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ABSTRACT: Structural Health Monitoring (SHM) plays a vital role in ensuring the safety, durability, and operational efficiency 

of critical infrastructure. Traditional SHM methods often fall short in detecting subtle damage patterns, particularly when faced 

with noisy signals, missing data, or the complex, time-varying behavior of real-world structures. To address these challenges, this 

study presents a hybrid framework that integrates Discrete Wavelet Transform (DWT) with a deep learning architecture combining 

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. The proposed approach begins by 

segmenting long-duration acceleration signals into fixed-length windows and applying DWT to extract informative time–

frequency features. CNN layers are then used to learn spatial representations from the transformed data, while LSTM layers 

capture temporal dependencies critical for detecting structural changes over time. The model is trained and evaluated using 

benchmark SHM datasets under both healthy and damaged states. Moreover, supervised learning is utilized for accurate damage 

severity classification, while unsupervised learning are used to facilitate anomalies detection without relying on labeled samples. 

Experimental results demonstrate improved performance in classifying damage conditions compared to conventional machine 

learning approaches. This framework offers a robust and scalable solution for data-driven SHM, supporting more accurate 

diagnostics and paving the way for predictive maintenance in complex monitoring environments. 
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1 INTRODUCTION 

Structural Health Monitoring (SHM) has become an essential 

field across civil, mechanical, and aerospace engineering, 

ensuring the functionality, longevity, and safety of critical 

infrastructure. SHM enables periodic or continuous assessment 

of structural performance and supports the early detection of 

system degradation. This allows for timely maintenance 

interventions and reduces the risk of unexpected failures. As 

infrastructure systems age and endure increasing stress from 

environmental and operational loads, effective SHM plays a 

crucial role not only in ensuring safety but also in optimizing 

life-cycle costs and extending service life. 

Over the past few decades, SHM has evolved significantly, 

with numerous techniques developed to detect and assess 

damage and degradation in critical infrastructure. Conventional 

SHM approaches frequently rely on manual feature extraction, 

threshold-based anomaly detection, and classical signal 

processing techniques such as the Fast Fourier Transform 

(FFT) and Principal Component Analysis to extract frequency-

domain features and reduce data dimensionality [1]. While 

these methods have demonstrated effectiveness in controlled 

environments or specific applications, they often struggle in 

real-world conditions where non-stationary signals, sensor 

noise, and data loss are prevalent. Moreover, they are often 

inadequate for capturing the complexity of real-world 

structures, particularly those exhibiting nonlinear and time-

varying behavior. The reliance on expert-defined thresholds 

and manual feature selection further limits their scalability and 

suitability for automated or large-scale SHM deployment. 

These limitations underscore the need for more adaptive, 

intelligent, and data-driven SHM methodologies capable of 

handling the dynamic behavior of structural systems. 

To address these limitations, classical machine learning (ML) 

methods such as Decision Trees, k-Nearest Neighbors (k-NN), 

and Support Vector Machines (SVM) have been progressively 

applied to SHM tasks such as damage detection and anomaly 

classification [2]. These models offer greater adaptability than 

rule-based techniques and have shown effectiveness in certain 

SHM scenarios. However, they largely depend on handcrafted 

or engineered features, which may fail to capture the full 

complexity of structural responses. Also, classical ML 

algorithms often struggle with noisy, sequential data, or high-

dimensional, limiting their scalability and generalizability in 

complex monitoring environments. 

In response to the limitations of classical machine learning 

approaches, deep learning techniques have gained significant 

attention in SHM due to their ability to automatically learn 

hierarchical and abstract representations from raw sensor data. 

Models such as Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and their variants have 

shown promising results in tasks such as damage localization, 

classification, and prognostics. Unlike traditional methods, 

deep learning (DL) models can effectively capture nonlinear, 

time-dependent patterns in complex vibration signals without 

the need for manual feature engineering. Their robustness to 

noise, scalability to large datasets, and suitability for end-to-

end learning make them especially well-suited for real-world 

SHM system operating under dynamic and uncertain 

conditions. 

