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ABSTRACT: Vibration-based Structural Health Monitoring is of the foremost importance for critical civil infrastructures, 

especially concerning the safety of the train transport network. In fact, even minor structural changes might cause derailment and 

potentially fatal accidents. This contribution reports some preliminary analyses carried out on 52 accelerometric recordings 

collected over two consecutive days from three spans of a railroad bridge. The acquisitions include several train passages and the 

quiet periods between them, when the structure was excited only by ambient vibrations (i.e. random microtremors), thus allowing 

Ambient Vibration Testing (AVT). Specifically, a newly developed Automated Operational Modal Analysis (AOMA) algorithm 

was applied. Its results are here compared to state-of-the-art commercial software (ARTeMIS). Some considerations regarding 

the effects of train passages are also briefly reported, as well as directions for current and future research work in this field. 
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1 INTRODUCTION 

Railways are an essential component of civil infrastructures, 

representing one of the most critical parts of national and 

transnational transportation and communication systems. In 

particular, railway bridges are a crucial element in this context. 

Being affected by degradation processes of various natures and 

durations, they constitute the most vulnerable elements for the 

safety of the whole railway infrastructure, with potential 

consequences for the safety of goods and people. 

In fact, considering that different parts of every railway 

infrastructure are connected from the superstructure, i.e. the 

ballast and the rails, even minor structural changes without 

complete structural failure might cause derailment and 

potentially fatal accidents. 

For all these reasons, a robust understanding and awareness 

of the daily operations and safety concerns is required, given 

that many passengers use railway lines daily. In Europe, 35% 

of the more than 300,000 railway bridges, which are distributed 

over a total of 200,000 km of railways, exceed 100 years of 

operational life [1]. In particular, in Italy, the majority of 

railway viaducts built between the 1950s and 1970s consist of 

prestressed concrete bridges (PRC); hence, special attention 

should be granted to these ageing infrastructures [2]. 

Railway bridges are exposed to several factors which cause 

degradation. These include harsh environmental conditions, 

significant live loads – mainly due to the increase of traffic 

loads in the last decades, including high-speed trains – material 

ageing, and other rare or extreme events (i.e. impacts from 

accidents, earthquakes, etc.). Other than material ageing, PRC 

bridges are subjected to damages due to: corrosion of normal 

reinforcement steel bars as well as prestressing tendons; 

prestressing losses; construction errors (incorrect grouting of 

tendons ducts, for example); and many other potential natural 

or human-made hazards [3]. Inadequate maintenance is also a 

practice that could result in further damages, often non-

recoverable. Finally, hidden grouting defects of prestressing 

sheaths can lead to corrosion, reducing the area of prestressing 

steel with consequent bearing capacity decrease. 

As a result, all these factors contribute to the potential 

development and growth of structural damage over time.  

Per established tradition, visual inspection still plays an 

essential role in identifying superficial defects and evaluating 

the overall condition of the examined structure. However, 

visual inspections are labour-intensive, time-consuming, and 

often rely on the operator's experience level, which 

significantly impacts the accuracy, objectiveness, and 

reliability of structural condition evaluations. 

Hence, the application of automated and objective anomaly 

detection is fundamental. This is the paradigm of Structural 

Health Monitoring (SHM) solutions [4]; their application to 

railway bridges is important to maintain operational safety, 

expand the structure's lifespan, and reduce maintenance costs. 

In particular, Vibration-Based SHM, which relies on analysing 

the vibrational response of structures to identify damage 

indicators, is one of the most used techniques to identify and 

monitor changes in the dynamic properties of a structure. In this 

framework, to identify such pathologies, the first step involves 

extracting the target structure's damage-sensitive features 

(DSFs) from the monitoring data – that is, natural frequencies, 

damping ratios, and associated mode shapes from acceleration 

time series. Possible changes in modal parameters over time 

could be a manifestation of both global and local damages.  
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In particular, natural frequencies are mainly sensitive to 

global damages and structural modifications. However, the 

global stiffness of a structure is often influenced by variations 

in normal environmental factors, such as temperature, and their 

influence (daily or seasonal gradients) can be significant 

enough to mask the presence of certain damages. Notably, local 

damage up to moderate severity has a minor influence on 

eigenfrequencies. On the other hand, mode shapes are more 

sensitive to local damages than natural frequencies and less 

sensitive to temperature variations [5], [6]. The main 

disadvantage is that a dense sensor grid is required to ensure 

effective damage localisation, a choice which is generally 

costly when conventional sensors, such as accelerometers, are 

employed. 

