SHM Application in Development of New Live Load Distribution factors for Timber Bridges Limaye, V. ¹, Vickers, P. ², Hoseinpour, H. C. ³, Memon, A. ⁴, Clarke, J. ⁵ ¹SHM Canada Consulting Limited, Halifax, Nova Scotia, Canada ²Public Services and Procurement Canada, Halifax, Nova Scotia, Canada ³CBCL Limited, Halifax, Nova Scotia, Canada ⁴Nova Scotia Department of Public Works, Halifax, Nova Scotia, Canada ⁵Halifax Regional Municipality, Halifax, Nova Scotia, Canada email: vidya.limaye@shmcanada.com, F_{T-min} \colon & F_{T-modified} = F_T^{\ 2} / F_{T-min} \\ & \text{When } F_T \leq F_{T-min} \colon & F_{T-modified} = F_{T-min} \end{aligned}$$ In cases where F_T is larger than F_{T-min} , a correction is required to account for the effect of different girder sizes. Therefore, the value obtained by the above equation shall be multiplied by the ratio of F_T/F_{T-min} as shown in the step 3 of Equation 1. Based on calibration process described in Section 4.2, the recommended bearing span length for timber bridges is 1.035 times of the measured clear span length. #### 4.6.3 Effect of Skew Angle (ψ) on Distribution Factors Skew angle and span length are two important parameters used to determine skew effect in CHBDC. Bridge width, which was the dominant factor in the past editions of the code, plays an insignificant role in the current edition (S6:19). Maximum moment effect is reduced in skewed bridges due to the decrease in the effective span length. Shear effect is subject to increase in the obtuse corner of skewed bridges, as a result of decreasing stiffness of the girders at the points on the axle line toward the acute edge and a corresponding reduction in load carrying of the far girders, [9]. The Mohr circle concept was employed to generate deck material properties for bridges with different skew angles. Analysis of the hypothetical skewed models also demonstrated that shear effects are increased, and moment effects are decreased in skewed bridges. The results for skewed bridges were close to those obtained by multiplying the CHBDC skew equation with the results of non-skewed bridges. The CHBDC skew effect equation should therefore be used to magnify shear effects and reduce moment effects. The shear modification coefficient determined from the CHBDC skew effect equation is denoted as F_S in relevant formulations. $$F_S = 1.2 - (2.0/(\varepsilon + 10))$$ $$\varepsilon = (L/S) \tan \psi \text{ for } \psi = \le 45$$ L = Bearing span length S = Girder spacing ## Effect of Girder Dimension on Distribution Factors Mechanical properties of different girder sizes for each bridge configuration showed low correlation with the obtained moment distribution factors and made it difficult to find a simple formulation to determine the effect of girder dimension. Given its partial correlation with the distribution factors, the effect of the mechanical properties of the girders is reflected in the original expression with F_{T-min} and the proposed increase in the moment distribution factors. #### 4.6.5 Effect of Multiple Traveling Lanes on the Distribution Nova Scotia timber bridges are typically limited to two travelling lanes. Deflection diagrams showed that the effect of a single truck on one side of a wide bridge has an uplift effect on the far girders at the opposite side. Having three trucks on the specified lanes of the timber bridges would therefore lower distribution factor values; therefore, only two-lane bridges were considered in the modelling process. To account for multilane effect, the Number of Lanes factor, F_L , was included in Equation 4, with the values displayed in Table 7 below. Table 8. Number of Lanes factor (F_L) | Single Lane Bridge | Two-Lane Bridge | |--------------------|-----------------| | 1.00 | 1.21 | The Code's statistical factor to account for multi-lane effects is still applicable and is presented in the current research as well. Per sections 3 and 14 of the Code, respectively, the modification factor is 0.90 for design of a two-lane bridge, and 0.85 for evaluation. This factor is denoted by R_L in Equation 3. ## 4.6.6 Effect of Bridge Condition on the Distribution Factors Live load testing results in conjunction with inspection findings and analytical modelling suggest that the bridge condition may affect the load distribution factor. In some cases, field-validated loading responses of the bridge structures differed from those expected based on the calibrated FE model. In order to align the FE model with recorded field data, the condition rating of the bridges under investigation was considered (See Section 3.1). The values provided in Table 9 below were assigned as the factor F_C to reflect the overall condition of the bridges in the Table 9. Bridge Condition factor (F_C) load distribution formulation, Equation 4. | Good | Fair to Good | Fair | |------|--------------|------| | 1.00 | 1.12 | 1.20 | None of the bridges included in the current study were rated in lower than Fair condition. Local decays in bridges in Poor condition has the potential to significantly affect the load distribution factor. No F_C factor, therefore, is provided for evaluation of bridges rated at Poor condition and it has to be concluded based on professional