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ABSTRACT: Structural monitoring is crucial for extending the service life of civil structures. Vibration-based monitoring is 

widely employed across various applications, leveraging both traditional and innovative sensing technologies. Among these, 

video-based methods have emerged as a promising and cost-effective approach for evaluating structural displacements at critical 

points. This paper presents a novel vision-based procedure enabling accurate three-dimensional structural displacement 

measurement using only a single camera. The method applies to assessing dynamic effects on bridges subjected to dynamic loads. 

The algorithm extracts displacements by tracking predefined targets over time. Special attention is given to reconstructing small 

3D displacements from videos that inherently capture two-dimensional projections of the scene. The procedure is validated 

through experiments on a steel frame in a controlled environment, comparing displacement time histories with imposed vibrations 

from a shaking table. The originality of this work lies in achieving accurate 3D measurements with minimal equipment, offering 

a practical and innovative solution for structural health monitoring. 

KEY WORDS: Vision-based monitoring; Structural vibrations; Displacement tracking; Laboratory tests; Experimental validation.

1 INTRODUCTION 

Structural Health Monitoring (SHM) is a crucial component of 

modern infrastructure management, offering valuable insights 

into the condition of structures and helping prevent catastrophic 

failures while extending their service life. SHM utilizes a 

combination of sensors, data analysis methods, and 

computational models to evaluate the performance and safety 

of civil infrastructure such as bridges, buildings, dams, and 

other critical structures. The main objective of SHM is to detect 

changes in the structural integrity or behaviour of a structure, 

often before visible damage occurs, ensuring continued safety, 

preventing collapses, and reducing maintenance and repair 

costs. 

SHM systems typically employ a range of sensors to monitor 

structural responses, such as strain, displacement, and 

acceleration. These sensors, including accelerometers, strain 

gauges, displacement transducers, and fibre optic sensors, 

generate reliable data but they often offer limited spatial 

coverage and necessitate the installation of dense sensor 

networks, requiring the structure to be accessible. This can pose 

challenges during extreme events or when access is restricted, 

such as during periods of heavy traffic, in remote locations, or 

unsafe structures. A significant advancement in SHM has been 

the integration of contactless technologies, which enable the 

installation of sensors without the need for extensive cabling 

and, therefore, without interrupting the operation of the 

structure [1, 2, 3].  

These contactless systems allow for easier deployment, even 

in hard-to-reach or remote areas. With that premise, non-

contact monitoring has become increasingly popular. 

Contactless technologies for civil monitoring encompass a 

range of methods, including global navigation satellite systems 

(GNSS) [4, 5], satellite remote sensing [6, 7], terrestrial radar 

interferometry [8], and vision-based techniques [9]. Among 

these, vision-based techniques stand out as the only remote 

sensing approach that can reduce dependence on expensive 

industrial products [10]. Indeed, these methods have shown 

considerable promise even when using consumer-grade devices 

such as standard video cameras or smartphones [11, 12]. This 

progress is largely attributed to the development of low-cost 

technologies that provide high resolution and high frame rates, 

enabling accurate monitoring of large-scale structures in both 

static and dynamic fields.  

These technologies use video feeds to track structural 

displacements, vibrations, and deformations, providing a 

flexible, cost-effective alternative to traditional methods and 

potentially eliminating the need for direct contact with the 

structure. The primary objective of such a system is to 

automatically and reliably transform video data into actionable 

insights. The fundamental concept behind vision-based 

monitoring is simple: a video of the structure being monitored 

is recorded, and the individual frames are analyzed, either in 

real-time or afterward, to extract motion data. This process 

generates displacement time histories, which can be further 

used to calculate strains, velocities, and accelerations. Vision-

based methods offer several technical advantages, such as 

directly measuring displacements, which eliminates the need 

for the double integration of accelerations. Additionally, a 

single camera sensor can provide distributed monitoring, 

enabling the extraction of displacement data from multiple 

points on the structure within one video recording. 