Nevertheless, in both mode shape-based and natural 

frequency-based SHM, the key point is to extract high-quality 

modal parameters from the recorded time series; henceforth, 

accurate identifications are strictly required. 

This short contribution presents the results of a novel output-

only System Identification (SI) algorithm, applied to an 

experimental test campaign on a prestressed reinforced 

concrete railway bridge. In this context, the present study 

focuses on analysing the recorded accelerometric monitoring 

data of the viaduct’s deck.  

The case study presented here has been equipped with highly 

sensitive accelerometers on three spans, collecting data for two 

consecutive days. The acquired acceleration data are processed 

using the proposed Automated Operational Modal Analysis 

(AOMA) approach based on the SSI-COV algorithm [7] using 

a code developed in MATLAB environment. Dynamic 

identifications obtained considering ambient vibrations provide 

repeatable and directly comparable results between identical 

spans. Furthermore, as a benchmark, the results are compared 

to the ones obtained with the commercial software (ARTeMIS). 

The remainder of this paper is organised as follows. Section 

2 describes the structure, the dynamic monitoring system and 

the data acquired. In Section 3, the Automated Operational 

Modal Analysis procedure for dynamic monitoring is briefly 

described. The results obtained considering the environmental 

excitation of the structure are then reported in Section 4, 

followed by the analyses repeated with the commercial 

software ARTeMIS; such results are then compared. Finally, 

the conclusions of the study carried out for this structure follow 

in Section 5. 

2 EXPERIMENTAL TEST CAMPAIGN 

 Description of the structure 

The railway viaduct under investigation consists of 46 spans, 

each equal to 20 m, for a total length of 920 m. The individual 

spans are characterised by a simply supported static scheme and 

consist of eight prestressed concrete girders with I cross-

sections, connected by a 20 cm thick upper slab, and four 

transversal beams having rectangular cross-sections. The main 

beams are 1.40 m high and have 1.20 m spacing, such that, 

considering the two lateral cantilever slabs supporting the 

parapets, the total width of the deck is approximately 12.40 m, 

allowing the support of two train tracks (see Figure 1 and 

Figure 2). The beams' prestressing reinforcement is arranged in 

the lower flange and, according to the original design drawings, 

consists of a total of 29 cables arranged in 3 rows, sheathed in 

ducts at the supports. As mentioned, PRC beams are widely 

used in railway bridges, where dynamic loads from passing 

trains demand high stiffness and serviceability. The 

prestressing process introduces compressive forces into the 

concrete; these forces counteract tensile stresses, preventing 

cracking and the resulting stiffness reduction. This, compared 

to a beam of equivalent size in conventional (non-prestressed) 

RC, results in lower deflections under load and allows for larger 

spans. At the same time, lower amplitude vibrations are 

generated under working conditions, which is useful for safety 

and comfort in operating conditions but makes AVT and 

output-only identifications more challenging, requiring high-

quality accelerometers.  

 

 

Figure 1: View of a typical span of the railway viaduct. 

The standard pier has a pseudo-rectangular reinforced 

concrete geometry (maximum dimensions 11.0 x 1.50 m). The 

45 piers range from a minimum height of 2.5 m to a maximum 

of 5 m along the longitudinal direction. The foundation of the 

piers consists of a RC plinth lying on deep foundations (i.e. 

piles). 

