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ABSTRACT: Structural health monitoring (SHM) is essential for ensuring bridge safety and longevity. Under dynamic loads, 

such as train traffic, acceleration data from sensors offers valuable insights into the condition of the structure. Vehicle bridge 

interaction models required to predict the acceleration time histories involve numerous parameters for rail traffic. Also, model-

based methods have a trade-off between high-fidelity, computationally intensive, and less accurate models. To overcome these 

limitations, this study introduces a deep learning (DL) algorithm to identify changes in the bridge. However, large datasets 

resulting from high-frequency sampling and long observation periods pose computational challenges as the train passes over the 

bridge. To address this, down sampling is employed, reducing data complexity while preserving essential features of the signal. 

The approach is demonstrated using acceleration data recorded at a node point of a railway truss bridge during train passage. An 

Autoencoder is employed, compressing high-dimensional data into a low-dimensional latent space, and a deep neural network 

(DNN) is applied to the latent space, incorporating a measurement loss function to estimate the system parameters. This framework 

ensures computational efficiency and data integrity, enabling precise system parameter estimation and showcasing its effectiveness 

in real-life bridge SHM. 

KEY WORDS: Data compression; Autoencoder; Deep neural network; Deep learning; Railway steel truss bridge; Structural health 

monitoring. 

1 INTRODUCTION 

Structural health monitoring (SHM) has advanced significantly 

with the development of sensing technologies and data 

collection capabilities [1],[2]. It plays a crucial role in ensuring 

the safety, durability, and reliability of critical structures, 

particularly railway bridges that experience continuous 

dynamic loading [3],[4]. Accurately estimating structural 

parameters such as cross-sectional area, damping coefficients, 

and stiffness properties is fundamental for detecting structural 

degradation, damage progression, and potential failures [5],[6]. 

Traditional methods, including finite element model (FEM)-

based approaches, rely on high-fidelity models and 

experimental calibration, which are computationally expensive 

and susceptible to modeling inaccuracies [7],[8],[9]. These 

challenges necessitate data-driven approaches that leverage 

machine learning (ML) techniques for efficient and accurate 

structural assessment [10],[11]. 

Neural networks, a part of ML techniques, have emerged as 

powerful tools in SHM, enabling automated inspection 

processes and addressing the growing complexity of intelligent 

monitoring systems. Their primary advantages include 

automatic feature extraction, effectiveness in handling noisy 

datasets, and accurate modeling of nonlinear relationships [12]. 

Nevertheless, conventional artificial neural networks (ANNs) 

frequently encounter issues such as convergence to local 

minima, susceptibility to overfitting, and limited ability for 

deeper feature extraction due to shallow network architectures 

[13]. Recent advancements in deep learning (DL) have 

introduced data-driven SHM approaches, wherein structural 

parameters are inferred directly from measured vibration 

signals [14],[15] to overcome the above mentioned challenges. 

Such DL frameworks effectively capture complex nonlinear 

relationships inherent in multi-sensor datasets, making them 

particularly suitable for classification and regression tasks [16]. 

Nevertheless, standalone DL models share several limitations 

commonly observed with traditional ANNs, including high 

computational efficiency, overfitting, and convergence issues, 

highlighting the need for hybrid DL methodologies [17]. Over 

the past decade, several hybrid DL approaches have been 

developed for bridge damage detection and condition 

assessment. One promising approach is the Autoencoder, 

which is known for its ability to perform dimensionality 

reduction and data compression effectively.  

To highlight a few instances, an unsupervised Autoencoder 

approach proposed in [18] achieved real-time bridge damage 

detection directly from raw acceleration data, although it was 

limited to single-sensor applications without the capability for 

damage localization or quantification. In another study [19], a 

hybrid methodology combining statistical modeling, neural 

networks, and deep support vector domain description 

demonstrated effective real-time damage detection with 

minimal false alarms; however, this method lacked localization 

capability, exhibited reduced performance with multi-sensor 

datasets, and has not been tested on full-scale structures. [20] 

introduced an Autoencoder-based method emphasizing the 

relationships among natural frequencies and mode shapes. 