Beyond these technical benefits, the vision-based approach 

allows for substantial cost savings and significantly reduced 

setup efforts compared to traditional monitoring systems. Due 

to these advantages, vision-based techniques have garnered 

increasing attention in civil engineering research. Recent 

studies, including those by [13, 14, 15, 16], extensively review 

vision-based applications, including tests on bridges [17, 18, 

19], and footbridges, [20, 21, 22]. 

A vision-based monitoring campaign and set up requires 

careful consideration and pre-planning, tailored to the specific 

structure being monitored. In civil engineering, two-

dimensional measurements are typically favored because of 

their practicality and effectiveness. These measurements are 
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commonly employed to monitor vertical and transverse 

vibrations of bridges, as well as the horizontal displacements of 

buildings and towers. In vision-based applications, a-priori 

estimating the expected displacements of the structure is crucial 

for selecting the right camera parameters and determining the 

optimal camera-to-structure distance, ensuring accurate 

detection of displacements. While a single camera is usually 

sufficient for detecting in-plane movements, capturing the full 

3D motion of all relevant points can be challenging. Typically, 

this requires the use of multiple synchronized cameras, each 

focusing on different parts of the structure. Differently, the 

proposed procedure enables the reconstruction of 3D motion 

using just a single camera. This approach simplifies the 

installation, eliminates the need for video synchronization and 

the geometrical merging required in stereovision. 

In addition to the camera(s), it is essential to identify the 

sections of the structure to be monitored. In this regard, it is 

possible to choose intrinsic notable elements of the structure 

itself [15, 23], such as prominent details, corners, holes, or 

bolts, or install artificial high-contrast targets on the sections of 

interest. The first option does not require access to the structure, 

avoiding traffic disruption, but the second option generally 

provides more accurate results. 

While highly effective in many applications, vision-based 

monitoring is featured by critical aspects that cannot be 

overlooked. A key limitation is the sensitivity to environmental 

conditions, such as vibrations of the camera or its support due 

to user intervention or wind, non-uniform air refraction caused 

by temperature differences between the camera and the 

monitored object, ambient light condition, weather, and 

visibility, all of which can affect data accuracy. Literature on 

the assessment of environmental uncertainties in vision-based 

monitoring includes theoretical analyses and laboratory testing 

[16, 24], but outdoor experiments are still limited. 

The accuracy of measurements relies not only on the camera 

technical specifications (hardware) but also on video post-

processing (software), which includes challenging tasks such 

as camera calibration, target tracking and pixel-to-metric 

conversion. This paper presents a vision-based approach for 

accurately assessing the condition of civil structures and 

infrastructure, with particular focus on the transformation of 

image units into real-world units, which is crucial in large-scale 

civil constructions where perspective distortions can 

significantly affect measurement accuracy. Aiming to propose 

a reliable and validated vision-based method for real-world 

applications, this study evaluates the procedure in a controlled 

environment, focusing on detecting the dynamic displacement 

of a laboratory steel frame subjected to controlled shaking. For 

validation purposes, the vision-based results are compared to 

reference displacements, highlighting the potential of this 

method for accurate monitoring. 

The paper is organized as follows: Section 2 outlines the 

procedure framework, detailing each step of the proposed 

method, from the setup of the monitoring campaign to the post-

processing of the recorded video. Section 3 presents the 

experimental test, specifically designed to assess the 

performance of the procedure across different camera-to-

structure distances. Finally, Section 4 addresses conclusions 

and future perspectives. 

2 PROCEDURE FRAMEWORK 

The proposed vision-based procedure aims to determine the 

actual dynamic displacement of a structure within its reference 

system, effectively filtering out camera vibrations and ensuring 

independence from the camera position and orientation.  

The vision-based procedure relies on different transformation 

of coordinates. To provide clarity, the reference systems 

involved are described progressively as follows: 

1. The 2D image reference system (π), which is related to 

camera sensor reference system by means of the focal 

length (f) and optical center (o) in a camera pinhole model. 

Specifically, the image reference system can be scaled and 

mirrored (with respect to the optical center) in order to 

obtain the sensor reference system. The image coordinates 

of this system are denoted as η and ξ. 

