions. 

 
Figure 18. Comparing z-displacements along the x-axis in the 

middle of the bridge: measured data (green), initial computed 

data (orange), final computed data (blue). 

 

 
Figure 19. Overfitted material parameters. Young’s modulus 

of concrete reaches upper and lower bounds. 

5 DISCUSSIONS 

In this study, we explored the system identification process for 

structural health monitoring using adjoint-based optimization 

techniques. Our findings highlight the effectiveness of 

employing high-fidelity Digital Twin models to accurately 

infer material properties and detect weaknesses in structures. 

The method has been applied to the “Concerto” bridge with 

real-world measured displacement. We have found damaged 

areas that are confirmed by visual inspection of the real state of 

the bridge.  

However, the results are not without limitations. One 

significant challenge is the dependence on sensor 

configuration, which can strongly affect the accuracy of the 

identified material properties. Additionally, the multimodal 
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nature of the optimization problem complicates finding a “true” 

solution during the identification process, as multiple identified 

states can yield similar results. Another significant challenge is 

the convergence criteria, which, on one hand, should stop the 

optimization process before overfitting the material 

parameters, and on the other hand, shouldn’t stop it too early 

before all damaged regions are found. 

6 OUTLOOK 

Moving forward, we recommend several directions for future 

work:  

1) How can we identify the crucial measured locations / 

optimal sensor placement? 

2) How to load the structure? How many load scenarios 

are required to identify all damaged regions?  

3) How can we include the probability of sensor failure 

and inaccurate measurement? 

4) How can we check which damage can be found by a 

given sensor configuration on the structure? 

5) How to circumvent the overfitting of the data? 
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