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ABSTRACT: The data-driven approach to vibration-based Structural Health Monitoring aims to detect anomalies in the monitored 

modal properties. A key step in this framework is compensating for the normal variability in the data, which is due to the strong 

influence of environmental and operational variables on the structure’s dynamic behavior. The decision-making process is then 

formulated as a binary classification problem, supported by an appropriate alarm threshold to distinguish between normal and 

anomalous structural conditions. The threshold is typically set on the statistical distribution of the novelty index computed during 

the training phase, often assuming a Gaussian distribution of the data. However, anomaly detection requires a more refined 

modeling of the distribution tails. The present paper investigates the use of Extreme Value Theory for threshold setting, focusing 

on the Block Maxima sampling technique and the Generalized Extreme Value distribution. A comparison with conventional 

approaches demonstrates the significant accuracy achievable through the extreme value theory. The natural frequency time 

histories of the KW51 bridge are used as benchmark data to highlight the method’s effectiveness in improving the reliability of 

early damage detection. 

KEY WORDS: Data-driven Structural Health Monitoring; Novelty detection; Threshold setting; Environmental and operational 

variables; Extreme Value Theory. 

1 INTRODUCTION 

The remote and automated evaluation of the structural 

conditions through Structural Health Monitoring (SHM) is 

crucial in the modern management of civil engineering assets. 

SHM enables a transition from the traditional scheduled 

maintenance approaches to proactive strategies that exploit the 

early damage identification, thereby enhancing safety and 

reducing long-term maintenance costs [1]. In the context of 

SHM, damage detection is the first step of damage 

identification, and it is commonly approached through data-

driven methodologies. In this framework, the damage detection 

problem is cast as a novelty detection one [2], [3]. This strategy 

involves extracting damage-sensitive features (DSFs) from 

sensor data through automatic Operational Modal Analysis 

(OMA) techniques, which are further analyzed to detect 

deviations from a baseline condition. As such, damage 

detection is framed as a binary classification problem, aiming 

to distinguish the anomalous structural behavior, caused by 

either progressive degradation or sudden events, from the 

normal operating state [4]. 

In vibration-based SHM the modal properties or other related 

parameters are often selected as DSFs. Several applications 

reported in the literature consider the natural frequencies as 

DSFs because they can be easily obtained from measurements 

of the ambient vibration response of structures by a few, 

appropriately located sensors. Even if natural frequencies are 

relatively easy to monitor and informative for the first level 

damage detection, they are also very sensitive to the influence 

of environmental and operational variables (EOVs), such as 

temperature changes over time. An accurate damage detection 

therefore requires the application of appropriate compensation 

techniques to isolate the changes in the structural behavior due 

to damage or degradation phenomena from environmental and 

operational effects on the selected DSFs [5], and, as a 

consequence, enhance the reliability of the SHM outcomes. 

Such a compensation relies on setting data normalization 

models developed with reference to data collected in a training 

phase. 

After the data normalization stage, the DSFs are transformed 

into novelty indexes (NIs), which are scalar indicators used to 

quantify how much a given observation deviates from the 

expected behavior. In order to assess whether the observed 

structural response should be considered anomalous, 

appropriate threshold values must be set, so that if the NIs 

overcome the threshold a warning can be issued. This is, 

therefore, another key step in the implementation of reliable 

modal based SHM strategies, in addition to the previously 

mentioned compensation of environmental and operational 

influence on DSFs (Figure 1). 

A critical aspect in threshold setting is related to the need of 

defining it in an unsupervised context, that is to say, by using 

only data from the reference (nominally, healthy) condition of 

the structure. In the common practice, a Gaussian distribution 

for NIs is often assumed for the sake of threshold setting. 

However, this assumption is frequently inadequate for the 

novelty detection tasks [1]. As a result, setting the threshold 

based on a predefined data distribution can be misleading. 

Moreover, this approach does not take into account that 

detecting rare, extreme deviations is the focus of any SHM 

strategy, and, as such, an appropriate data-driven threshold 

setting approach should rely on the careful analysis of the tails 

of NI distribution. 
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Figure 1. Flowchart of a typical data-driven SHM framework. 