More recently, DL models, mainly CNNs and Long Short-

Term Memory (LSTM) networks have demonstrated notable 
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success in processing spatial and temporal data for SHM 

applications. CNNs are well-suited for extracting spatial 

features from raw sensor data or transformed representations 

such as spectrograms [3], while LSTMs effectively model long-

term dependencies in time-series signals [4]. Several studies 

have also proposed hybrid CNN–LSTM frameworks that 

jointly capture spatial and temporal patterns, resulting in 

improved damage detection accuracy, especially in complex 

structural systems [5].  
Despite these advancements, significant challenges remain in 

applying AI to SHM, including the presence of noise, missing 

data, and the continued need for domain-specific feature 

engineering. Furthermore, many existing AI-based SHM 

approaches tend to overlook the advantages of time–frequency 

domain analysis an essential component for capturing complex, 

transient structural responses [6]. To address this gap, wavelet 

transforms have garnered significant attention in SHM due to 

their ability to localize features simultaneously in both the time 

and frequency domains. Unlike the FFT, which provides only 

a global view of frequency content, wavelet analysis enables 

the detection of localized, transient events such as those caused 

by impact damage or cracking [7]. The Discrete Wavelet 

Transform (DWT) has been widely used for feature extraction, 

denoising, and time–frequency characterization in structural 

vibration signals. 
However, wavelet-based methods typically require the 

manual selection of proper mother wavelet and decomposition 

level, and often depend on thresholding heuristics. Also, 

wavelets are often used only as preprocessing tools, rather than 

being fully integrated into modern AI systems [8]. These 

limitations constrain their effectiveness in contemporary deep 

learning–based SHM frameworks. Although progress has been 

made, a clear gap remains in the integration of wavelet-based 

signal processing with advanced AI architectures. Existing 

approaches often either apply wavelets solely for noise 

reduction without enabling feature learning, or use DL models 

without exploiting the time–frequency structure inherent in 

SHM signals [9], [10]. 

To bridge these gaps, this study proposes a novel deep 

learning framework that seamlessly integrates the DWT with a 

hybrid CNN–LSTM architecture. The DWT is employed to 

extract multiscale time–frequency features from segmented 

acceleration signals, capturing both transient and stationary 

structural behaviors. These wavelet-derived features are then 

processed by a CNN to learn spatial patterns, followed by an 

LSTM network that models temporal dependencies across time 

steps. The framework supports both supervised damage 

classification and unsupervised anomaly detection, making it 

adaptable to a wide range of SHM scenarios and contributing 

to the advancement of intelligent, data-driven infrastructure 

monitoring. 

2 PROPOSED FRAMEWORK 

This section describes proposed SHM, which integrates 

wavelet-based signal processing with a hybrid deep learning 

combining CNN and LSTM networks as shown in Figure 1. 

The framework is designed to extract meaningful spatial and 

temporal features from structural vibration signals to enable 

reliable damage detection and anomaly identification under 

complex monitoring scenarios. 

The process begins with long-duration signals, which are 

preprocessed and segmented into fixed-length time windows to 

standardize the input size and ensure consistency. Each 

segment is then processed using the DWT, which decomposes 

the signal into multiscale time–frequency components. These 

wavelet coefficients capture both localized and global signal 

characteristics and serve as rich input features for the deep 

learning model. 

The CNN component s used to extract spatial features from 

the wavelet coefficients, while the LSTM network captures 

temporal dependencies across time window. This combination 

allows the system to recognize both long-term structural trends 

and transient events, improving its effectiveness in both 

damage classification and anomaly detection tasks. Both 

learning strategies are supported within the framework: 

supervised learning uses labeled damage states, while 

unsupervised learning applies autoencoders and clustering on 

latent features. 

This integrated architecture leverages the strengths of both 

wavelet-based signal processing and DL: it enables automated 

feature learning from rich time–frequency data, enhances 

robustness to noise and nonstationary, and improves 

classification and anomaly detection performance across a 

variety of structural conditions. The following sections detail 

the data preprocessing, wavelet-based signal decomposition, 

and the architecture and training process of the DL model. 

 
Figure 1. Hybrid methodology combining wavelet-based 

signal processing with deep learning. 

