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ABSTRACT: The integrity management of bridges is crucial for ensuring public safety and economic stability. In practice, 

Structural Health Monitoring data recorded during bridge operation is increasingly used to guide maintenance decisions. However, 

incorporating structural damage information more effectively can lead to optimal strategies for integrity management. In this 

study, we employ Bayesian Model Updating to develop a more reliable structural model. The updated finite element model is then 

used to train a variational autoencoder-based surrogate model for damage detection, localization, and severity estimation. The 

variational autoencoder model establishes a link between damage-related features and the modal properties derived from SHM 

data. Damage information supports maintenance decision-making through a predefined decision rule.  

KEY WORDS: Structural health monitoring, damage detection, surrogate models, structural integrity management, maintenance 

decision. 

 

1 INTRODUCTION 

Bridges and viaducts are fundamental components of 

transportation networks, ensuring connectivity and economic 

stability. However, their structural integrity is continuously 

challenged by aging, increasing traffic loads, and 

environmental stressors. Effective bridge health management 

can benefit from continuous monitoring and strategies to detect 

potential damage and mitigate the risks before they 

compromise safety.  

Structural Health Monitoring (SHM) has emerged as a 

crucial tool for assessing bridge conditions in real-time, 

providing early detection of structural anomalies. The design 

and implementation of SHM systems for bridge integrity 

management were proposed in the study by Limongelli et al. 

[1]. SHM system provides continuous information about 

structural properties such as natural frequencies, damping 

ratios, and mode shapes. However, directly labeling the 

obtained modal properties as belonging to either damaged or 

undamaged states from data collected on real-world structures 

is challenging. This difficulty arises because the changes in 

modal features can also result from various factors not related 

to damage, such as environmental conditions, operational 

variability, or sensor noise. While some studies explored 

damage detection and localization through the modal properties 

[2], a fundamental part of damage detection strategies entails 

the use of physics-based models, which provide a basis for 

understanding the overall structural behavior under varying 

conditions. By integrating SHM data into physics-based 

formulations, the models are updated to represent the actual 

bridge conditions, enhancing structural integrity management, 

improving maintenance planning, and decision-making. 

However, the computational cost of updating a finite element 

model in real-time can be very high. Surrogate models provide 

a computationally efficient alternative to complex physics-

based simulations. 

In this paper, an approach based on Bayesian Model 

Updating (BMU) using Transitional Monte Carlo Markov 

Chain is implemented to update the structural model of a bridge 

using measured data. This approach refines the bridge model 

through the incorporation of modal properties extracted from 

SHM data, by reducing the discrepancy between measured and 

calculated modal properties. Thanks to the systematic updates 

of the structural parameters, the model accurately represents the 

bridge’s current state.  The high-fidelity and calibrated FE 

model is then used for training a surrogate model. Namely, the 

FE model is used to simulate several damage scenarios and 

generate the relevant response of the bridge, thus providing the 

necessary training data for the surrogate models. Several 

surrogate modeling approaches have been explored in the 

literature, with the most used ones including Kriging models, 

artificial neural network (ANN)-based surrogate models, and 

reduced order models [2], [3], [4], [5]. In this paper, a 

Variational Autoencoder (VAE) architecture is adopted to 

effectively capture complex, high-dimensional patterns in the 

structural response data. Unlike the other autoencoders, VAE 

provides a probabilistic latent representation, allowing better 

generalization, which is particularly valuable for long-term 

SHM tasks [6]. Furthermore, the use of fully connected layers 

in classifiers and regression blocks enables the estimation of 

damage severity and location directly from the latent space. 

2 METHODOLOGY 

The framework proposed in this paper integrates SHM 

information, a Bayesian finite element (FE) model updating 

approach, and surrogate modelling techniques to efficiently 

localize and quantify damage. A BMU framework is first 

employed to calibrate a high-fidelity FE model using SHM 

data, refining the model parameters to closely reflect the real 

structural behavior. Using the calibrated FE model, various 

damage scenarios are simulated to generate labeled datasets of 
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modal responses. These datasets are then used to train a 

Variational AutoEncoder (VAE)-based surrogate model, which 

learns a latent representation of the relationship between modal 

features and damage states. Subsequently, the trained VAE 

model is utilized to obtain fast and scalable predictions of 

damage scenarios during online monitoring, bypassing the 

computational burden of running FE simulations in real time. 

This integrated approach bridges the gap between accurate 

physics-based modeling and the practical demands of efficient 

damage diagnosis in SHM systems. The overall architecture of 

this framework, including the surrogate model construction and 

its application for decision support, is illustrated in Figure 1.  