Further extending this concept, [21] proposed a deep sparse 

Autoencoder specifically used for structural damage detection 

using these vibration characteristics. [22] developed a two-

level hybrid learning framework, employing unsupervised 

learning for preliminary damage detection followed by 

supervised validation, demonstrating its efficacy through 
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numerical simulations of concrete beams and experimental 

validation using laboratory frames. Additionally, [23] 

introduced an unsupervised deep neural network (DNN) 

method combining a deep Autoencoder with a one-class 

support vector machine (SVM), eliminating the reliance on 

extensive labeled datasets by utilizing only intact structural 

data.  

While prior research has explored hybrid DL models 

involving Autoencoders for data compression, most studies 

have primarily addressed laboratory-scale experiments or 

relied on supervised learning methods. In contrast, this study 

introduces an integrated framework combining unsupervised 

Autoencoder-based compression and a supervised DNN model 

to effectively handle on-field acceleration signals coming in the 

form of latent space representation from the Autoencoder. The 

proposed Autoencoder-DNN framework is computationally 

efficient and provides an effective compression strategy that 

preserves the important structural characteristics of real-world 

acceleration data by extracting relevant features, facilitating 

accurate and reliable estimation of structural parameters in 

railway steel truss bridge members.  

The methodology presented herein constitutes the 

preliminary phase of a comprehensive, multi-stage 

investigation to extend parameter estimation from an individual 

joint (node point considered in this study) to the entire railway 

steel truss bridge structure. By demonstrating the effectiveness 

and robustness of the developed approach through this single-

node case study, the present work lays a solid foundation for 

data-driven SHM of complex infrastructure with relevance to 

railway bridge systems.  

The structure of this paper is as follows: Section 2 details the 

bridge type and instrumentation scheme. Section 3 explains 

data collection and segmentation. Section 4 presents the 

proposed methodology, including the Autoencoder and the 

DNN model. Section 5 discusses the results, focusing on model 

accuracy, anomaly detection, and computational efficiency. 

Finally, Section 6 concludes the key findings and explores 

potential directions for future research. 

2 BRIDGE DETAILS AND INSTRUMENTATION 

SCHEME 

The Pamban Bridge is a railway steel truss bridge linking 

Rameswaram on Pamban Island to mainland India, as shown in 

Figure 1. Commissioned in 1914, it was India’s first sea bridge. 

Although most spans are conventional I-plate girders on 

concrete piers, the bridge features a notable double-leaf bascule 

section that pivots to let ships and barges pass. This movable 

portion, designed by Scherzer, is counterbalanced and pivots 

around a horizontal axis, with the superstructure rolling atop 

the track girder. Each leaf consists of a rigid jaw-and-tongue 

system to transfer shear without moments and is further 

subdivided into north and south trusses [24]. 

Since the bridge endures harsh marine conditions, corrosion 

is a significant concern, making it essential to evaluate any loss 

of cross-sectional area for structural assessments. A total of 40 

uniaxial accelerometers have been installed at various bottom 

nodes in biaxial mode on the bridge’s Mandapam and Pamban 

truss segments in both the north and south directions, as shown 

in Figure 2. 

 

Figure 1. Orientation of the Pamban bridge. 

 

Figure 2. Location of accelerometers on the bridge. 

3 DATA COLLECTION AND SEGMENTATION 

The acceleration data used in this study was collected from a 

bottom node marked with a red box in Figure 2, where two 

uniaxial accelerometers were installed in biaxial mode. 

Measurements were taken in both the x and y directions, with 

the x direction corresponding to the direction of train 

movement and the y direction representing the direction of 

gravity. When detecting a train pass event, the DAQ system 

continuously recorded acceleration data for 480 seconds, which 

was sufficient to cover the train passage with an ample margin 

before and after the event. 

The sampling frequency of the acceleration was set at 600 

Hz, resulting in 288,000 data points for each recording session. 

After analyzing acceleration signals from 150 train passages for 

each direction, it was observed that the train-induced vibrations 

predominantly occupied the initial segment of the recorded 

signal. At the same time, the remaining portion primarily 

consisted of ambient noise. Based on this observation, a 

consistent segmentation approach was adopted, wherein the 

first 1,60,000 data points were extracted from each recording 

for further analysis. This segmentation ensured the retention of 

train-induced dynamic responses while excluding prolonged 

noise periods, thereby reducing the number of data points in the 

subsequent processing stages.  