 

 

Figure 2: Intrados view of a typical span of the case study with 

the PRC beams. 
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 Structural health monitoring (SHM) system 

Because of the extension of the viaduct and its static scheme, 

with simply supported and nominally equal spans, only a part 

of the entire structure has been investigated. Specifically, three 

spans have been instrumented. Four uniaxial accelerometers 

were installed for each span under study in the positions 

showed in Figure 3 and with the numbering indicated. 

Measurements of only the vertical acceleration components 

were acquired for two consecutive days. This placement aimed 

to associate the obtained frequencies with both vertical and 

torsional vibrational modes.  

Due to the high stiffness of prestressed reinforced concrete 

railway bridges, accelerometers with high sensitivity and low 

background noise are required. In the present case, PCB 

piezoelectric accelerometers model 393B12 were used, with a 

sensitivity of 10 V/g and a noise of 0.32 μg/√Hz on the 10 Hz 

band. 

 

 

 

Figure 3: Scheme of the typical span (a) and position of the 

accelerometers on the main beams near the cross beams (b). 

The numbers in red (1 to 4) indicate the different output 

channels. 

The instrumentation configuration differs between the spans 

as follows: 

o in one span, the four accelerometers were installed at the 

end of the cross beams (transverse distance 9.6 m). 

o in the other two spans, the four accelerometers were 

installed on the web of the main beams in proximity of 

the cross beams (transverse distance 8.6 m, see Figure 3 

(b). 

The experimental tests were designed to identify the bridge's 

modal parameters and verify the structure's response under 

normal operating conditions. For this reason, some signals 

would inevitably contain train passages alongside ambient 

vibrations. 20 recordings were acquired for the first span; 16 

other recordings were taken for the other two spans, referred to 

as numbers 2 and 3. All acquisitions were made with a sampling 

frequency fs = 100 Hz and a 24-bit acquisition system. That 

provides a wide margin with respect to the highest natural 

frequency of interest (16 Hz, as will be shown in the following 

Sections, thus well below the Nyquist limit fs/2 = 50 Hz). The 

duration of each measurement was about 15 minutes. Examples 

of recorded time series of the raw acceleration data for one of 

the instrumented spans, showing all acquisition channels, are 

displayed in Figure 4.  

The vertical acceleration signals acquired by the four 

acquisition channels for each instrumented span were analysed 

after the cleaning and pre-processing phase. In particular, after 

identifying the signals containing train passages, the 

corresponding signal portions were isolated and saved 

separately. The remaining parts, thus corresponding to ambient 

excitation, were likewise isolated, stored separately, and 

analysed in the subsequent steps. In this way, 80 signals were 

obtained, of which only those of appropriate length (> 4 

minutes) were used for the successive identification steps. The 

signal duration was found to be consistent with the range 

recommended in [8] for accurate damping estimation, i.e. 1000-

2000 times the natural period of the first mode (2 to 4 minutes 

in the present case study), thus reliable results are ensured even 

when signals are segmented.  

 

 

 

Figure 4: Example of a signal acquired in one of the spans under 

ambient vibration conditions (a) and with a passing train (b) 

after the pre-processing. 

3 AUTOMATED OPERATIONAL MODAL ANALYSIS 

(AOMA) FOR SHM 

The objective of any Automated Operational Modal Analysis 

(AOMA) procedure is the extraction of modal parameters 

through the analysis of vibration measurements. The procedure 

is a multi-stage process that involves several sequential steps. 

It begins with data pre-processing and the choice of the optimal 

algorithm parameters, followed by the system identification 

phase, then the sifting of the identified modal parameters, and 

finally, the estimation of cluster-wide values and their 

validation, as well-documented in [9] and [10]. In this context, 

the core of the procedure, i.e. the system identification phase, 

is carried out by applying the Stochastic Subspace 

Identification (SSI) method, which is a popular parametric time 
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domain algorithm based on state-space identification [7]. 

Several authors have proposed AOMA procedures to try to 

address the aspect of automating the interpretation of the 

stabilisation diagram and the following extraction of the 

physically meaningful modes of the structure [8], [11], [12]. 