After being trained, the surrogate model is capable of 

mapping newly acquired experimental modal features to 

damage location and severity, providing damage scenario 

indicators that can be used for decision support. This hybrid 

approach combines physics-based model updating for data 

generation with data-driven surrogate modeling for inference. 

It ensures a computationally efficient yet robust damage 

detection system for bridges.  

 

 
Figure 1: General workflow for online damage detection. 

 

 FE calibration and simulation of damage scenarios 

Bayesian Model Updating (BMU) is employed to calibrate the 

FE model of the bridge using measured modal properties. The 

overall BMU workflow is indicated in Figure 2 that illustrates 

the step-by-step process of refining model parameters, from 

prior assumptions to the convergence of posterior distributions. 

The process aims to reduce discrepancies between 

experimental and simulated dynamic characteristics by 

updating uncertain model parameters, thereby enhancing the 

accuracy and predictive capabilities of the model. In this study, 

BMU is performed using Transitional Markov Chain Monte 

Carlo (TMCMC). TMCMC is a sampling-based Bayesian 

inference method that allows efficient estimation of the 

posterior distribution of model parameters, even in high-

dimensional or nonlinear problems [7], [8]. 

2.1.1 Parameter Selection and Prior Definition 

Parameters with high sensitivity to modal responses are 

selected for updating, specifically, the vertical stiffnesses of the 

girders. Each parameter 𝜃 is assigned a prior distribution 𝜋(𝜃), 

representing the initial uncertainty in its value based on 

engineering knowledge.  

2.1.2 Likelihood Function Construction 

The likelihood function 𝐿(𝐷|θ) of data 𝐷 quantifies the 

agreement between simulated and measured modal data, 

including both natural frequencies and mode shapes. Mode 

shape similarity is evaluated using the Modal Assurance 

Criterion (MAC). The likelihood is defined as indicated in Eq. 

1.  

𝐿(𝐷|θ) = exp (−
1

2
∑ 𝑤𝑖 (

𝑓𝑚,𝑖 − 𝑓𝑠,𝑖

σ𝑖

)
2

𝑖

−
1

2
∑ 𝑤𝑗

𝑗

log(1 − MAC𝑗)) (1) 

where 𝑓𝑚,𝑖 and 𝑓𝑠,𝑖  are measured and simulated frequencies, σ𝑖 

represents uncertainty, and 𝑤𝑖 , 𝑤𝑗   are weighting factors.  

2.1.3 Transitional Sampling via TMCMC 

TMCMC introduces a sequence of intermediate, tempered 

distributions shown in Eq. 2. 

πβ(θ|𝐷) ∝ π(θ)𝐿(𝐷|θ)β (2) 

where 𝛽 ∈  [0,1] gradually increases from 0 (prior only) to 1 

(full posterior). At each state, samples are reweighted and 

resampled based on their likelihood, allowing efficient 

exploration of the parameter space. The process continues until 

the convergence is achieved. 

2.1.4 Posterior Sampling and Model Updating 

During the TMCMC process, the FE model is continuously 

evaluated as parameter samples are drawn and updated through 

each intermediate distribution. At every step, the simulated 

modal properties are compared with experimental data to assess 

the quality of the current model approximation. The iterative 

approach allows progressive refinement of the model, ensuring 

that the final set of posterior samples yields a calibrated model 

that reliably captures the dominant dynamic behavior of the 

structure. Despite the minor residual discrepancies (e.g. in 

higher modes), the updated model serves as a high-fidelity 

basis for generating synthetic damage scenarios, which provide 

the labeled data needed to train the surrogate model described 

in the following sections.  

 

 

Figure 2: Bayesian Model Update diagram 

In this study, vertical stiffnesses were chosen as updating 

parameters due to their high sensitivity to vertical and torsional 

modes identified in the experimental data. A total of 8 stiffness 
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parameters (one per each girder) were assigned uniform prior 

distributions with ±50% bounds from nominal values. 

TMCMC was implemented with 50 intermediate 𝛽 steps and 

1000 samples per step. Convergence was evaluated using the 

coefficient of variation of the likelihood, with a threshold of 5% 

at each stage.  

 

 Surrogate model 

The calibrated FE model is used to generate labelled dataset for 

several damage scenarios, which constitute the training set for 

the surrogate model. In this work, a Variational Autoencoder 

(VAE) is employed to learn a latent representation of modal 

properties across the various damage scenarios. The model is 

trained on synthetic modal data representing damage states of 

increasing severity and is developed for real-time estimation of 

damage location and severity based on updated modal 

properties. While this structure supports unsupervised feature 

learning, it has incorporated supervised outputs, providing 

reconstructed modal properties and predicted damage features.  