The Extreme Value Theory (EVT) represents a suitable 

alternative to the approaches based on the assumption of a 

Gaussian data distribution, as it focuses on the tail of the 

distribution – where anomalies are most likely to occur – 

thereby enabling a more precise threshold estimation [6]. 

This paper discusses the problem of the appropriate alarm 

threshold setting in the context of modal-based damage 

detection. A comparative assessment of different threshold 

setting strategies is presented by processing a benchmark 

dataset available in the literature. The analysis starts from the 

computation of NIs from natural frequency time histories 

through the combination of Gaussian Mixture Model (GMM) 

and Mahalanobis Squared Distance (MSD) to mitigate the 

influence of EOVs [7]. Afterwards, an EVT-based approach is 

applied for threshold setting. It resorts on the Block Maxima 

(BM) method to identify extreme observations and to model 

them according to the Generalized Extreme Value (GEV) 

distribution [8]. The effectiveness of the proposed approach in 

enhancing the robustness of novelty detection in modal-based 

SHM systems is demonstrated through quantitative 

comparisons with standard threshold setting methods. 

The paper is structured as follows: after the introduction, 

Section 2 describes the methodological framework, detailing 

both the compensation strategy for data normalization with 

respect to the EOV influence and the computation of the NI 

time series. Moreover, Section 2 also outlines the EVT-based 

procedure for threshold setting. Section 3 presents the 

applicative case study and the characteristics of the benchmark 

dataset, followed by the analysis and discussion of results. The 

key findings of the study are finally summarized in the 

conclusions. 

2 METHODOLOGY 

 Multivariate modeling of damage sensitive features 

under EOV influences 

The present section describes the approach adopted for the 

compensation of EOV effects on DSFs and the computation of 

the NI. In this context, the matrix X ∈ ℝ𝑛×𝑚 represents the 

training dataset, holding n observations of the natural 

frequencies of m vibration modes. These are experimentally 

collected under varying environmental and operational 

conditions at the beginning of the monitoring period or, more 

generally, in a reference monitoring period.  

GMM is herein applied to represent X as a finite mixture of 

multivariate Gaussian distributions. The objective of this data 

processing stage is the effective modeling of the dominant 

feature clusters associated with the reference states of the 

monitored structure. The mixture density function is formally 

defined as: 

 𝑓𝑚𝑖𝑥(𝒙) = ∑ 𝜂𝑞𝑓𝑞(𝒙|𝝁𝑞 , 𝚺𝑞)

𝑄

𝑞=1

 (1) 

Here, 𝑓𝑞(𝒙|𝝁𝑞 , 𝚺𝑞) denotes the multivariate Gaussian 

probability density function of the q-th component, fully 

characterized by the mean vector 𝝁𝑞, the covariance matrix 𝚺𝑞, 

and the mixture weight 𝜂𝑞. The model parameters are obtained 

by the Maximum Likelihood Estimation (MLE) method, where 

the maximization of the likelihood function is achieved by the 

Expectation-Maximization (EM) algorithm [9]. 

The optimal number of components Q in Equation (1) is 

determined by minimizing the Bayesian Information Criterion 

(BIC), a standard model selection metric that penalizes model 

complexity to prevent overfitting [7]. This probabilistic 

framework supports the implementation of a robust anomaly 

detection methodology by leveraging the different components 

of the mixture model while inherently accounting for the 

influence of EOVs.  

In order to obtain the NI time series for anomaly detection, 

the MSD is adopted as a multivariate metric to measure the 

distance between the observed DSFs and the GMM 

components. It incorporates both variable scales and 

correlations [10], and, given the generic test observation z, its 

MSD relative to each GMM component can be computed as 

follows: 

 𝑀𝑆𝐷𝑞(𝒛) = (𝒛 − 𝝁𝑞)𝚺𝑞
−1(𝒛 − 𝝁𝑞)

𝑇
 (2) 

where 𝝁𝑞 and 𝚺𝑞 denote the mean vector and covariance matrix 

of the q-th GMM component, respectively. The NI 

corresponding to the generic test observation z is then given by 

the minimum distance across all components: 

 𝑁𝐼(𝑧) = min{𝑀𝑆𝐷𝑞(𝒛)} (3) 

Following the above-described approach, if a new observation 

is consistent with the reference structural condition, it will be 

close to one of the GMM components computed in the 

reference training period, and it will yield a low NI value. 