judgment. #### 4.6.7 Effect of Asphalt Surface on the Distribution Factors Asphalt pavement of varying thickness was found on four of the six bridges in the current study. Thicker asphalt would result in better load distribution and therefore lower load distribution factors. The effect of asphalt surface is designated as F_A in Equation 3 and Table 10. Linear interpolation shall be used to find an equivalent factor for different asphalt thickness. Table 10. Asphalt surface factor (F_A) | 90 mm | 150 mm | 250 mm | |-------|--------|--------| | 1.08 | 1.15 | 1.25 | A gravel surface, in contrast to an asphalt surface, is inconsistent in thickness/distribution over the bridge deck and has low elastic properties. Furthermore, only one of the bridges under investigation had a gravel surface, and it appeared to be loose and uneven near the edge of the bridge. Therefore, the contribution of a gravel surface to the load distribution, could not be evaluated in this study, and F_A , shall be assumed as 1.0. #### Generalized Moment Distribution Factor Equation Equation 3 below presents the overall distribution factors for moment effects. This equation includes coefficients that account for the effects of other parameters, as discussed earlier in this chapter. $$F_M = F_{T-modified} F_L F_C R_L / F_A F_S \tag{3}$$ $F_{M} = F_{T-modified}F_{L}F_{C}R_{L}/F_{A}F_{S}$ $F_{T-modified} = \text{Moment distribution factor}$ F_S = Skew angle coefficient F_L = Multiple lane effect factor R_L = Statistical multilane coefficient F_C = Bridge condition factor F_A = Asphalt effect factor #### Shear Distribution Factor Shear distribution factor was obtained by dividing the maximum contribution of the girders by the maximum shear effect of the same loading on a single beam with the same span length, where the single beam was analyzed using CBridge. In order to produce maximum shear in a simple beam, the heavy truck axles must be located as near as possible to the supports where, due to the minimum deflection of the girder, the girder closest to the wheel load absorbs much of the shear effect. Shear distribution does not, therefore, follow the same pattern as the moment distribution, and a separate distribution factor is required. #### 4.7.1 Parametric Analysis of Shear Distribution Factor Like the moment distribution factor, shear distribution factors showed a stronger correlation with girder spacing than with span length. In general, weaker correlations (i.e. R-squared values) were established between the shear distribution factor and variable parameters of the timber bridges than between the moment distribution factor and those parameters. #### 4.7.2 Development of the Shear Distribution Factor Equation The shear distribution factor in the 2019 version of the Code is only a function of girder spacing, magnified by a modification factor. Using this factor in the current study yielded an Rsquared value well below the expected value. MATLAB was used to combine the effects of different parameters and to develop a formulation for the shear distribution. Multiple trials, however, failed to yield correlations (i.e. acceptable R-squared values) that would suggest sufficient accuracy for these formulas. A method similar to that used for determination of the moment distribution factor, was therefore applied to generate a modification coefficient to account for the shear distribution factor. As shown in Equation 4, the shear distribution factor was obtained by modifying the moment distribution factor, the use of which can produce shear effects having an acceptable correlation with an R-Squared value of 0.71. $$F_{\nu} = F_{\rm S}^2 F_{\rm M} / (1.35 \, \gamma_{\nu} \, \gamma_{l\nu}) \tag{4}$$ $F_v = F_S^2 F_M / (1.35 \, \gamma_v \, \gamma_{lv}) \tag{4}$ Where, F_S is the skew angle factor, and the shear modification factor γ_v is obtained from the following equation: $$\gamma_{\nu} = S/2.532 - L/134 + 0.247 \tag{5}$$ The correction factor, γ_{lv} , of the shear effect for two-lane bridges is equal to 1.14. See Equation 1 and 3 for the notations. In an attempt to create maximum load effects, the longitudinal wheel line of the loading truck was aligned over the girder closest to the bridge edge, while respecting the minimum 600 mm clearance. This was the governing case specifically for determining the shear effects. Considering the low potential for transverse load distribution at the end of the bridges' span it would be safe to assume that the loaded girder absorbs the entire wheel load on the support. On the other hand, analyzing the standard truck of CL-625 on a short span bridge has the potential of eliminating the effect of the heavier axle load in the shear analysis as it remains off the bridge span in the critical shear loading case. As a result, there is always a possibility to disregard the heavier axle loads with wide spacing in the shear analysis, where they have no potential to be transversally distributed when acting on the support. Therefore, the minimum unfactored shear effect shall be taken as the largest of the wheel load of the loading truck divided by the patch load correction of 1.35. #### Comparison of the results of the developed SMA to the 4.8 loading tests and