2. The 3D real-world reference system (W) located in the 

optical centre, which represents millimeter displacements, 

derived from pixel displacements via a three-dimensional 

mapping process. One axis of the system points in the 

viewing direction of the camera, along the optical axis. The 

remaining axes define the plane orthogonal to the optical 

axis, representing the front side of the camera. 

3. The structure reference system defined by the coordinates 

(x, y, z), which uniquely defines displacements along the 

main directions where structural motion occurs, ensuring 

that the results are independent of the camera pose. 

The extraction of displacements within the image-plane (π) 

is straightforward and it is carried out by comparing image 

coordinates (η, ξ) across sequential frames. However, deriving 

the displacement time series in the structure reference system 

requires careful consideration of several key aspects. 

 These include the precise calibration of camera intrinsic 

parameters, accurate detection and frame-by-frame tracking of 

the target position within the image plane, establishing the 

correspondence between 2-D points in the image coordinate 

system (π) and their corresponding 3-D points in the real-world 

coordinate system (W) to account for potential perspective 

effects, roto-translating the results to align with the motion axes 

of the structure being analyzed, and filtering out unintended 

camera shaking to ensure measurement reliability.  

To this end, a brief overview of the procedure is provided as 

follows:  

• Stage 1: Monitoring set-up. 

• Stage 2: Calibration of the camera. 

• Stage 3: Post-processing of the recorded video, with the 

detection and the tracking of specific features. 

• Stage 4: Perspective-3-Points method to establish the 

relationship between 2-D coordinates in the image-plane 

(π) and their corresponding 3-D points in the real-world 

(W). 

• Stage 5: Transformation from real-world (W) to structure 

(x, y, z) reference system. 

• Stage 6: Filtering of camera unintended vibrations. 

 Stage 1: Monitoring set-up 

A vision-based monitoring system requires careful pre-

planning based on the specific characteristics of the structure 

under observation. First and foremost, it is essential to identify 

the sections of the structure to be monitored, with each selected 

section being associated with distinguishing features to be 
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tracked. These may either be intrinsic, notable characteristics 

of the structure itself or artificial high-contrast targets placed in 

areas of interest, yielding more accurate results at the expense 

of the need to directly access the structure. Specifically, the 

procedure is designed for high-contrast artificial targets 

featuring a checkerboard pattern.  

Additionally, it is crucial to estimate the expected structural 

displacements, as the magnitude of these displacements helps 

determine the necessary level of accuracy. This, in turn, guides 

the selection of the camera specifications, including the 

camera-to-structure distance, which depends on factors such as 

obstacles or finding a stable vantage point; the optical lenses 

with an appropriate range of focal length (f) to ensure the 

desired field of view at that distance; and the frame rate, 

selected to adequately sample the expected vibration 

frequencies. For civil structures such as bridges and buildings, 

dominant modal frequencies typically lie below 10 Hz, 

indicating that frame rates of 30 frames per second (FPS) are 

generally adequate. This allows for the utilization of consumer-

grade cameras, which is increasingly feasible thanks to recent 

technological advancements. 

 

 Stage 2: Calibration of camera parameters 

Calibrating camera parameters is a crucial step for 

understanding how the sensor captures and processes visual 

data. In the current procedure, the calibration is performed 

according to the diffused approach proposed in [25]. This 

involves determining several parameters, including mm-to-

pixel transformation factor (from sensor to image reference 

system), focal length (f), and lens distortion coefficients (which 

account for geometric distortions introduced by the lens). 

Calibration outcomes will be employed in Stage 4 for the 

derivation of the relationship between 2-D points in the image-

plane (π) and their corresponding 3-D points in the real-world 

(W). 

 Stage 3: Post-processing of the recorded video 

Video post-processing is composed of three basic steps: 

definition of the Regions of Interest (ROIs), feature detection 

and feature tracking. 