 

Figure 3: VAE architecture 

The VAE consists of an encoder, which maps the modal 

properties (x) to a latent space (   z), and a decoder, which 

reconstructs the modal properties while ensuring regularization 

through a Kullback-Leibler (KL) divergence term. This term, 

commonly used in VAE architecture, encourages the latent 

variables to follow a normal distribution and helps the model 

learn meaningful and general features [9]. In addition to the 

conventional VAE architecture, two fully connected layers (FC 

Layers) are incorporated as a part of supervised feature 

learning: one serves as a classifier for identifying the location 

of damage y1, and the other functions as a regressor to estimate 

damage severity levels y2, as illustrated in Figure 3. 

The input to train the surrogate model comprises modal 

frequencies and normalized mode shapes, extracted from 

modal analysis. The encoder consists of three fully connected 

layers with Rectified Linear Unit (ReLU) as a nonlinear 

activation function mapping the input to a latent space of 

dimension 32. The ReLU is widely used for its simplicity and 

effectiveness in preventing vanishing gradients. Two separate 

fully connected layers use the mean and log variance of the 

latent distribution to establish a relationship between the latent 

features and the damage locations and severity levels. The 

decoder follows a symmetric structure to reconstruct the input. 

Additionally, two parallel output layers predict damage 

locations and severity. Similar to the approach proposed by 

Yessoufou and Zhu [10], who employed a convolutional neural 

network-LSTM with distinct loss functions for damage 

classification and severity estimation, the proposed architecture 

treats damage location as a classification problem supervised 

with cross-entropy loss, while damage severity estimation is 

formulated as a regression task that predicts severity levels 

between 0 and 1 and is optimized using mean squared error. 

The model is trained using a weighted loss function combining: 

1. Reconstruction Loss: Mean Absolute Error (MAE) 

between input and reconstructed modal properties. 

2. KL Divergence Loss: Enforcing latent space 

regularization. 

3. Classification Loss: Cross-entropy loss for damage 

location prediction. 

4. Regression Loss: Mean Squared Error (MSE) for 

damage severity estimation. 

A cyclical KL annealing strategy is implemented, gradually 

increasing the weight of the KL term to improve latent space 

disentanglement [11]. To enhance the training performance, 

several incremental analyses were conducted, based on which 

the Adam optimizer was selected [12]. Additionally, the initial 

learning rate was set to 0.001 and configured to adaptively 

decrease throughout different phases of training to maintain 

stable convergence and improved generalization.  

 Decision-Making approach  

A concept for a decision-making approach is proposed in 

Figure 4, drawing inspiration from existing SHM-informed 

response protocols proposed by Çelebi [13].  

At the core of this approach lies a threshold-based logic that 

interprets the results produced by the VAE model. The VAE 

model identifies the most likely damaged locations and 

estimates the damage severity. For each identified component 

as the location of damage, the damage severity is evaluated 

individually through a decision-making layer that maps 

severity levels to specific actions. These outputs are 

contextualized through a decision-making layer that maps each 

damage severity level to a specific action. Namely, the outputs 

of the VAE (relevant to damage location and severity) are 

evaluated against predefined thresholds. The exceedance of a 

threshold triggers a specific action (continued monitoring, 

issuing a warning, or initiating a repair procedure). These 

layered interpretations add practical value to the detection 

results and allow for automatic mapping of evolving damage 

states into operational decisions. Exemplary actions are 

depicted in Figure 4. The VAE model provides two key 

outputs, which are the damage location and the damage 

severity. Each damaged component is associated with an 

evaluated damage severity (kred) and a warning indicator. Green 

indicates normal condition, yellow suggests the need for 

inspection, and red prompts immediate repair or closing bridge 

suggestions, depending on severity.  The goal of this approach 

is to support a straightforward integration of SHM-informed, 

rule-based maintenance strategies into bridge integrity 

management, ensuring that timely and proportional 

interventions are triggered as the condition of the structure 

evolves. The definition of the threshold is a critical aspect of 

this approach and must be carried out based on reliability 

analysis for specific limit states defined for the bridge.   

Encoderx

µ

σ

ε

Decoderz x

FC Layers

FC Layers

y1

y2

Modal Properties

Damage Location

Damage Severity 

Level



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-145 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 947 

3 CASE STUDY 

The procedure described in the previous section has been 

applied to a continuously monitored bridge located in northern 

Italy. The bridge consists of 15 spans, 11 of which are 

instrumented with acceleration sensors. Each monitored span is 

equipped with 5 to 6 acceleration sensors on the deck, 

strategically placed to capture the bridge’s dynamic response 

under operational conditions.  