CHBDC results Table 11 presents distribution factors obtained from live load tests, different versions of the Code, and the developed SMA in this study to validate the results of newly developed formulations. Table 11. Comparison of the moment distribution factor derived using new formulation with other methods | Source | HFX322 | HFX325 | HFX334 | HFX099 | COL098 | HFX061 | |---------|--------|--------|--------|--------|--------|--------| | (1) | 0.1722 | 0.2563 | 0.1758 | 0.2167 | 0.2142 | 0.1938 | | (2) | 0.1367 | 0.1986 | 0.1296 | 0.1460 | 0.1503 | 0.1347 | | (3) | 0.1281 | 0.1708 | 0.1172 | 0.1444 | 0.1428 | 0.1292 | | (4) | 0.1282 | 0.2117 | 0.1309 | 0.1668 | 0.1440 | 0.1270 | | (4-1) % | -25.6 | -17.4 | -25.5 | -22.8 | -32.8 | -34.5 | | (4-2) % | -4.5 | 17 | 6.1 | 10.9 | -3.6 | -5.7 | | (4-3) % | 0.1 | 23.9 | 11.7 | 15.5 | 0.8 | -1.7 | | (5) | 0.1273 | 0.2099 | 0.1309 | 0.1631 | 0.1624 | 0.1374 | | (5-1) % | -26.1 | -18.1 | -25.5 | -24.5 | -24.1 | -29.1 | | (5-2) % | -5.1 | 16 | 6.1 | 8.4 | 8.7 | 2 | | (5-3) % | -0.6 | 22.9 | 11.7 | 13 | 13.7 | 6.3 | - (1) S6-14/ S6:19 C5.6.7 - (2) S6-14/S6:19 C5.6.6 - (3) S6-06 - (4) Live Load Test - (5) Developed SMA This comparison established a close relationship between the live load test results and the results of the developed SMA here. Compared to the results obtained with CHBDC S6-14 and S6:19, C5.6.7, both live load tests and the new SMA show a decrease of between 17.4% and 34.5% in moment distribution factors across all timber bridges studied, which is consistent with NSDPW's hypothesis that the Code-specified analysis method for timber bridges leads to more conservative design and evaluation criteria. #### 5 CONCLUSION Results of this study show that the current SMAs in the Canadian bridge codes are overly conservative, and the congruence of analytical and load test results supports the hypothesis that the newly developed equations are sufficiently accurate for the simplified analysis of typical timber bridges in Nova Scotia. The equations presented in this report can be used for both design and evaluation purposes, using appropriate factors and subject to the following parametric limitations: - Span range: 3 m to 15 m. - Girder spacing: 350 mm to 800 mm. - Girder width: 150 mm to 300 mm. - Girder depth: 250 mm to 800 mm. - Girder spacing: Uniform or with less than 10% variation. - Skew angle: Less than 45° Bridges with characteristics outside the above ranges will require additional study. #### ACKNOWLEDGMENTS The authors would like to acknowledge Nova Scotia Department of Public Works for initiating this study and their active support during all stages of its completion. The authors also acknowledge Dr. Baidar Bakht, P. Eng., for his help in determining load sharing factors for the six timber bridges evaluated during this study. ## REFERENCES - [1] G. A. Smith, *The Impact of the Evolution of Simplified Methods of Analysis in Canadian*, Halifax, NS: Dalhousie University, 2018. - [2] J. N. Reddy, An Introduction to the Finite Element Method, New York: Third Edition. McGraw-Hill, 2006. - [3] A. Mufti, B. Bakht, L. G. Jaeger and J. Jalali, SECAN4 User Manual: Incorporating the Semi-Continuum Method of Analysis for Bridges, Halifax, NS, 1998. - [4] L. G. Jaeger and B. Bakht, "Bridge analysis by the semicontinuum method," Can. J. Civ. Eng., vol. 12, pp. 573-582, 1985. - [5] B. Bakht and L. G. Jaeger, "Simplified methods of bridge analysis for the third edition of OHBDC," Can. J. Civ. Eng, vol. 19, no. 4, p. 551– 559, Feb 1992. - [6] Commentary on CAN/CSA-S6-14, Canadian Highway Bridge Design Code, Toronto: Canadian Standards Association, 2014. - [7] F. Fanous, J. May and T. Wipf, "Development of live-load distribution factors for glued-laminated timber girder bridges," *J. Bridg. Eng.*, vol. 16, no. 2, p. 179–187, Mar 2011. - [8] A. Mufti and B. Bakht, "Diagnostic testing of six sawn timber stringer bridges in Nova," Unpublished Report to the Nova Scotia Department of Transportation and Public Works, Halifax, 1999. - [9] CAN/CSA S6:19 Canadian Highway Bridge Design Code, Toronto: Canadian Standards Association, 2019. - [10] Forest Products Laboratory, Wood handbook—Wood as an engineering material, Madison, WI: U.S: Department of Agriculture, Forest Service, Forest Products Laboratory, 1999. - [11] NSTIR, Standard Design Drawings of Timber Bridges of Nova Scotia, Halifax: Department of Highways, 1959. - [12] NSTIR, Standard Design Drawings of Timber Bridges of Nova Scotia, Halifax: Nova Scotia Transportation and Public Works, 2001. - [13] Ontario Wood WORKS!, Ontario Wood Bridge Reference Guide, North Bay, Ontario: Ministry of Natural Resources and Forestry, 2017. - [14] H. C. Hoseinpour, M. R. Valluzi, E. Garbin and M. Panizza, "Analytical investigation of timber beams strengthened with composite materials," *Constr. Build. Mater*, vol. 192, pp. 1242-1251, 2018. - [15] CAN/CSA-S6-06 Canadian Highway Bridge Design Code, Toronto: Canadian Standards Association, 2006. - [16] CAN/CSA-S6-14 Canadian Highway Bridge Design Code, Toronto: Canadian Standards Association, 2014. [Note: Nova Scotia Department of Public Works (NSDPW) was formerly known as Nova Scotia Transportation and Infrastructure Renewal (NSTIR)]