ROIs are defined in the first frame of the video as areas 

surrounding specific targets located on the structure or on the 

ground. Targets on the structure are key points of interest for 

dynamic characterization, while targets on the ground are used 

for camera vibration filtering.  In the application case study, 

checkerboard targets are adopted. 

The definition of a ROI for each target allows to narrow the 

operational area within the video frames, where the features of 

the targets are detected, thus accelerating the automated 

analysis. The defined ROIs are managed as matrices of pixels, 

where each pixel is characterized by its 2-D coordinates 

(expressed in pixels relative to the frame upper-left corner) and 

a unique RGB intensity value. 

The next step involves the detection of sparse feature points, 

also known as key points, which characterize the digital 

representation of each target. A key point is generally a small 

region of the image characterized by unique and invariant 

features, described by a matrix or a vector that encodes its 

characteristics. A wide variety of key point types have been 

proposed in the literature, along with specific algorithms for  

  

Figure 1. Feature detection via Harris function. 

detecting and describing them [15]. In the presented procedure, 

the Harris-Stephens algorithm [26] is used to detect the internal 

corners of each checkboard target (see Figure 1 for an 

illustrative example). A corner represents the intersection of 

two edges, where an edge is characterized by a sharp change in 

image brightness. In addition to their distinctiveness due to 

RGB intensity contrast, corners exhibit geometric invariance 

properties, making them robust features for various 

applications. Their stability under transformations such as 

translation, rotation, and changes in scale or illumination 

enhances their suitability for tasks like detection and tracking. 

Once the checkboard corners are identified in the initial 

frames of the video, their locations in the subsequent frames are 

tracked with the Kanade-Lucas-Tomasi algorithm [27, 28], a 

well-established technique for visual tracking applications. In 

this process, the movement of the key points is determined 

through optical flow estimation. The output of this stage 

consists of a time series of coordinates in pixel units, for each 

corner of every checkboard target. 

It should be carefully considered that the obtained 

displacement time series η and ξ solely represent the motion of 

the features within the image-plane (π). To determine the actual 

displacements of the structure, additional analysis is required, 

such as establishing the relationship between 2-D points in the 

image-plane (π) and their corresponding 3-D points in the real-

world (W), mapping the movements to the real-world 

coordinate system and accounting for any unintended camera 

shaking. 

 Stage 4: Perspective-3-Points method to relate the 2-D 

image-plane coordinates to 3-D the real-world position 

The mapping of the observed 2-D image-plane (π) coordinates 

into their actual 3-D real-world positions can be obtained by 

solving the so-called Perspective-n-Point (PnP) problem for the 

target corner coordinates at each frame. This implies to 

determine the 3D position and orientation of the camera based 

on a set of n 2D image points and their known corresponding 

3D world coordinates. This is a fundamental problem that was 

first explored in the photogrammetry literature and later 

extended to the field of computer vision. The P3P method is a 

specific case of the PnP problem, where n = 3, namely the 

camera pose is computed according to the correspondence 

between 3 points. 
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Figure 2. Geometric interpretation of the P3P method. 

The solution of the P3P framework used here has its origins in 

the studies of Grunert [29], and for nearly two centuries it has 

remained relevant in various research and applications. In this 

paper, the PnP method is used to define the position and 

orientation of both targets on a structure and the camera. The 

position of targets on the structure is determined by assuming 

the camera is not moving while the structure undergoes 

movement; the motion of the camera is obtained using a fixed 

target placed outside the shaking structure. 

With reference to Figure 2, the intuitive procedure for solving 

the P3P problem is grounded in the resolution of the law of 

cosines, which is fundamental for calculating distances and 

angles in both the image-plane (π) and the real-world (W). The 

geometric interpretation of Figure 2 refers to a single triplet of 

checkboard corners, but it can be extended to every possible 

combination of corners. The law of cosines is first employed 

for the computation of the angles between the line of sight and 

the corners in the real-world system. In this phase, the results 

of Stage 2 and Stage 3 are exploited, namely the calibration 

outcomes and the coordinate time series of the corners. Then, 

the law of cosines is re-employed to compute the actual 

distances between the optical center and the corners of the 

physical target. This has been the subject of several studies due 

to the non-linear nature of the problem [30]. Here, the solution 

of Finsterwalder [31] is used for its high accuracy, as it does 

not involve any numerical approximations. 