 

 

Figure 4: Decision-making framework based on damage level 

threshold 

To identify the modal parameters from recorded responses, 

an online automatic Stochastic Subspace Identification (SSI) 

method has been developed. To ensure robust tracking of 

modal properties over time, a post-processing step involving 

modal clustering is employed. The identified modal properties 

are clustered using a hierarchical clustering algorithm based on 

a predefined Modal Assurance Criterion (MAC) and frequency 

similarity threshold. This process helps distinguish consistent 

modes from spurious ones, reducing uncertainties in the 

estimated modal parameters 

The approach follows the clustering methodology detailed in 

previous works by Magalhães et al. [14] which has 

demonstrated its effectiveness on SSI-based modal tracking in 

bridge monitoring applications. 

A detailed finite element model of the bridge was built using 

the OpenSees software [15], and calibrated by applying the  

Bayesian model updating process. During the BMU, vertical 

bending stiffnesses were selected as updating parameters, 

based on their higher sensitivity. This choice was made since 

the experimental mode shapes of the selected bridge are 

predominantly in the vertical direction, including vertical and 

torsional modes. These stiffness parameters were iteratively 

updated using the Transitional Markov Chain Monte Carlo 

(TMCMC) algorithm described in section 2.1.  The resulting 

frequencies and MAC values before and after the BMU are 

indicated in Table 1. The mode shapes obtained from 

experimental data and the updated FE model are shown in 

Figure 5 and Figure 6, respectively.  

After updating, the FE model showed improved agreement 

with the experimental modal properties. The first and second 

modes reached MAC values of 99.8% and 94.2%, respectively. 

However, the third mode retained a relatively low MAC value 

of 36.1%, which indicates limited consistency. This 

discrepancy is attributed to reduced sensitivity of vertical 

stiffness to higher terms not captured by the selected 

parameters. 

Despite this, the updated FE model provides a sufficiently 

accurate representation of the bridge’s dominant dynamic 

behavior, and it is used exclusively to generate synthetic 

damage scenarios for training the surrogate model. Since both 

training and test datasets are generated from the calibrated 

model, the surrogate model’s performance reflects the behavior 

encoded in the updated FE model, while remaining independent 

of direct comparisons with experimental data. 

Table 1: Modal properties comparison 

 Experimental 

FE Model 

before 

BMU 

FE Model 

after 

BMU 

 

Mode 

Number 

Frequency 

(Hz) 

Frequency 

(Hz) 

Frequency 

(Hz) 

MAC 

value 

(%) 

1 1.56 1.70 1.75 99.8 

2 2.50 1.82 2.42 94.2 

3 3.63 3.42 3.76 36.1 

 

Figure 5: Experimental mode shapes 

 

Figure 6: Updated FE mode shapes 
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 Construction of the surrogate model and damage 

identification 

The proposed damage identification framework is applied to a 

single span to demonstrate its effectiveness in damage 

detection and integrity assessment. The Variational 

Autoencoder (VAE) model was trained and applied using 

numerically simulated data representing various damage 

scenarios with different damage locations and severity.  

To generate the training dataset for the VAE model, damage 

was simulated in the FE model through the reduction in vertical 

rotational stiffness. For each damage scenario, the FE modal 

properties were obtained by dividing the span into 20 parts and 

applying the reductions to the corresponding vertical rotational 

stiffnesses. 

Damage severity levels were defined as reductions ranging 

from 10% to 70% in the corresponding vertical rotational 

stiffness values.  For each segment and each severity level, a 

separate damage scenario was created. In total, 140 damage 

scenarios were generated (20 segments × 7 severities). Table 2 

summarizes the segments and the associated severity levels 

considered in the training data generation. To enhance the 

robustness of model learning, random noise was artificially 

added to the modal properties during the training data 

generation process. During the training phase, the surrogate 

model was trained using the labeled modal properties (natural 

frequencies and normalized mode shapes) corresponding to the 

various considered damage scenarios. The structural model was 

modified for each damage scenario, and a modal analysis was 

performed to obtain corresponding modal properties, enabling 

the VAE to learn patterns associated with different damage 

levels and locations. After the generation of the training dataset, 

it was divided into 80% and 20% portions, with 80% used to 

train the model, remaining 20% used to test the model, 

providing an unseen dataset to objectively evaluate the model’s 

learning performance  

It is acknowledged that the damage scenarios used in this 

study are synthetically generated and not validated against 

experimental damage. While the applied stiffness reduction 

levels serve to explore the sensitivity and robustness of the 

surrogate model, such values may not reflect the typical 

damage progression in real-world structures. These scenarios 

are intended to span a wide range of conditions, including rare 

or extreme cases. 