Conversely, if the structure has transitioned to a damaged state, 

the new observations will significantly diverge from all the 

GMM components in the training stage, resulting in larger NI 

values with respect to the undamaged condition. 

 Threshold setting methods for Novelty Detection 

In the context of novelty detection, the EVT-based approach 

provides a robust statistical framework for threshold 

determination. This method is grounded in the theorem stating 

that the distribution of extreme values can converge only to one 

of three canonical forms: Gumbel, Weibull, or Fréchet 

distributions. To simplify the process, the GEV distribution is 
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employed, as it unifies all three types within a single parametric 

family. The GEV distribution is expressed as follows [8]: 

 𝐺(𝑌) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑌 − 𝜆

𝜎
)]

−
1
𝜉

} (4) 

where ξ, σ and λ are the shape, scale, and location parameters, 

respectively. It is defined on the set of maxima Y, satisfying the 

condition 1 + 𝜉(𝑌 − 𝜆)/𝜎 > 0, with 𝜆 and 𝜉 real-valued 

parameters, and  𝜎 > 0. The unknown parameters are estimated 

by using the MLE method. 

In order to define the population of extreme values to be fitted 

by the GEV distribution, the BM method is employed. Thus, 

the NI time series in the training period is divided into non-

overlapping blocks of equal length, and the maximum value is 

selected in each block. Assuming that the structure is initially 

undamaged (null hypothesis), and selecting a significance level 

𝛼, the threshold can be defined as the corresponding quantile 

of the fitted distribution [8]: 

 𝑡 = {
𝜆 −

𝜎

𝜉
[1 − {−𝑙𝑜𝑔(1 − 𝛼)}−𝜉], 𝜉 ≠ 0

𝜆 − 𝜎𝑙𝑜𝑔{−𝑙𝑜𝑔(1 − 𝛼)},                   𝜉 = 0
 (5) 

In addition to the previously described approach based on EVT, 

in this study also a more conventional method for threshold 

setting is considered for the purpose of comparative 

assessment. It consists in setting a predefined False Alarm Rate 

(FAR), interpreted as the tolerable proportion of false alarms in 

the training data. The threshold t is then calculated as the cut-

off value that satisfies [11]: 

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 (𝑡)

𝑛
= 𝐹𝐴𝑅 (6) 

Another widely adopted strategy for threshold setting is based 

on the assumption of Gaussian distribution of the DSFs and the 

use of MSD as the novelty index. Under these assumptions, the 

NI follows a 𝜒2 distribution, and the threshold can be directly 

obtained as the quantile of the distribution at the significance 

level 𝛼 [7]. 

For the sake of the comparative performance assessment of 

the considered threshold setting approaches, the following 

parameters are computed: the number of false positives (FPs), 

the number of false negatives (FNs), and the Youden index. 

The latter, derived from the Receiver Operating Characteristic 

(ROC) curve, provides a measure of the balance between 

sensitivity (the true positive rate) and specificity (the true 

negative rate) and results in a single value that reflects the 

overall diagnostic performance of the considered approach 

[12]. 

3  N LY I  OF THE BENCHM RK D T  ET 

The data collected from the SHM system installed on the 

KW51 bridge in Belgium are processed for the objectives of the 

present study. The KW51 bridge is a steel bowstring railway 

bridge located in Leuven, Belgium (Figure 2). A detailed 15-

month monitoring program was conducted between late 2018 

and early 2020 to capture the dynamic behavior of the bridge 

under operational conditions [13]. Acceleration data collected 

during this period were processed using Operational Modal 

Analysis techniques [14], allowing the identification of the first 

14 natural frequencies of the bridge. 

 

 

Figure 2. KW51 bridge in Leuven, Belgium [13]. 