 AOMA algorithm and modal parameters’ selection 

In the present study, the dynamic identification of the structure 

decks was performed using the well-known SSI (Stochastic 

Subspace Identification) Operational Modal Analysis 

algorithm with clustering analysis (DBSCAN - Density-Based 

Spatial Clustering of Applications with Noise) to facilitate the 

identification of actual vibration modes [13], [14]. 

SSI returns all identified modal parameters, which are 

generally represented in a stabilisation diagram, which is a 

visual tool used to facilitate the interpretation of results 

showing the poles (modes) characterised by the natural 

frequencies, damping ratios, and eigenvectors identified in 

relation to the order of the dynamic system chosen a priori. 

However, these identified poles include the physical modes as 

well as many spurious modes; the latter ones, which are due to 

measurement noise misidentified as vibration modes, need to 

be disregarded to identify only valid results correctly. In the 

stabilisation diagram, poles aligned in a vertical line are stable 

as the model order changes and, therefore, are deemed to 

represent a physical mode. The automatic cleaning and 

interpretation phase of the stabilisation diagram consists of 

defining a set of criteria to distinguish physical poles from 

spurious and mathematical ones. The steps enabling this 

procedure are briefly outlined below: 

o hard validation criteria (HVC), consisting of the 

elimination of poles with negative or excessively high 

damping ratios (> 20%) and those with eigenvectors not 

coming in complex conjugate pairs;  

o soft validation criteria (SVC), concerning the introduction 

of comparison parameters between the modal parameters 

of the different poles (hence the distance in the 

stabilisation diagram) and elimination of those that do not 

fall within the selected thresholds, following the work 

done by Mugnaini et al. [15]; 

o application of the DBSCAN algorithm to group the poles 

with similar modal characteristics and discard any other 

outlier poles according to parameters that vary for each 

dataset. Each identified cluster individuates a set of 

probable physical modes; therefore, the modal parameters 

representative of an entire cluster are estimated as the 

average of the cluster values fm, ξm [10].  

Determining the corresponding mode shape is essential to 

discern the modes with actual physical significance. 

 ARTeMIS software 

The commercial dynamic identification software ARTeMIS 

was used as a benchmark to validate the results obtained from 

the developed AOMA code. ARTeMIS is a powerful 

operational and experimental modal analysis software. The 

results are obtained through a Data-Driven Stochastic Subspace 

Identification algorithm implementation.  

 

4 DISCUSSION OF RESULTS 

 AOMA results 

SSI needs the definition of two fundamental parameters: 

- the range of model order, going from nmin= 20 to nmax = 130, 

- the number of block rows of the Hankel matrix, defined as 

fs/2 [7].  

For a fair comparison, these parameters were set once and 

kept untouched for all analyses (all signal tracts of all spans). 

The comparison parameters for the stabilisation diagram [13] 

reported above are set equal to: 

- df < 0.005 

- 0 < dξ < 10 % 

- (1 - MAC) < 0.05 

Figure 5 shows   ‘cle ned’ st  ilis tion di gr    t the end of 

the clustering phase (in fact it can be seen how each cluster is 

identified by a different colour), taken by one example of one 

of the instrumented spans. In this particular case, the frequency 

range of interest goes from 8 to 20 Hz, where clear peaks can 

be observed. In the same way, a diagram of the damping ratios 

versus natural frequencies is represented in Figure 6. The 

identified clusters are linked to the ones in Figure 5, i.e. 

displayed with the same colours. 

 

Figure 5: Example of stabilisation diagram with identified 

clusters. 

 

Figure 6: Example of frequencies vs damping ratios diagram 

with identified clusters. 

Finally, Figure 7 shows the occurrence of the values of 

identified natural frequencies for the deck of one of the 

instrumented spans, considering all the ambient vibration 

signals used. 
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By comparing all the results obtained from the different 

signals, the natural frequencies with the highest occurrence and 

corresponding to mode shapes with physical significance were 

identified. The following figure (Figure 8) shows the 

experimental vibration modes of the structure, with distribution 

diagrams of the natural frequencies and an axonometric view 

of the mode shapes with an indication of measurement points 

for each identified mode. 