Table 2: Summary of the damage scenarios 

Damage Scenario Segment No Reduction Factors 

DS1 1 From 0.1 to 0.7 

DS2 2 From 0.1 to 0.7 

DS3 3 From 0.1 to 0.7 

… … … 

DS20 20 From 0.1 to 0.7 

 

 Damage identification 

The capability of the surrogate model to identify damage was 

tested using unseen test data, that is, samples of modal 

parameters corresponding to the considered damage scenarios, 

not used in the training phase. Results are represented by the 

confusion matrix in Figure 7. The confusion matrix compares 

the true and predicted damage locations, where diagonal 

elements represent correct predictions and off-diagonal 

elements indicate misclassification in the test datasets.    

 

 

Figure 7: Confusion matrix for damage locations 

In Figure 7, predicted and simulated (ground truth) damage 

locations are represented along the x and y axes by the element 

indices in the FE model. The diagonal elements of the matrix 

indicate the number of samples for which the damage location 

was correctly identified. 

It is important to note that both training and testing datasets 

for the surrogate model were generated from the updated FE 

model, which was calibrated using experimental model 

properties. Although the updated model still presents some 

discrepancies, particularly in higher modes, the surrogate 

model operates entirely within the dynamic response space 

defined by the updated model. To enhance the robustness of the 

algorithm, artificial noise was introduced into synthetic modal 

data during both training and testing. This ensures that the 

model is not overfitted to idealized cases and can generalize 

across realistic measurement uncertainty, while maintaining 

consistency with the physical behavior captured by the updated 

FE model. 

The model was tested on scenarios involving progressive 

damage evolution, effectively capturing and tracking the 

increasing severity over time. The data for the evolving damage 

severity was gathered from the unseen test dataset to indicate 

the model’s performance in this context. The results are 

presented in Figure 8 where the vertical axis represents stiffness 

reduction factors. The predicted damage severity follows this 

predefined discretization to ensure the consistency between 

training and testing data. Additionally, Figure 8 illustrates the 

damage detection results over an evolving damage scenario, 

highlighting how the proposed framework translates predicted 

damage severity levels into actionable maintenance decisions. 

Each step in Figure 8 corresponds to a synthetic damage state 

generated by reducing the stiffness in the model. These steps 

represent hypothetical damage progression sequences, used to 

demonstrate the ability of the VAE model to track increasing 

severity.  
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Figure 8: Damage level identification results 

 Decision Making 

For the considered case study, the thresholds that trigger 

different management actions for each bridge component have 

been defined in terms of the stiffness reduction factor, kred, and 

are reported in Table 3. To these thresholds correspond the 

damage scenarios considered for the training of the VAE 

model. 

 

Table 3: Thresholds for stiffness reduction 

kred  Maintenance management action 

0.1 normal condition  

0.2 structural inspection  

0.3 component repair  

0.4 cautionary bridge closing  

 

It is also worth mentioning that the maintenance actions 

proposed here are not intended to restore the load-bearing 

capacity but rather to compensate for localized stiffness 

reductions that may affect the bridge’s dynamic behavior and 

long-term serviceability. The decision framework relies on 

stiffness reduction as a measurable proxy for damage 

progression, which triggers maintenance interventions aimed at 

preserving structural performance and reducing the risk of 

further deterioration. This approach reflects a conservative, 

condition-based strategy focused on sustaining system stiffness 

and structural continuity, even before reaching strength-based 

limit states. 

4  CONCLUSION 

This paper presents an online damage identification approach 

based on a Variational Autoencoder surrogate model. The 

proposed methodology combines model-based data generation 

with surrogate modelling to enhance the efficiency of the real-

time data-driven damage identification without reducing 

accuracy. 

To support timely maintenance decisions, a concept for a 

structured decision-making framework is proposed. The 

framework maps the structural condition into specific 

management actions. This structured, rule-based approach 

enables scalable, real-time decision support under varying 

operational scenarios.  

Future work will explore the integration of stochastic 

deterioration models into the Finite Element model to refine 

long-term maintenance strategies, providing a more effective 

approach to bridge infrastructure management. The 

investigation of threshold values consistent with pre-defined 

limit states of the bridge will be a further research step. 
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