During the monitoring period, the bridge was retrofitted to 

correct a construction defect identified during inspection. The 

intervention involved strengthening the connection between the 

diagonals, arches, and bridge deck by welding a steel box 

around each original bolted joint. Specifically, the bridge was 

monitored before the retrofit intervention between October 2nd, 

2018, and May 15th, 2019, and after that in the period between 

September 27th, 2019, and January 15th, 2020. 

In the application of the data processing and threshold setting 

approaches described in Section 2, the natural frequency time 

series corresponding to modes 1, 2, 7, 8, 10, 12, and 14 were 

excluded from the analysis due to significant data gaps that 

prevented successful monitoring of these modes. This was 

made in agreement with similar considerations reported in [13]. 

Thus, only the natural frequency time series of modes 3, 4, 5, 

6, 9, 11, and 13 were considered for the present analysis. Minor 

data gaps in these time series were filled by linear interpolation. 

In addition to mode selection, since the retrofit intervention 

introduced a significant shift in the considered natural 

frequency time histories, the difference in the average value of 

corresponding natural frequencies before and after the 

intervention was intentionally reduced to make more 

challenging the appropriate alarm threshold setting as a result 

of a reduced change in the observed structural behavior.  

Specifically, the frequency scatter was scaled down to 25% of 

its original value to avoid a straightforward or even trivial 

novelty detection (Table 1). 

Table 1. Reduced scatter between average frequency before 

and after the retrofitting. 

Mode 
Frequency scatter 

Original Reduced 

3 0.53% 0.13% 

4 1.17% 0.29% 

5 0.33% 0.08% 

6 2.07% 0.52% 

9 0.76% 0.19% 

11 2.02% 0.51% 

13 1.44% 0.36% 
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Indeed, without this correction, the frequency shift due to 

retrofit results in an overly obvious differentiation between pre- 

and post-intervention states, thereby undermining the relevance 

of the novelty detection process and threshold setting 

procedure. 

A detailed inspection of the collected natural frequency time 

histories also reveals some sharp increases in frequency values 

in the first monitoring period (Figure 3). A detailed 

investigation about the occurrence of these particular patterns 

is reported in [13], where the correlation between the natural 

frequencies of the bridge and the measured temperature has 

been evaluated. That study showed that those singular patterns 

occur when the temperature falls below 0 °C. Indeed, before 

the retrofit intervention, the observed structural behavior is 

characterized by a bilinear trend in the frequency-temperature 

relationship, with a knee-point around 0 °C. The interpretation 

of this phenomenon has been guided by insights gained from 

similar previously analyzed case study where a similar 

relationship was observed and attributed to the freezing of the 

asphalt layer [15]. Further investigations specifically focused 

on the KW51 case study, also supported by finite element 

model updating, confirmed that the observed singularities in the 

natural frequency patterns were associated with the freezing of 

the porphyry ballast layer beneath the railway tracks. 

Excluding the period during which the intervention took 

place, the dataset employed in this study comprises 6287 

observations of the seven selected natural frequencies of the 

bridge, 3977 of which were collected before the retrofit 

intervention, while the remaining 2310 were gathered after the 

completion of the works. 

In the context of the present study, the first 3579 samples 

collected before the retrofit – approximately corresponding to 

90% of the available observations in the same period – have 

been used to train the GMM and to define threshold values for 

the subsequent comparative analyses. The remaining 10% of 

the dataset collected before the structural intervention has been 

used as a validation set, in order to check that no structural 

changes are detected before the onset of the retrofit. The whole 

natural frequency time series collected after the retrofit 

intervention are instead employed as the test data (Figure 3) to 

assess the accuracy of the different novelty detection strategies. 