For each target, the P3P method is applied to every 

combination of triplets of corners, resulting in the distance 

between the optical center and each corner in real-world 

multiple times. Finally, the distance values related to the same 

corner are averaged to enhance the accuracy of the estimates. 

The procedure is repeated for each video frame, associated to a 

time instant through the frame rate, to obtain the target position 

at each time step. In this way, the reconstruction of the target 

displacement with respect to the camera optical center over 

time is carried out.  

This approach is an alternative to the common approach 

relying on the simple scale factor for unit conversion. The latter 

only provides accurate results when the camera-to-target line 

of sight is perpendicular to the target plane. The proposed 

approach is more flexible, and it can adjust for perspective 

distortions caused by varying angles between the camera and 

multiple targets. This is particularly common when monitoring 

civil structures due to their large scale and/or the presence of 

unavoidable restrictions on camera positioning. 

 Stage 5: Coordinate transformation to the structure 

reference system 

At this stage, a transformation of coordinates into the structure 

reference system is proposed to ensure a rapid and clear 

interpretation of the structural behaviour. If the target is 

positioned in such a way that it aligns as closely as possible 

with the directions of the main structural movements, two axes 

of the structure reference system are considered to be parallel 

to the target directions, and the third one is perpendicular to the 

target plane. Once this reference alignment is established, a 

matrix-based change of basis is applied for coordinate 

transformation.  

This involves roto-translating the real-world reference 

system W into the structure reference frame. The process 

includes both rotation and translation operations to account for 

the differences in orientation and position between the two 

coordinate systems. The core of the transformation is the least-

square fitting of a plane to the coordinates of the checkboard 

corner in the real-world reference system. This transformation 

allows the representation of displacements in the structure 

reference system, which is independent of the location and 

orientation of the camera.  

 Stage 6: Filtering of camera unintended vibrations 

Up to this stage, the procedure provides the relative 

displacements between the camera and each target, expressed 

in the world coordinate system. However, these displacement 

time series can be affected by camera shaking, which can arise 

from external factors such as wind or unintended user 

interactions. To obtain accurate estimates of absolute 

displacements, it is essential to account for and eliminate these 

camera-induced contributions. This is achieved by using 

reference targets placed on the ground in stable positions. 

These targets are assumed to remain stationary throughout the 

observation period. Consequently, any apparent displacement 

they exhibit in the world coordinate system reflects movement 

of the camera, rather than motion of the targets themselves.  

The same tracking procedure outlined in the previous stages 

can be applied to the ground-based targets to quantify their 

apparent displacements. The absolute displacements of the 

targets on the structure can therefore be obtained by subtracting 

the apparent displacements of the ground-based targets from 

the relative displacements of the targets on the structure.  

In laboratory settings, the camera can often be stably fixed, 

and the environment is controlled (e.g., no wind), which 

reduces the need for this correction. In the field, maintaining 

comparable stability is more challenging, making this filtering 

step essential. However, since this study focuses specifically on 

laboratory conditions, field-related considerations are not 

addressed further. 

3 PROCEDURE ASSESSMENT PERFORMED UNDER 

CONTROLLED CONDITIONS 

In this Section, the validation of the procedure described in 

Section 2 is performed through a laboratory test. The aim is to 

evaluate the performance of the designed vision-based 

monitoring procedure and to assess its potential applicability in 
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outdoor scenarios. The test involves the monitoring under 

controlled conditions of a scale steel frame subjected to 

excitation from a shaking table (see Figure 3). High-contrast 

artificial targets with a checkerboard pattern, measuring 250 

mm by 250 mm, have been used. Two of them are connected to 

the base and the top floor of the frame, while a third one is 

located on the laboratory floor to identify potential camera 

movements.  