4 METHODOLOGY 

This study adopts a multi-step methodology comprising data 

pre-processing and data compression to improve the 

performance, scalability and computational efficiency of the 

Autoencoder-DNN framework for parameter estimation. The 

overall flowchart is presented in Figure 3, which outlines the 
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key steps involved. Each step is further detailed in the 

following sections, explaining the implemented approach. 

 

 

Figure 3. Flowchart depicting the methodology. 

 Data Preprocessing 

After obtaining the train pass signals, the time-domain data was 

converted into the frequency domain using the fast Fourier 

transform (FFT). This transformation was essential to facilitate 

efficient data processing, as the large dataset in the time domain 

posed computational challenges for subsequent analyses, 

notably when applying the DNN model. The FFT utilizes the 

symmetric property of real-valued signals, reducing the 

adequate number of data points by half while retaining the 

qualities of the original signal, which optimizes storage and 

computational requirements. The amplitude spectrum of the 

transformed signal was carefully examined, revealing that 

frequency components beyond 100 Hz have acceleration 

amplitudes 1/4th less than the maximum amplitude. Therefore, 

a frequency threshold of 100 Hz was adopted to truncate the 

signal, effectively eliminating higher-frequency content while 

retaining the dominant spectral content. This transformation 

approach introducing symmetry and frequency truncation has 

resulted in a reduced dataset of approximately 26,666 data 

points. Figure 4 illustrates the process, where the time-domain 

acceleration signal is converted to the frequency domain and 

truncated up to 100 Hz. This significant reduction enhanced 

computational efficiency and preserved the essential dynamic 

characteristics of the train-induced vibrations. However, 

despite the reduction, the large dimensionality of the dataset 

still posed computational challenges, particularly concerning 

memory requirements and the convergence efficiency of the 

DNN model.  

 Data Compression Using Autoencoder 

To mitigate computational challenges, a data compression 

technique based on an Autoencoder is implemented. The 

Autoencoder used in this study consists of two key 

components: an encoder, which compresses the input data into 

a lower-dimensional latent space, and a decoder, which 

reconstructs the data from this compressed representation. 

Figure 5 illustrates the step-by-step application of the 

Autoencoder, detailing the transformation process at each 

stage. 

Since acceleration signals exhibit distinct dynamic 

characteristics in the x and y directions, separate Autoencoders 

are implemented for each direction. The Autoencoders applied 

in both directions maintain an identical architecture, layer 

structure, and activation functions, as shown in Figure 5, but 

they are trained independently to capture the unique frequency 

and amplitude variations inherent to each direction. This 

ensures that the learned representations accurately reflect the 

direction-specific vibration behavior while preserving 

consistency in the latent space size.  

 

 

Figure 4. Data preprocessing workflow.



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-146 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 954 

 

Figure 5. The architecture of the Autoencoder.

4.2.1 Encoder network 

It consists of three layers labeled C1 to C3. The ReLU 

activation function is applied in layers C1 and C2, while the 

linear activation function is used in layer C3. As described in 

the previous section, the network takes preprocessed input data 

of size 1 × 26666 for one train pass. However, since the 

autoencoder is trained on data from 112 (75% of 150 train 

passes) train passes, the input data size becomes 1 × 26666 × 

112 for each direction. The data is progressively compressed 

through each layer, reducing its dimensionality from 1 × 26666 

× 112 in the input layer to 1 × 1000 × 112 in C1, 1 × 750 × 112 

in C2, and finally to 1 × 500 × 112 in C3, which represents the 

latent space.  

4.2.2 Decoder network 

The decoder network consists of three layers, labeled R1 to R3, 

designed to restore the compressed latent space to its original 

dimension. The ReLU activation function is applied in layers 

R1 and R2, while the linear activation function is used in the 

final layer R3. The input to the reconstruction network is the 

latent space representation of size 1 × 500 × 112. The data is 

gradually reconstructed through each layer, expanding from 1 

× 750 × 112 in R1, then to 1 × 1000 × 112 in R2, and ultimately 

restored to its original size of 1 × 26666 × 112 in R3 at the 

output layer. 

4.2.3 Dropout Regularization 

To prevent overfitting and enhance the generalization 

capability of the Autoencoder model, dropout regularization is 

applied to each layer except the latent space layer. A 10% 

dropout rate is used, randomly deactivating 10% of the neurons 

to zero during each training iteration.  