The trained GMM has been specifically designed to model 

the variability induced by EOVs, including the effects of 

freezing conditions observed between late January and early 

February 2019. The optimal number of GMM components has 

been selected as discussed in Section 2.1, resulting in a five-

component GMM, which has been identified as the appropriate 

representation of the training dataset. Once the model of the 

operational variability of natural frequencies has been 

established, the NI time series has been computed according to 

Equations (2) and (3). The resulting NI values, shown in Figure 

4, demonstrate the mode ’s c   bility to effectively account for 

the influence of EOVs. Specifically, the NIs computed over the 

training data exhibit a consistent and stable behavior, indicating 

that the model successfully captures the normal variability of 

data, even under freezing conditions. Moreover, the NIs 

Figure 3. Time histories of the seven selected natural frequencies and partitioning of the dataset into training, 

validation and testing sets. 

Figure 4. NIs time series during the entire monitoring period. 
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calculated on the validation set remain aligned with those 

obtained during the training period, thus confirming the 

generalization capability of the considered model.  

In contrast with these results, a marked upward shift in the 

NI trend can be observed when data collected after the retrofit 

intervention are considered, clearly suggesting the transition to 

a different structural state. This result confirms the 

effectiveness of the proposed approach in distinguishing 

between the normal environmental and operational variability 

of the selected DSFs and that associated to the occurrence of 

changes in the structure as a result of damage or, as in the 

present case, of a retrofit intervention. In the context of the 

novelty detection framework, an alarm threshold has been 

established based on the NIs computed from the training data. 

To this aim, a combination of the BM method and the GEV 

distribution fitting has been applied, as further illustrated 

hereafter. 

The training NI time series has been divided into consecutive, 

non-overlapping blocks, and the maximum value from each 

block has been extracted to collect a set of extreme values. The 

choice of the number of blocks plays a critical role in the 

process [8]. In this work, the number of blocks has set equal to 

300. 

Figure 5 shows the comparison between the empirical 

cumulative distribution function (CDF) of the extracted 

maxima and the CDF of the fitted GEV distribution. The close 

agreement between the two curves indicates that the GEV 

distribution effectively describes the statistical variability of the 

observed maxima. 

 

 

Figure 5. GEV distribution modeling: comparison between 

empirical CDF and fitted GEV distribution. 

The fitted GEV model has been exploited to determine the 

alarm threshold corresponding to a significance level 𝛼 of 0.05, 

as per Equation (5). Figure 7a illustrates the application of the 

determined threshold for novelty detection analysis of the full 

dataset, highlighting the occurrences of misclassification. 

During the training and validation periods, corresponding to the 

structural condition before the retrofit intervention, only a few 

isolated points exceeded the threshold, indicating a low false 

positives rate and, therefore, a high specificity of the proposed 

approach in characterizing the structural behavior in this state. 

Notably, after the retrofit intervention, only a very limited 

number of observations remained under the threshold. This 

demonstrates also the high sensitivity of the method in 

detecting the transition to a new structural condition, as it 

successfully identifies nearly all test data points, referring to the 

structural response after the retrofit intervention, as anomalous. 

For the comparative assessment of the effectiveness of the 

method for threshold setting based on the GEV distribution, 

threshold values are also determined by means of the 

previously mentioned alternative procedures. The related 

results are presented in Figures 7b and 7c. 

Table 2 summarizes the resulting threshold values, along 

with the corresponding number of misclassifications. Setting a 

fixed cut-off threshold is the most straightforward approach for 

the present task. For the considered application, a fixed cut-off 

threshold has been defined by setting the FAR to 0.05, meaning 

that up to 5% of the training data points are tolerated as FPs, in 

agreement with Equation (6).  

As a second alternative approach, a threshold has been set 

based on the assumption of normal distribution of the natural 

frequencies in the training stage. As a result, the NIs derived 

through the MSD are expected to follow a 𝜒𝑚
2  distribution, with 

𝑚 = 7 degrees of freedom (with m corresponding to the 

number of modes considered). From this distribution, a 

threshold corresponding to a given significance level 𝛼 has 

been determined. 

The analysis of the results reported in Table 2 indicates that, 

although the threshold values obtained as the 95% cut-off value 

or through the 𝜒2 CDF achieve a zero false negative rate – 

meaning that all observations in the testing stage are correctly 

classified as anomalous –, they still suffer from a relatively high 

number of FPs, which can jeopardize the reliability and 

practicality of the monitoring system (Figure 7b and 7c). On 

the other hand, the EVT-based method for threshold setting 

yields a small number of FPs as well as a small number of FNs. 