The video-monitoring system consists of a Panasonic Lumix 

GH6 camera and Samsung S23 smartphone recording video in 

4K and 8K resolution at 50 and 30 frames per second (FPS), 

respectively. The results presented below are based on videos 

captured by the camera, which has a lower resolution compared 

to the smartphone, making it more sensitive to the noise. Three 

different scenarios are considered by varying the location of the 

camera sensor. The distance between the camera and the steel 

frame for the three examined scenarios is listed in Table 1, 

measured using a laser meter. In both the scenarios, the angle 

of incidence between the line of sight and the target plane is 

nearly zero, implying an almost frontal view of the scene. 

Several input excitations have been applied to the frame base 

during the tests. The results presented in the following refer to 

the Irpinia earthquake ground motion excitation [32], recorded 

on November 23, 1980, and reproduced by the shaking table 

along the x-axis of the structure, which is nearly horizontal to 

the recorded scene. 

The accuracy of the vision-based monitoring system is 

assessed by comparing the estimated dynamic displacements 

with reference time histories. For the target at the base of the 

frame, the reference displacements are those imposed by the 

actuator of the shaking table. To validate the vision-based 

displacement for the target at the top of the frame, a Linear 

Variable Displacement Transducer (LVDT) is specifically 

positioned near the target for this purpose. The adopted LVDT 

measures displacements within the range [0, 100 mm], with 

sensitivity of 80 mV/V, excitation voltage equal to 10 V, and 

sampling frequency set at 200 Hz.  

 Results 

The results of the monitoring conducted during the 

experimental test are discussed in this Section. Since the vision-

based results for the target at the top of the frame exhibit similar 

accuracy, the following focuses on presenting the results for the 

target at the base of the frame.  

The displacements of the frame base target in the 2-D image 

coordinate system, expressed in pixels and identified as 

detailed in Section 2.3, are shown in Figure 4 and Figure 5 for 

scenarios 1 and 2, respectively (similar conclusions can be 

drawn for scenario 3).  

It can be observed that the vertical component of the motion, 

, is approximately zero in both scenarios, since the imposed 

motion is horizontal to the structure and the camera is 

perpendicular to the target plane, implying no perspective 

effects. The difference between the amplitude of the horizontal 

displacement, , in the two example scenarios is related to the 

distance between the camera and the frame, which is about 2 m 

for scenario 1 and 10 m for scenario 2, implying different pixel 

coverage on the examined target, as indicated in Table 1. 

In this regard, it is specified that the target -displacement 

time history in pixels (for example, Figure 5 for scenario 2) is 

 

Figure 3. Laboratory experiment framework. 

 

Table 1. Monitoring scenarios. 

ID Measured 

distance [m] 

Target area 

[103 pxl2] 

1 1.84 186.75 

2 

3 

10.90 

25.21 

93.02 

18.22 
  

calculated by averaging the results obtained by separately 

tracking the motion of the corners of the checkerboard target 

(see Figure 6, which shows the motion of four out of sixteen 

monitored corners, specifically the outer ones: points 1, 4, 13, 

16 with numbering following Figure 1), a step that allows for 

an increase in the accuracy. Indeed, this approach minimizes 

errors from individual tracking by leveraging multiple data for 

a more reliable measurement. 

Afterwards, following the procedure indicated in Section 2.4, 

Section 2.5, and Section 2.6, pixel displacements related to the 

image system are converted into 3D real-world displacements, 

projected into the structure reference system, and cleared from 

uncontrolled camera shaking, measured by evaluating the 

apparent motion of the fixed ground-based target. The vision-

based dynamic displacement along the x-direction in the 

structure coordinate system, expressed in millimeters, is 

represented in Figure 7 and Figure 8 for scenarios 1 and 2, 

respectively, along with a comparison to the corresponding 

reference displacement. In this, the reference is the known 

displacement time history set by the shaking table, which 

demonstrates excellent validation of vision-based results for all 

the scenarios. 