4.2.4 Loss function 

The Autoencoder is trained using the mean squared error 

(MSE) loss function, which measures the reconstruction error 

between the original input data and the reconstructed output. 

The MSE loss is defined as: 

𝐿𝑀𝑆𝐸  =  
1

𝑁
∑(𝑥𝑖  −  𝑥̂𝑖)2

𝑁

𝑖=1

 (1) 

where 𝑥𝑖 represents the original input data,  𝑥̂𝑖  represents the 

reconstructed output, and N is the total number of train passes. 

The loss function is minimized during training, ensuring that 

the reconstructed signal closely approximates the 

characteristics of the input signal. This optimization enables the 

Autoencoder to retain essential features of the input data, 

making the compressed representation more computationally 

efficient. 

4.2.5 Optimization 

The Adam optimizer employed to train the Autoencoder is 

widely recognized for its effectiveness in various applications. 

It is well-suited for non-stationary objectives and problems 

with noisy or sparse gradients [25]. The optimization is 

performed over 30 epochs, minimizing the MSE loss to 

improve reconstruction accuracy while retaining the essential 

features of the input data. 

 Integration with DNN Model 

Integrating the compressed latent space representations of the 

frequency-domain acceleration data with the DNN model helps 

in parameter estimation. Figure 6 illustrates the step-by-step 

application of the DNN model.  
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Figure 6. The architecture of the DNN model.

4.3.1 Input to DNN model 

The compressed latent space representations of the frequency-

domain acceleration data in both the x and y directions are 

integrated within the DNN model to estimate the cross-

sectional area of the truss members. Since acceleration 

responses exhibit distinct dynamic characteristics in different 

directions, the compressed x and y components are 

concatenated to form a combined 500 × 2 input vector for each 

train pass. 

This combined representation allows the DNN model to 

capture the full structural behavior influenced by both 

directional responses. The combined 500 × 2 × 112 input vector 

for all train passes is passed into the DNN model for training, 

enabling the model to learn the system’s dynamics across 

multiple loading conditions. 

4.3.2 DNN architecture 

As mentioned earlier, the DNN model receives compressed 

latent space representations of the acceleration data from the 

Autoencoder, presented in a concatenated format that includes 

data from both directions. After conducting hyperparameter 

tuning using the grid search method, Table 1 displays the final 

values of the parameters used in the DNN model. 

Table 1. DNN model parameters and their values. 

Parameter Value 

Hidden Layers 3 

Hidden Neurons 64 

Output Neurons 5 

Hidden Activation Leaky ReLU 

Dropout Layer 0 

Learning Rate 0.001 

Optimizer ADAM 

Epochs 20000 

 

The final output layer estimates the cross-sectional area of the 

truss members connected, which is highlighted by a red color 

line in Figure 6. The network effectively learns the mapping 

from the compressed input to the target output while integrating 

the measurement loss function to improve accuracy.  

4.3.3 Measurement loss function 

The DNN model incorporates a measurement loss to improve 

the accuracy of the estimated area. This loss minimizes the 

difference between the true cross-sectional area (provided in 

Table 2) and the predicted area obtained from the DNN model 

using the MSE loss function defined as: 

 

𝐿𝑀𝑆𝐸  =  
1

𝑁
∑ ∑ ((𝑥𝑡𝑟𝑢𝑒

𝑗
)

𝑖
 −  (𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑗
)

𝑖
)

2
5

𝑗=1

𝑁

𝑖=1

 (2) 

 

where 𝑥𝑡𝑟𝑢𝑒
𝑗

 is the true value of the jth parameter of the system 

to be estimated – the cross-sectional area and 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑗

 is the 

corresponding predicted value from the DNN model. 

Table 2. The table shows the true values of the cross-sectional 

area. 

Parameter Value (mm2) 

Element 1 (E1) 24400 

Element 2 (E2) 12178 

Element 3 (E3) 15800 

Element 4 (E4) 20100 

Element 5 (E5) 8700 
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 Hypothesis for Estimating Cross-Sectional Area from a 

Single Node Response 

The study focuses on a single node among those where bi-axial 

accelerations are recorded. This node is structurally connected 

to five truss elements, each assumed to have known lengths 

(L1, L2, L3, L4, and L5) and elastic modulus, while the cross-

sectional areas (A1, A2, A3, A4, and A5) are unknown and to 

be estimated. The arrangement of the members is as shown in 

Figure 7. The assumption that all five truss elements are fixed 

at the other end is not true in the actual truss structure. 