While this method might appear less conservative, it establishes 

a threshold that better approximates the optimal balance 

between FPs and FNs. This can be demonstrated by looking at 

the coordinates associated with the various thresholding 

strategies when they are plotted on the ROC curve (Figure 6). 

Table 2. Number of misclassifications for the different 

threshold setting procedures. 

Approach Threshold FPs FNs 

BM-GEV 21.2 24  29  

Cut-off 12.4 199  0 

𝜒2 CDF 14.1 120 0 

 

 

 

Figure 6. ROC curve and points corresponding to different 

threshold setting approaches. 
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Indeed, the proximity of a point to the top-left corner of the 

ROC space – representing a low false positive rate and a high 

true positive rate – serves as a qualitative measure of the model 

classification performance. In addition, the distance of each 

threshold point from the bisector (corresponding to the line of 

no-discrimination) quantified by the Youden index provides a 

quantitative measure for the selection of the most effective 

threshold value. 

The Youden index values have been computed for each 

threshold setting method, and they are reported in Table 3. The 

results indicate that the threshold derived through the BM-GEV 

method lies very close to the optimum, corresponding to the 

maximum Youden index. Furthermore, it outperforms the other 

considered approaches, confirming an excellent balance 

between sensitivity and specificity. 

Table 3. Youden index values corresponding to different 

thresholds values. 

Approach Youden index 

Max 0.987 

BM-GEV 0.981 

Cut-off 0.950 

𝜒2 CDF 0.970 

 

 

Figure 7. Novelty detection according to: EVT-based threshold (a), 95% cut-off threshold (b), and 𝜒2 distribution-based 

threshold (c). 

(a) 

(b) 

(c) 
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The analysis presented thus far follows the chronological order 

of data acquisition, corresponding to the subdivision of the 

dataset into training, validation, and testing sets. Since the 

retrofitting was intended to correct a construction defect, it led 

to an improvement in the structural condition of the bridge. As 

such, the post-retrofitting state can be regarded as the actual 

healthy condition. 

An additional analysis is conducted by applying the proposed 

methodology using post-retrofitting data for model training and 

validation, and subsequently testing the model on pre-

retrofitting observations. Once again, the novelty analysis 

results (Figure 8) confirm the mode ’s ability to compensate for 

EOVs effects and demonstrate strong generalization 

performance, as evidenced by the NIs of validation data 

aligning closely with the training trend. The distinct structural 

condition characterizing the pre-retrofitting period is clearly 

revealed. Furthermore, a noticeable spike in the NIs time series 

during the freezing period highlights the presence of a transient 

condition within the pre-retrofitting state. In this case as well, 

applying EVT-based threshold yields an excellent balance 

between FPs (0.5%) and FNs (0.1%). 

CONCLU ION  

The present study has focused on the comparative performance 

assessment of different methods for determining a reliable 

threshold for anomaly detection to be applied in the context of 

data-driven, modal-based SHM. The natural frequency time 

series of the KW51 bridge served as the benchmark dataset for 

the performance assessment. It has been processed using a 

method that combines GMM and MSD to compute the NI time 

series and compensate the normal variability of the selected 

DSFs due to changing environmental and operational 

conditions. An approach based on EVT has been applied and 

compared with alternative approaches for threshold setting. 

The EVT-based approach started from the identification of a set 

of maxima in the NI time series at the training stage according 

to the BM method; the GEV distribution was afterwards fitted 

to the collected maxima and used to define the alarm threshold. 

Comparing the performance of the EVT-based method with 

other approaches for threshold setting has shown that, for the 

considered dataset, the BM-GEV approach appears to be the 

most precise, with an optimal balance between FPs and FNs, as 

confirmed by the value of the Youden index derived from the 

ROC curve. 