As discussed in Section 2.4, a key aspect in determining the 

three-dimensional mapping between image and real-world 

systems is the evaluation of the distance between the optical 

center and the monitored target, determined by means of the 

P3P method. This method allows the calculation of the 

distances between the camera and any triplet of checkerboard 

corners within each frame, after which the time-varying  
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Figure 4. Scenario 1 - Image-plane horizontal and vertical 

displacements in pixel unit, η and ξ respectively. 

 

Figure 5. Scenario 2- Image-plane horizontal and vertical 

displacements in pixel unit, η and ξ respectively.  

 

Figure 6. Scenario 2 - Image-plane horizontal displacement, η, 

obtained by tracking the four outer checkerboard key corners. 

 

Table 2. Vision-based method accuracy. 

ID Estimated 

distance [m] 

σ(0-5)s  

[mm] 

σ(5-25)s  

[mm] 

1 1.85 0.0072 0.2220 

2 

3 

10.94 

25.27 

0.1033 

0.1904 

0.1382 

0.3807 
  

Table 3. Peak values compared with the scale factor approach. 

ID Reference 

displacement 

[mm] 

Estimated 

displacement 

[mm] 

Scale factor 

displacement 

[mm] 

1 9.48 9.30 9.74 

2 

3 

9.48 

9.48 

9.17 

9.37 

9.28 

9.07 

 

Figure 7. Scenario 1 - Horizontal displacement in the structure 

coordinate system.  

 

Figure 8. Scenario 2 - Horizontal displacement in the structure 

coordinate system.  

 

Figure 9. Scenario 2 - Variation of the estimated distance 

between the camera and the target centroid along time. 

 

Table 4. Peak displacement relative error.  

ID Proposed 

method error 

[%] 

Scale  

factor error 

[%] 

1 1.90 2.95 

2 

3 

3.27 

1.05 

2.11 

4.32 

 

distance between the target centroid and the camera is 

evaluated by averaging the triplet estimates.  

The variation of the estimated camera-to-target distance 

along time is investigated in Figure 9, related to scenario 2. The 

estimation error is less than 1 mm, which is very small 

compared to the actual distance of 10.9 m. However, this error 
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is larger than the small change in the real distance caused by 

the maximum allowed horizontal displacement (about 10 mm). 

This explains why accuracy decreases as the distance camera-

to-scene increases. The camera-to-target distance from the P3P 

method, averaged over time, is shown in Table 2. P3P-based 

estimates (Table 2) are in close agreement with the distances 

measured on-site using a meter laser (Table 1), with relative 

errors of 0.1, 0.4, and 0.2 % for scenarios 1, 2, and 3. 

As a metric in evaluating the reliability of the method, Table 

2 also presents the standard deviation σ(0-5)s of the vision-based 

displacement time series in the first 5 seconds of the tests. 

During this interval, no excitation is transmitted by the shaking 

table, so the standard deviation reflects the signal noise and can 

be considered a measure of the accuracy. The obtained σ(0-5)s is  

of the order of one-hundredth of mm for scenario 1, denoting a 

very high accuracy. It reduces to about one-tenth of mm for 

scenarios 2 and 3, highlighting the impact of the target-to-

camera distance on vision-based results. 

To further quantify the noise, the standard deviation σ(5-25)s of 

the difference between reference- and vision-based 

displacement time histories is calculated for the time interval 

between 5 and 25 seconds, as reported in Table 2. The standard 

deviation of the error ranges between 0.1 and 0.4 mm including 

the three scenarios. Considering that the maximum 

displacement experienced by the examined (base) target is 

approximately 10 mm, the accuracy of the measurements is 

deemed satisfactorily high, with a standard deviation-to-

amplitude ratio below 4%, even for the more distant case 

scenario, indicating reliable measurement accuracy. 

Finally, a comparison of the results is presented to assess the 

accuracy of the P3P method in relation to the scale factor, a 

simpler and more widely used method in the literature. 