However, this assumption allows checking of the algorithm in 

a smaller setting. 

 

 

Figure 7. Schematic of the monitored truss node with five 

connected members. The bi-axial accelerometer is positioned 

at the node to record dynamic responses during train passages. 

The mass matrix is formulated based on the shape functions 

that approximate the displacement. The consistent element 

mass matrix formulated in global coordinates for member AB 

is given by: 

 

[𝑀𝐴𝐵]  =  
𝜌𝐴𝐿

6
[

2𝑐2 2𝑐𝑠 𝑐2 𝑐𝑠
2𝑐𝑠 2𝑠2 𝑐𝑠 𝑠2

𝑐2 𝑐𝑠 2𝑐2 2𝑐𝑠
𝑐𝑠 𝑠2 2𝑐𝑠 2𝑠2

] (1) 

 

where c and s denote cos(θ) and sin(θ), respectively, θ is the 

counter- clockwise angle measured with respect to the positive 

x-axis, ρ is the density of the material, A is the cross-sectional 

area, and L is the length of the element. 

Meanwhile, the stiffness matrix is derived under the 

assumption of linear elastic behaviour. The stiffness matrix 

used in global coordinates for member AB is given by: 

 

[𝐾𝐴𝐵]  =  
𝐸𝐴

𝐿
[

𝑐2 𝑐𝑠 −𝑐2 −𝑐𝑠
𝑐𝑠 𝑠2 −𝑐𝑠 −𝑠2

−𝑐2 −𝑐𝑠 𝑐2 𝑐𝑠
−𝑐𝑠 −𝑠2 𝑐𝑠 𝑠2

] (2) 

 

where E is Young's modulus, A is the cross-sectional area, and 

L is the element length.  

Similarly, the global mass and stiffness matrices for all five 

connected truss elements are formulated and subsequently 

condensed by applying suitable boundary conditions according 

to the idealization results in a 2×2 system of equations relating 

the translational degrees of freedom at the monitored node to 

the forces acting on the node due to the train. During a train 

passage, this node undergoes dynamic displacement, and the 

bi-axial accelerometer captures its response along the train 

movement (x-direction) and gravity direction (y-direction).  

Given that the displacement (ux and uy) and acceleration (ax and 

ay) responses are known, and the excitation is indirectly 

inferred from the train passage characteristics (fx and fy), the 

cross-sectional areas, which influence the mass and stiffness of 

each member, leave a unique imprint on the node’s dynamic 

response as reflected in: 

 

[
𝐾11 𝐾12

𝐾21 𝐾22
] {

𝑢𝑥

𝑢𝑦
} +  [

𝑀11 𝑀12

𝑀21 𝑀22
] {

𝑎𝑥

𝑎𝑦
} =  {

𝑓𝑥

𝑓𝑦
} (3) 

 

where 𝐾11 =
𝐸𝐴1

𝐿1
+

𝐸𝐴2

𝐿2
+

𝐸𝐴3𝑐2
2

𝐿3
+

𝐸𝐴5𝑐1
2

𝐿5
 ; 𝐾12 = 𝐾21 =

𝐸𝐴3𝑐2𝑠2

𝐿3
−

𝐸𝐴5𝑐1𝑠1

𝐿5
 ; 𝐾22 =

𝐸𝐴3𝑠2
2

𝐿3
+

𝐸𝐴4

𝐿4
+

𝐸𝐴5𝑠1
2

𝐿5
 and 𝑀11 =

 
𝜌𝐴1𝐿1

3
+

𝜌𝐴2𝐿2

3
+

𝜌𝐴3𝐿3𝑐2
2

3
+

𝜌𝐴5𝐿5𝑐1
2

3
 ;  𝑀12 = 𝑀21 =

𝜌𝐴3𝐿3𝑐2𝑠2

3
−

𝜌𝐴5𝐿5𝑐2𝑠2

3
;  𝑀22 =

𝜌𝐴3𝐿3𝑠2
2

3
+

𝜌𝐴4𝐿4

3
+

𝜌𝐴5𝐿5𝑠1
2

3
, are respective 

components of the effective stiffness and mass matrices. Here, 

c1 and s1 denote cos(θ1) and sin(θ1), c2 and s2 denote cos(θ2) and 

sin(θ2), respectively, and θ is the counter-clockwise angle 

measured with respect to the positive x-axis. 