Concerning the 2nd mode, it is noteworthy to point out the 

fact that it has been identified twice. Although the identified 

mode shape seems to indicate that it is the same mode, there is 

no certainty as to the exact corresponding frequency. One could 

conservatively assume that one of the two estimated modes 

corresponds to some residual effects of a lateral mode. Still, 

since all output channels are vertical, the algorithm can only 

extract the mode shape of the closest mode with vertical 

components, i.e., the first torsional. Here and for the rest of the 

article, these are referred to as modes ‘  ’  nd ‘  ’  Instead, the 

1st mode can be identified as the first flexural mode of the deck.  

 

 

Figure 7: Histogram representing the occurrence of natural 

frequency estimates of probable physical vibration modes. 

For the mode identified  s ‘ ode  ’ in Figure 8, given the 

positioning and limited number of sensors, the corresponding 

mode shape is similar to the first flexural one. It could be 

assumed that the mode in question is instead related to a local 

mode of the deck, whose shape could only be detected with a 

denser sensor network. However, it should be noted that for the 

practical purposes of detecting damage structural phenomena 

for this type of structure, the first two modes are generally 

significant, as they are also identifiable with greater accuracy 

and repeatability. The estimated damping ratios are around 2 % 

for most identifications, except for mode 3, for which it is about 

1 %. 

Table 1 shows the values of the identified natural frequencies 

for each span. The first torsional mode identified twice with 

different frequencies is reported  s ‘mode   ’  nd ‘mode   ’  

Furthermore, the low standard deviation values confirm that the 

three instrumented spans, nominally identical, are very similar 

in terms of dynamic response (and thus mechanical properties). 

This suggests that any damage in one of them would be easily 

detected not only by comparing the historical and current 

response of the span in question but also by comparing it with 

the other spans contemporaneously monitored – i.e. a sort of 

population-based SHM [16]. Indeed, this approach falls into the 

concept of population-based SHM. 

Table 1: Summary of the natural frequencies identified by the 

MATLAB code (all values in Hz) for the relevant modes in 

the three instrumented spans, with average and standard 

deviation values (St.Dev). 

 Mode 1 Mode 2a Mode 2b Mode 3 

Span 1 8.148  9.205  10.084  15.873  

Span 2 8.117  9.181  10.112  16.020  

Span 3 8.126  9.142  10.123  15.907  

Average 8.130  9.176  10.106  15.933  

St.Dev 0.016  0.032  0.020  0.077  

 

 

 

Figure 8: Distribution diagram of the identified natural 

frequencies and axonometric view of the identified mode 

shapes with an indication of the measurement points in red for 

mode 1 (a), modes 2a (b), and 2b (c), and local mode 3 (d). 

Notably, the first mode shape was found to be slightly 

asymmetric, with the vibrations on one side ~20% larger than 

the other. This behaviour was confirmed in all acquisitions with 

both the MATLAB code and ARTeMIS (see next Section). 

Conversely, the other three mode shapes behave very 

symmetrically, with differences <4% between the two sides. 

 ARTeMIS results comparison 

The results from the ARTeMIS software were obtained by 

importing, via a .cfg text file, the geometric model of the 
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individual deck and the information regarding the actual 

position of the sensors, which was the same for the three 

instrumented spans. The acceleration time histories used are 

those from the pre-processing phase described in Section 2.2 

and relative to ambient vibrations. The results showed in this 

section refer to a single example file belonging to one of the 

instrumented decks, but the overall outputs, analysed manually, 

are in line with those of the other acquisitions on the same span 

and the others. All results refer to the analysis with ambient 

noise, i.e. eliminating train passages.  

At first, Frequency Domain Decomposition (FDD) was used, 

a frequency domain features extraction technique with manual 

peak selection to perform a preliminary analysis; the results 

obtained with this method are shown in Figure 9 on the left side. 