3 EXPERIMENTAL VALIDATION USING TIANJIN 

YONGHE BRIDGE MONITORING DATA 

The proposed framework was validated using data from the 

Tianjin Yonghe Bridge, a cable-stayed structure located in 

China connecting Tianjin and Hangu. The bridge spans 510 m, 

consisting of a 260 m main span and two 25.15 + 99.85m side 

spans. The bridge wide is 11m (9m for vehicles and 2x1m for 

pedestrians [21]. Originally constructed in 1983 and opened to 

traffic in 1987, the bridge began exhibiting structural 

degradation after nearly two decades of service, including the 

development of 2 cm cracks in the midspan and signs of 
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corrosion in the stay cables. To address these issues, major 

repairs were carried out between 2005 and 2007, including full 

replacement of all stay cables and reinforcement of the midspan 

girder [16], [17]. Following these repairs, a SHM system was 

installed by the Harbin Institute of Technology to monitor the 

bridge’s condition under both undamaged (January 17, 2008) 

and damaged (e.g., July 31, 2008) states. The system included 

over 150 sensors at critical structural components such as the 

deck, towers, and cables including 14 single - axis 

accelerometers installed along the deck and a dual-axis sensor 

mounted at the top of the south tower. 

The vibration data collected by this SHM system were used 

to evaluate the effectiveness of the proposed wavelet-based 

CNN–LSTM framework for damage detection and anomaly 

identification. The signals were segmented and preprocessed to 

ensure consistency, then processed using discrete wavelet 

transform before being fed into the hybrid deep learning model. 

This case study demonstrates the applicability of the proposed 

method to complex, real-world SHM scenarios and confirms its 

potential for robust damage classification and condition 

assessment. 

 
Figure 2. General view of Tianjin Yonghe bridge 

Figure 3. Tianjin Yonghe bridge elevation and health 

monitoring system 

 Visualization of structural acceleration data 

To illustrate the structural vibration data characteristics, Figure 

4 shows time-domain acceleration signals recorded from the 

bridge deck over a duration about 3600 s for healthy and 

damaged conditions state. These signals reflect the structure 

dynamic response under operational conditions. As shown, 

there is transient spikes, variations in amplitude and frequency 

content indicate changes in structural behavior, making them 

suited for SHM applications. Also, the acceleration data show 

nonstationary behavior that motivate the use of advanced time–

frequency analysis.  In this study, long-duration acceleration 

signals were segmented into fixed-length windows (15 

minutes) to standardize input size and increase the number of 

training samples. Figure 5 shows segmentation of a 1-hour 

acceleration signal into four 15-minute windows. Each segment 

is color-coded and vertically offset for clarity. This approach 

facilitates data preparation for time-series learning models and 

ensures consistency across training samples [4]–[6]. Also, these 

visualizations help highlight differences in dynamic response 

and support the need for data-driven SHM approaches. 

 

 
Figure 4. Acceleration signals for Sensor 1 (a) and Sensor 2 

(b), showing healthy (bottom) and damaged (top) states. 

 
Figure 5. Segmentation of a 1-hour acceleration signals into 

four 15-minute windows 

(a) 

(b) 
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4 SIGNAL DECOMPOSITION USING DISCRETE 

WAVELET TRANSFORM 

To capture both time and frequency characteristics of structural 

vibration signals, the DWT was employed for signal 

decomposition. Unlike the FFT, which provides only global 

frequency information, DWT enables multiresolution analysis 

by breaking the signal into approximation and detail 

coefficients across multiple levels. This allows transient events 

and localized structural responses often indicative of damage to 

be effectively identified. In this study, each acceleration signal 

segment was decomposed using an appropriate mother wavelet 

and a predefined number of levels, facilitating the extraction of 

discriminative time–frequency features suitable for both 

supervised and unsupervised learning models. Based on our 

previous studies [11], [12], the db3 wavelet was selected as due 

to its effectiveness in capturing signal characteristics relevant 

to structural changes and level 4 was chosen as optimal level 

for further analysis based on optimal energy and classification 

performance observed in all extracted features Figure 5.  

 

 
Figure 6. correlation index, root mean square and relative 

energy versus decomposition level 

The signal is decomposed up to level 4, resulting in one 

approximation signal (A4) and four detail signals (D1–D4). In 

wavelet analysis, signal decomposition is carried out by 

projecting the signal onto subspaces of scaling and wavelets 

basis functions at different scales and their transmission. Figure 

7 shows multi-level wavelet decomposition process of the 

signal. The original signal is recursively decomposed into 

approximation and detail components. Each approximation 

captures low-frequency trends (global behavior and long-term 

structure), while the corresponding detail captures high-

frequency information related to transient events or damage. 

After 4 levels, the final detail and approximation components 

are used for damage detection and anomaly identification. 

 
Figure 7. multi-level wavelet decomposition process of the 

signal. 