Equation (3) represents a possible relation between the 

acceleration and the cross-sectional area of connected 

elements. The proposed framework finds this relationship 

between the measured acceleration and cross-sectional areas in 

a data-driven manner. 

5 RESULTS AND DISCUSSIONS 

This section presents the performance evaluation of the 

Autoencoder-DNN framework, focusing on data compression, 

reconstruction errors, system parameter estimation, 

computational efficiency, and anomaly detection. The model is 

trained and tested using 150 train pass datasets for each 

direction, with a 75%–25% train-test split, ensuring the model 

generalizes well to unseen data.  

 Autoencoder Performance and Reconstruction Loss 

Behavior 

The Autoencoder uses a validation set of a split ratio of 75%-

25% instead of the test set during training to monitor the 

reconstruction loss and ensure that the model generalizes 

effectively to unseen data. This is important, as the loss terms 

for the autoencoder should remain consistent across the training 

and validation sets to facilitate accurate compression and 

reconstruction. 

Figure 8 illustrates the training and validation loss curves, 

showing a smooth and stable convergence of order 10-3, which 

indicates that the latent space representation effectively 

captures the dominant structural features of the train-induced 

vibrations. The final loss values confirm that the compression 

process does not introduce significant deviations, making the 

latent representation reliable for subsequent DNN-based 

analysis. 
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Figure 8. Comparison of loss in the training set and in the 

validation set. 

Additionally, the method takes approximately 240 seconds to 

compress the acceleration data into the latent space for both 

directions, highlighting its effectiveness in data compression 

and computational speed. 

 DNN Model Parameter Estimation 

Once the Autoencoder compresses the frequency domain 

acceleration data into the latent space, the DNN model is 

trained using 75% of the dataset and subsequently tested on the 

remaining 25% of unseen data. The primary objective of the 

DNN model is to estimate the cross-sectional area of the truss 

members by minimizing the measurement loss function. Figure 

9 illustrates that during the training process, the MSE loss 

consistently decreases as the number of epochs increases, 

leading to stable convergence of the estimated parameters. 

Once stable convergence is achieved, while observing the 

parameter values in the training dataset, it is noticed that the 

cross-sectional area of the truss members converges to their 

true values. To interpret this result physically, for an idealized 

truss structure without structural damage, the cross-sectional 

area values should remain constant across all train passes. 

Figure 10 shows the area estimation of element (E2) for five 

train passes. It can be observed that the cross-sectional area is 

converging to its true value (reported in Table 2). Similarly, for 

all the train passes and for all the truss members considered, the 

results across the entire training dataset confirm that the 

estimated area values closely align with the expected true 

values. 

 

Figure 9. Convergence of measurement loss at each epoch. 

 

Figure 10. The cross-sectional area of element (E2) using the 

training data. 

5.2.1 Performance Evaluation of the DNN Model on the 

Test Data 

Once the DNN model is trained, its performance is evaluated 

using the test data. Figure 11 illustrates the values of the cross-

sectional area obtained from the DNN model for all the test 

datasets. The coefficient of variation (CoV) is computed for the 

estimated cross-sectional area for all the truss members and 

tabulated in Table 3. It is observed that the CoV values for all 

the truss members are less and identical. This uniformity in 

CoV shows that the DNN model exhibits consistent relative 

variability in its predictions across different members. Such 

behavior indicates stable model performance under test 

conditions, with no bias or irregularity in estimating cross-

sectional area. However, this observation also highlights the 

need for further analysis to ensure that the model is sufficiently 

sensitive to localized structural variations, and hence, the 

model is tested through false data simulating sensor fault, noise, 

and anomalies, as explained in the next section. 

Table 3. The table shows the coefficient of variation of the 

predicted cross-sectional area under test data. 