All natural frequency values estimated for the first three modes 

are very similar to those verified by MATLAB code on the 

entire dataset of available signals. As already observed through 

the AOMA code, there is a substantial similarity between the 

first and third modes. Moreover, as better detailed below, for 

each span, just one of the two modes named  s ‘ ode  ’ can be 

estimated by applying FDD. 

Stochastic Subspace Identification with Unweighted 

Principal Component (SSI-UPC) [7] was then used. Regarding 

the definition of the SSI parameters, the same model order 

range as selected in the MATLAB code, i.e. from nmin = 20 to 

nmax = 130, was set for direct comparability. Relative to the 

same example presented and discussed so far, the obtained 

results are shown in Figure 9 on the right side. 

Although only the representation of the mode referred to 

above as ‘mode 2a’ is shown here, the results for both modes 

2a and 2b are still identified with the same mode shape. 

Moreover, as can be noticed for the representative case here 

depicted, but is valid for all three instrumented decks, the 

estimated damping ratios for the first and second modes are 

slightly higher than those estimated and reported in the 

previous section.  

At the bottom of the images in Figure 9 (d), (e), and (f) the 

Modal Assurance Criterion (MAC) can be observed to verify 

the similarity between the identified modes. As already 

observed through the MATLAB AOMA code, a substantial 

similarity is observable between the first and fourth (denoted as 

Mode 3) modes. Similarly, it is possible to visualise complexity 

plots, which make it possible to indirectly verify whether a 

mode is physical or, for example, due to numerical effects or 

acquisition noise, given its complexity. 

Finally, the results in terms of identified frequencies for the 

different system identification approaches used are reported in 

Table 2. The analysis carried out on the signals of the three 

spans using commercial software ARTeMIS, using the FDD 

and SSI-UPC techniques and considering the first three modes, 

indicates a good correlation in terms of natural frequencies, 

while a discrepancy is noted in the estimation of modal 

damping, which on average is higher in ARTeMIS than in the 

MATLAB code. However, this parameter is known to be the 

most uncertain of those to be estimated [17] and, for this very 

reason, is generally not considered in terms of structural 

monitoring. Given the low standard deviation values, the same 

conclusions as in Section 4.1 can be replicated here.

 

 

Figure 9: Results obtained in ARTeMIS by applying the FDD method on the left, reporting mode 1 (a), mode 2 (b) and mode 3 

(c) manually selected from the signals PSD; and by applying SSI-UPC on the right, showing mode 1 (d), mode 2a (e) and mode 

3 (f) estimated automatically. 

( )

( )

(c)

(d)

(e)

(f)
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Table 2: Summary of the natural frequencies identified by 

ARTeMIS (all values in Hz) for the relevant modes in the 

three instrumented spans with the FDD and SSI-UPC 

methods, with computation of the average and standard 

deviation values (St.Dev). The sign ‘-’ indicates unidentified 

modes. 

  Mode 1 Mode 

2a 

Mode 

2b 

Mode 3 

F
D

D
 

Span 1 8.562 9.684 - 15.789 

Span 2 8.255  9.365 10.101  16.034  

Span 3 8.297  - 10.108  16.219  

Average 8.371 9.524 10.104 16.014 

St.Dev 0.166 0.226 0.005 0.216 

S
S

I-
U

P
C

 

Span 1 8.461 9.631 10.030 15.777 

Span 2 8.171  9.168 10.197  16.092  

Span 3 8.125  9.231  10.320  16.217  

Average 8.252 9.343 10.182 16.029 

St.Dev 0.182 0.251 0.145 0.227 

 

Finally, the mode shapes identified in Section 4.1 through the 

AOMA algorithm developed in MATLAB and those obtained 

with the two methods implemented in ARTeMIS, as in the 

present Section, are compared based on Modal Assurance 

Criterion (MAC), defined as [18]: 