Figure 8 illustrates the four-level wavelet decomposition of the 

second 15-minute segment of the acceleration signal using the 

db3 wavelet. The signal is decomposed into detail coefficients 

(CD1–CD4) capturing high- to low-frequency components, 

and an approximation (CA4) representing the global, low-

frequency trend. This multilevel decomposition enables the 

extraction of both transient and long-term structural behaviors, 

supporting more effective damage detection and anomaly 

identification in SHM applications.  

 
Figure 8. Multi-Level Discrete Wavelet Coefficients of the 

Acceleration Signal (db3, 4 Levels) 

 Features extraction  

Feature extraction is a vital step in data-driven structural health 

monitoring (SHM), converting raw acceleration signals into 

meaningful representations that support effective damage 

detection and classification. In this study, wavelet-based time–

frequency decomposition is applied to one signal segment, and 

from each of the four detail sub-bands (D1 to D4), seven 

statistical features are computed: mean, standard deviation, root 

mean square, energy, skewness, kurtosis, and Shannon entropy. 

This results in 28 features for that segment, as summarized in 

Table 1. While additional segments and features were extracted 

in the full analysis from detail and approximation coefficients, 

only this representative example is presented here due to space 

constraints. These features serve as inputs to deep learning 

models, enabling them to learn complex structural dynamics 

and behavioral patterns. 

Table 1. Extracted Wavelet-Based Statistical Features 

 
To improve model interpretability and efficiency, feature 

importance analysis is carried out to select the most informative 

variables, allowing the AI model to concentrate on features 

with the highest predictive value. Figure 9 shows feature 

importance ranking showing the relative effect of each input 

variable on the model’s prediction. Features with higher 

importance values contribute more to decision-making, 

highlighting the most critical parameters for accurate structural 

condition assessment. 
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Figure 9.  Feature importance ranking illustrating the 

relative influence of each input variable 

5 NEURAL NETWORKS MODEL 

Neural networks have widely used in SHM due to their ability 

to model complex data patterns. Deep architectures like CNNs 

and LSTMs are mainly effective for capturing spatial and 

temporal features. A CNN usually includes convolutional 

layers, pooling operations, and one or more fully connected 

layers. These components collaboratively extract and refine 

informative features from input data. The fully connected 

layers serve as the classifier based on the learned features. 

Through a sequence of operations, the CNN can reduce the 

dimensionality, which improves computational efficiency and 

support more effective model training [15]. LSTM is a variant 

of recurrent neural networks designed to learn long-term 

dependencies in sequential data. Its internal structure includes 

memory cells and gating mechanisms, exactly the input, forget, 

and output gates, which control the info flow through time. This 

architecture allows the LSTM to retain relevant time-based 

features and discard irrelevant ones, making it effective in time-

dependent tasks [16]. Combining these models offers improved 

performance in analyzing dynamic, time-varying signals. This 

hybrid model is well-suited for SHM tasks, as it can capture 

both spatial features, such as vibration signatures, and temporal 

patterns, such as degradation over time   both of which are 

critical for accurate classification and anomaly detection. A 

detailed summary of the proposed hybrid CNN-LSTM 

configuration is given in Table 2. Further architectural 

specifications and theoretical background can be found in [12]. 

 

Table 2. A detailed summary of the proposed hybrid CNN-

LSTM configuration 

 

6 RESULTS AND DISCUSSION 

All experiments were executed in MATLAB R2023a using 

built-in toolboxes for signal processing and deep learning. 