 CKNOWLEDGMENT  

The present study is part of the research activities developed by 

the authors within the framework of the PNRR Program, 

CN00000023 National Center for Sustainable Mobility, 

 POKE 7 “CC M, Co  ected Networks   d  m rt 

I  r structure” - WP4 (CUP B43C22000440001), and by the 

  st  uthor    the co te t o  the PE00000005_1 “MITIG TE - 

Monitoring buIlT-up envIronment throuGh dinsAr Time 

ser es” Rese rch Project  CUP E63C22002000002 .  dd t o    

support from the STRIVE – INOSTRI FOE Project is also 

gratefully acknowledged. Finally, the KU Leuven Structural 

Mechanics Section is kindly acknowledged as the source of the 

data. 

REFERENCE  

[1] C. R. Farrar and K. Worden, Structural Health Monitoring: A Machine 
Learning Perspective. John Wiley & Sons, Ltd, 2012. 

[2] Q. Chen, J. Cao, and S. Zhu, Data-Driven Monitoring and Predictive 

Maintenance for Engineering Structures: Technologies, Implementation 
Challenges, and Future Directions, IEEE Internet of Things Journal, vol. 

10, n. 16, pp. 14527–14551, 2023. 

[3] E. Figueiredo and J. Brownjohn, Three decades of statistical pattern 
recognition paradigm for SHM of bridges, Structural Health Monitoring, 

vol. 21, n. 6, pp. 3018–3054, 2022. 

[4] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, A review 
of novelty detection, Signal Processing, vol. 99, pp. 215-249, 2014. 

[5] Z. Wang, D. H. Yang, T. H. Yi, G. H. Zhang, and J. G. Han, Eliminating 

environmental and operational effects on structural modal frequency: A 

comprehensive review, Structural Control and Health Monitoring, vol. 

29, 2022. 

[6] H. Sohn, D. W. Allen, K. Worden, and C. R. Farrar, Structural Damage 
Classification Using Extreme Value Statistics, Journal of Dynamic 

Systems, Measurement, and Control, vol. 127, n. 1, pp. 125–132, 2005. 

[7] E. Figueiredo and E. Cross, Linear approaches to modeling nonlinearities 
in long-term monitoring of bridges, Journal of Civil Structural Health 

Monitoring, vol. 3, n. 3, pp. 187–194, 2013. 

[8] S. Coles, An Introduction to Statistical Modeling of Extreme Values. 
London: Springer London, 2001. 

[9] J. Prawin and G. S. Vijaya Bhaskara, Outlier analysis combined with 

Gaussian mixture model for structural damage detection, Materials 
Today: Proceedings, 2023. 

[10] R. G. Brereto    d G. R. L o d, Re‐e   u t    the role of the 

Mahalanobis distance measure, Journal of Chemometrics, vol. 30, n. 4, 
pp. 134–143, 2016. 

[11] E. Figueiredo, G. Park, C. R. Farrar, K. Worden, and J. Figueiras, 

Machine learning algorithms for damage detection under operational and 

environmental variability, Structural Health Monitoring, vol. 10, n. 6, pp. 

559–572, 2011. 
[12] V. Giglioni, E. García-Macías, I. Venanzi, L. Ierimonti, and F. Ubertini, 

The use of receiver operating characteristic curves and precision-versus-

Figure 8. NIs time series during the entire monitoring period, considering the post-retrofitting condition as the healthy 

state for model training and validation, and EVT threshold-based novelty detection. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-143 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 935 

recall curves as performance metrics in unsupervised structural damage 

classification under changing environment, Engineering Structures, vol. 

246, 2021. 
[13] K. Maes, L. Van Meerbeeck, E. P. B. Reynders, and G. Lombaert, 

Validation of vibration-based structural health monitoring on retrofitted 

railway bridge KW51, Mechanical Systems and Signal Processing, vol. 
165, n. 108380, 2022. 

[14] C. Rainieri and G. Fabbrocino, Operational Modal Analysis of Civil 

Engineering Structures, New York: Springer, 2014. 
[15] B. Peeters and G. De Roeck, One-year monitoring of the Z24-Bridge: 

environmental effects versus damage events, Earthquake Engineering 

and Structural Dynamics, vol. 30, n. 2, pp. 149–171, 2001. 
 

 

 