Scenario 1 is selected as an example, characterized by minimal 

uncertainty resulting from the (reduced) camera-to-target 

distance, allowing the error to be entirely attributed to the 

method employed. The scale factor is calculated as the ratio 

between the target side in metric units (250 mm) and its side in 

image units (432 pixel, based on the target area shown in Table 

1), resulting in a value of 0.58 mm/pixel.  

Using the scale factor method, the horizontal displacement  

detected in the image system is simply scaled by the scale factor 

to obtain the physical displacement x. Thus, the peak absolute 

displacement of 16.83 pixels (see Figure 4) multiplied by the 

scale factor returns a physical value of 9.76 mm. As represented 

in Figure 7, the maximum absolute displacement detected by 

the P3P method is 9.30 mm, while the reference (i.e., imposed) 

value is 9.48 mm. This leads to relative errors with the 

reference peak displacement of 2.95 % for the scale factor 

approach and 1.90 % for the P3P method. Peak displacements 

obtained by the two methods for the other scenarios are shown 

in Table 3, leading to relative errors as indicated in Table 4. 

These results demonstrate a generally better performance of the 

P3P-based designed method compared to the scale factor 

approach. This indicates that the scale factor, which is designed 

for frontal views of small-scale objects, performs less 

effectively than P3P in its intended context. The discrepancy 

between the two methods is expected to become even more 

pronounced in the presence of inclinations in the line of sight 

relative to the structural displacement. These findings highlight 

the critical need for pixel-to-mm 3D mapping in real-world 

case studies, underscoring the significance of the present 

research.  

4 CONCLUSIONS 

This study proposes a vision-based approach for structural 

displacement monitoring, suitable for both dynamic and static 

conditions. It is a cost-effective, non-intrusive alternative to 

traditional sensing technologies. The approach involves the use 

of consumer-grade cameras and checkboard targets to be 

installed on the structure. 

The reconstruction of the monitored target displacement is 

facilitated by computer vision algorithms, which detect the 

checkerboard corners in digital images and track their 

movement across consecutive frames. The proposed approach 

implements the Perspective-Three-Point (P3P) algorithm to 

establish a correspondence between the 2D image coordinates 

and the 3D world reference system coordinates. The flexibility 

of this approach makes it particularly suitable for a wide range 

of camera positions and orientations relative to the monitored 

structure. Additionally, unintended camera vibrations can be 

filtered out by tracking one or more targets placed externally to 

the structure, assumed to be stationary. 

The methodology has been validated through a laboratory 

test on a steel frame excited by a shaking table. Specifically, 

performed tests focused on evaluating the impact of the 

camera-structure distance, or alternatively, the target area in the 

images to account for potential zoom variations, on the 

accuracy of the displacement estimates. The analysis 

considered two parameters: the standard deviation of the 

estimated displacements in the initial seconds of the test (where 

no excitation was applied) and the standard deviation of the 

difference between the estimated displacements and the 

reference values during the remaining part of the test. The first 

parameter represents the signal noise, whose order of 

magnitude increases from one-hundredth of a millimeter to 

one-tenth of a millimeter as the camera-target distance 

increases from 1.85 m to 25.21 m. Despite this variation, the 

second parameter, which measures the mean error of the 

displacement time series relative to the reference 

displacements, remains satisfactory in all the scenarios, with a 

standard deviation-to-amplitude ratio around 4 % in the greater 

structure-to-camera distance scenario.  

In comparison, the scale factor approach, a simpler and more 

widely used method in the literature, was also considered. 

However, the P3P-based method demonstrated better accuracy 

in capturing displacement under laboratory conditions, 

suggesting that the scale factor may not be suitable for outdoor 

scenarios, which may involve non-frontal views and varying 

orientations of the targets. Additionally, the scale factor 

estimation requires user intervention, making it unsuitable for 

automated procedures. 

These preliminary results underscore the potential of this 

vision-based approach for structural monitoring applications, 

paving the way for its broader adoption in civil engineering 

structures and infrastructure. Future research will focus on 

integrating these initial findings with further tests, particularly 

examining the effects of the inclination between the line of 

sight and the target, and refining the displacement accuracy. 
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