Signal processing tasks and wavelet analysis, were done using 

DWT with db3. Features were extracted from detail 

components obtained through decomposition, up to level 4. For 

supervised classification tasks, SVM, Random Forest, CNN, 

LSTM, and CNN-LSTM hybrids models were trained with 

appropriate layer configurations. A max of 100 epochs was 

used with early stopping if validation performance stagnated 

for 10 epochs. The Adam optimizer with a learning rate of 

0.001, cross-entropy loss, mini-batch size of 64, and dropout 

(rate = 0.3) were used to ensure convergence and prevent 

overfitting. For unsupervised anomaly detection, autoencoders 

were trained using wavelet-based features extracted from 

database. MSE between reconstructed and raw signals was used 

as the reconstruction loss. Thresholds were determined from 

the 95th percentile of reconstruction error on training data. To 

assess performance, multiple evaluation metrics were used, 

accuracy, precision, recall, F1-score, and area under the ROC 

curve. Visual diagnostics such as ROC curves were generated 

for comprehensive interpretation. Model strength was validated 

using 5-fold cross-validation with stratified sampling to 

preserve balanced class distributions across damage states. The 

proposed WCNN-LSTM framework outdid existing SHM 

methods across many assessment metrics. The CNN-LSTM 

without wavelet achieved 86–accuracy, and wavelet-based 

models exceeded 89 accuracies, with notably higher F1-scores 

and. The WCNN-LSTM hybrid further contributed by 

capturing both spatial and temporal features, leading to better 

generalization across damage types and environmental 

conditions. As shown in Table 3, model assessment using 

metrics such as accuracy, precision, and recall confirms that the 

proposed framework's robustness.  

Table 3. Model assessment using metrics such as accuracy, 

precision, and recall 

 
For unsupervised anomaly detection, autoencoders were 

trained using wavelet-based features extracted from database. 

To evaluate classification performance across five classes, we 

compared per-class ROC curves for the baseline CNN and the 

enhanced WCNN model. The comparison of ROC curves in 

Figure 10 highlights that the Wavelet-Combined CNN 

(WCNN) model offers more balanced and robust performance 

across all damage classes compared to the conventional CNN. 

While the CNN model achieves higher AUC values in some 

individual classes (e.g., Class 4), it performs poorly in others 

(e.g., Class 0). In contrast, the WCNN demonstrates more 

consistent AUC scores across all classes, indicating improved 

generalization and reliability for multi-class damage detection. 

This suggests that integrating wavelet-based time–frequency 

features enhance the model’s ability to capture both transient 
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and global signal characteristics, leading to superior 

classification performance in structural health monitoring 

applications. 

 

 
Figure 10. ROC curves for both CNN and WCNN models 

 

Figure 11 shows the progression of training and validation 

accuracy over 100 epochs. While both curves show consistent 

improvement and reach above 93%, a slight performance gap 

remains, particularly toward the final epochs. The training 

accuracy marginally exceeds the validation accuracy, 

suggesting that some degree of overfitting may still be present. 

Also, the flattening of both curves indicates that the model has 

reached a learning plateau, beyond which additional training 

yields diminishing gains. This suggests that while the current 

architecture is effective, there is still room for enhancement, 

particularly in improving generalization, increasing robustness 

across classes, or reducing confusion between structurally 

similar samples. Future improvements could include 

techniques such as attention mechanisms, hybrid feature fusion, 

or advanced assembling strategies to push performance beyond 

the current ceiling. 

 

 
Figure 11. Receiver Operating Characteristic in Class 1 vs. 

Rest AUC = 0 

Figure 12 shows the reconstruction errors distribution for 

normal and anomalous data. Normal samples exhibit low 

reconstruction errors, predominantly below the threshold of 

0.03, indicating accurate reconstruction by the model. In 

contrast, irregular samples show higher reconstruction errors, 

with important portion exceeding the threshold. This separation 

reveals the effectiveness of reconstruction error as a 

discriminative feature for anomaly detection, with the threshold 

serving as a decision boundary between damaged and healthy 

states. The results confirms that error of reconstruction 

effectively separates anomalous and normal states, supporting 

its use as a reliable indicator for anomaly detection in SHM. 

 

 
Figure 12. Wavelet-Autoencoder Reconstruction Error 

Distribution 

7 CONCLUSION AND FUTURE WORK 

This paper presented a wavelet-based deep learning framework 

for structural health monitoring (SHM) using benchmark data. 

By combining Discrete Wavelet Transform (DWT) for time–

frequency feature extraction with a hybrid CNN–LSTM 

architecture, the method aimed to address some of the 

limitations in conventional SHM approaches, particularly 

under noisy and complex signal conditions. Experimental 

results showed that the proposed approach offered 
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improvements over baseline ML and standard DL models in 

terms of classification performance, including accuracy and 

AUC. The framework supported both supervised and 

unsupervised learning modes, making it adaptable to different 

data labeling scenarios. 

Nevertheless, further research is needed to improve the 

framework’s performance and adaptability under more diverse 

operational conditions, larger datasets, and real-time 

deployment constraints. Future work may focus on optimizing 

the model architecture, exploring additional feature 

representations, and validating performance under real-world 

deployment scenarios. 
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