Parameter Coefficient of Variation (%) 

Element 1 0.18 

Element 2 0.18 

Element 3 0.18 

Element 4 0.18 

Element 5 0.18 

 

 

Figure 11. The cross-sectional area of the truss members for 

the test data. 
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Figure 12. Illustration of the false data for the DNN model, showing (a) the time-domain acceleration signal, (b) its frequency-

domain representation, (c) the latent space obtained from the Autoencoder, and (d) a comparison between the normalized 

reconstructed false data and original data, highlighting their differences.

 Computational Efficiency 

The DNN model employed in this study took approximately 

100 seconds to estimate parameters involving 150 train 

passages in both directions, emphasizing the model’s 

effectiveness in balancing accuracy and computational speed in 

parameter estimation. 

 Anomaly Detection Through False Data Injection 

To evaluate the robustness of the Autoencoder-DNN 

framework and its ability to detect inconsistencies in the input 

data, three false datasets are used in this study. These false data 

are provided to check whether the proposed framework can 

detect potential structural anomalies, sensor noise, or 

environmental influences, which introduce variations in the 

acceleration response in the on-field conditions. To be specific, 

the first false data replaces the train pass signal with data 

collected from a different node point, the second exhibits a 

faulty sensor that fails to capture the correct train pass signal, 

and the third represents an anomaly where the sensor is unable 

to record any valid data—potentially caused by false triggers. 

Figure 12 illustrates the procedure followed for preparing these 

false datasets prior to their input into the DNN model. It 

sequentially presents (a) the acceleration signal in the time 

domain, (b) its corresponding frequency-domain 

representation, (c) the latent-space representation obtained 

from the Autoencoder, and (d) a comparison between the 

reconstructed false data and original data from the trained 

Autoencoder, clearly highlighting differences between the two 

signals. When the latent space of the false data was passed onto 

the DNN model, the predicted cross-sectional area for all the 

truss members exhibited notable deviations, as shown in Table 

4. It is observed that the percentage deviation of the cross-

sectional area for all the truss members exhibits the same 

percentage change for the different false datasets, regardless of 

the specific member location. For false data 1, 2, and 3, the 

percentage deviation is approximately 4.30%, 1.10%, and 

3.30%, respectively. The statistically significant percentage 

change across members highlights the framework’s ability to 

detect gross inconsistencies in the input signals, though it also 

indicates a need for future enhancement to improve sensitivity 

to localize anomalies. It may be that localization would occur 

when multiple nodes are used. Thus, the proposed framework 

provides the identification of faulty sensor readings, 

environmental influences, or potential structural changes. 

However, the classification of the signal remains a challenge. 
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Table 4. The table shows the percentage deviation of the 

predicted cross-sectional area values with respect to the true 

cross-sectional area values for the false data. 

Parameter 

Percentage deviation from the true cross-

sectional area value (%) 

False data 1 False data 2 False data 3 

Element 1 4.30 1.10 3.30 

Element 2 4.30 1.10 3.30 

Element 3 4.30 1.10 3.30 

Element 4 4.30 1.10 3.30 

Element 5 4.30 1.10 3.30 

6 CONCLUSION 

This study introduced an Autoencoder-DNN framework for 

data-driven structural parameter estimation using train-induced 

vibration responses. The Autoencoder effectively compressed 

high-dimensional acceleration data in the frequency domain 

into a lower-dimensional latent space, preserving critical 

structural features while significantly enhancing computational 

efficiency. The DNN model, trained on the compressed latent 

representation, allows for accurate estimation of the cross-

sectional area of the truss members connected to the node point 

considered in this study. The model exhibited stable 

performance on test datasets, with low prediction errors and 

consistent coefficients of variation, indicating reliable and 

uniform estimation capabilities. Furthermore, the framework 

effectively detected inconsistencies when introduced with false 

datasets simulating sensor faults, noise, and anomalies. In all 

cases, uniform deviations in the estimated cross-sectional area 

confirmed the model’s robustness in identifying global 

anomalies in the input data. 

Overall, the proposed framework offers an Autoencoder-

based compression, supervised DNN model, and automated 

anomaly detection, making it a scalable and computationally 

efficient tool for large-scale truss structures in real-world 

applications. Future work will focus on improving the 

framework’s sensitivity to localize damage and integrating the 

full-scale truss bridge model and extended datasets to further 

examine the framework’s generalization capability. 
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