𝑀𝐴𝐶(𝛷𝑗, 𝛷𝑘) =  
[(𝛷𝑗) ∗ (𝛷𝑘)]

2

[(𝛷𝑗) ∗ (𝛷𝑗)][(𝛷𝑘) ∗ (𝛷𝑘)]
 (1) 

 

The MAC correlation matrices for the instrumented span 1 are 

summarised in Table 3. The top part of the table shows the 

MAC values computed between the MATLAB-identified mode 

shapes and those obtained via the ARTeMIS SSI-UPC method, 

while the bottom section reports the MAC values with the FDD 

method. For the other couple spans the results are consistent 

with those presented.  

The resulting MAC values for the modes indicated as 1, 2a, and 

3 are reported, with the values of interest highlighted. Such 

values indicate a high correlation between the two sets of mode 

shapes.  

Table 3: MAC correlation matrices of mode shapes identified 

for span 1 computed between MATLAB code vs ARTeMIS 

SSI-UPC (top part) and MATLAB vs ARTeMIS FDD 

(bottom part). 

  MATLAB AOMA 

A
R

T
eM

IS
 

S
S

I 

 Mode 1 Mode 2a Mode 3 

Mode 1 0.9948 0.0202 0.9846 

Mode 2a 0.0455 0.9980 0.0046 

Mode 3 0.9667 0.0001 0.9958 

    

A
R

T
eM

IS
 

F
D

D
 

Mode 1 0.9846 4.44e-05 0.9882 

Mode 2a 0.0031 0.9697 0.0044 

Mode 3 0.9974 0.0189 0.9971 

    

The results suggest that the modes obtained from the SSI-

UPC automated method present excellent comparability with 

those obtained in MATLAB, showing a better reliability with 

respect to the FDD identifications. 

It is noteworthy to notice the high MAC values between modes 

1 and 3 in both cases, as expected by the nature of the mode 

shapes (see Figure 8 and Figure 9).  

 Effects of train passages 

The dynamic data recording included train transit events, 

presenting signals with much higher acceleration amplitudes 

but extremely short durations. The analysis of such portions of 

signals could be of particular interest in the case where less 

performing accelerometers are used, and as a consequence, are 

not able to detect vibrations due to environmental excitation, or 

in the case where load tests need to be performed on the 

structure, since in such loading conditions the identified modal 

parameters are in general more sensitive to longitudinal 

prestressing losses. These signals, if taken in their entirety (i.e. 

including train passages), become non-stationary and, 

therefore, difficult to analyse with algorithms intended for 

stationary analysis, such as SSI. For this reason, if one wants to 

exploit the excitation given by the passage of trains to extract 

damage-sensitive modal parameters, it is necessary to resort to 

other algorithms designed for modal identification and 

exploiting the excitation contained in the free vibration 

following a train passage. This aspect will be further explored 

as part of future developments of this project. 

5 CONCLUSIONS 

The primary aim of this study was to evaluate the 

applicability of a novel Automated Operational Modal Analysis 

(AOMA) algorithm for continuous Structural Health 

Monitoring (SHM) of a railway bridge. Three spans of this case 

study were instrumented with high-performance 

accelerometers. The workflow followed here, from the pre-

processing phase of the ambient vibration measurements data 

to the Automated OMA, made it possible to identify natural 

frequencies, damping ratios, and mode shapes for the first 

relevant modes in the frequency range from 0 to 20 Hz, 

discarding spurious identifications.  

The comparison between the AOMA algorithm developed in 

the MATLAB environment and the commercial software 

ARTeMIS shows that both approaches provide consistent and 

reliable results. The similarity in outcomes confirms the 

validity and robustness of the proposed method, ensuring its 

applicability. Since the bridge spans are nominally identical, 

the approach followed for this research study enables the 

estimation of the variability of the results under the same 

analysis methodology.  

Overall, in view of a broader approach to infrastructure 

monitoring, maintenance, and management, these findings 

validate the feasibility of using AOMA for continuous SHM of 

railway bridges and damage detection. 
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