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ABSTRACT: While Structural Health Monitoring (SHM) has potential to aid bridge managers, its adoption has been limited, 

with one of the challenges being determining a bridge’s condition without a historical reference point for that structure. 

Researchers have started investigating Population-Based Structural Health Monitoring (PBSHM) to tackle this, facilitating the 

sharing of data from comparable structures. The key advantage of PBSHM is that it potentially enables us to use data from one 

structure to make inferences about the health of another structure in the same population. 

Whilst, to date, populations that have been used for PBSHM have been defined using structural similarities alone, you might be 

missing out on information that could be useful for bridge managers, which raises the question: Could we define populations in 

a different way? This research investigates if it is potentially useful to define a population of bridges based on whether they 

experience the same environmental conditions. To answer this, long-term natural frequency data from two bridges close to each 

other are analysed to determine the level of correlation between them. This work shows that it may be potentially useful to 

define populations based on factors other than structural similarities, which allows greater opportunities for PBSHM. 

KEY WORDS: Structural Health Monitoring (SHM); Population-Based Structural Health Monitoring (PBSHM); Bridge 

Monitoring; Natural Frequencies; Environmental Effects; Correlation Analysis; Temperature Influence; Vibration Data; Graph-

Based Structural Similarity; Machine Learning in SHM.

1 INTRODUCTION 

 Challenges in current bridge inspection 

Bridges are vital pieces of infrastructure, enabling the 

movement of goods and people [1]. Currently, bridges are 

monitored primarily through periodic visual inspections, which 

provide valuable insights. However, these visual inspections 

can be subjective, and some defects, such as internal cracks or 

corrosion, may not be visible during routine inspections. 

In the worst-case scenario, undetected structural deficiencies 

can lead to catastrophic bridge failures, resulting in substantial 

financial costs and loss of life. For example, in 2018 the 

Morandi Bridge failed, killing 43 [2]. Additionally, the 

subjectivity of visual inspections makes it challenging to 

efficiently allocate limited resources. In 2024, the Carola 

Bridge in Dresden, Germany, collapsed due to hydrogen-

induced stress corrosion cracking in the bridge’s steel 

components [3]. The aftermath of the collapse can be seen in 

Figure 1. This type of corrosion began during the bridge’s 

construction between 1967 and 1971 and progressed internally 

over decades, remaining undetectable through standard visual 

inspections. The eventual collapse of the Carola Bridge is a 

good example of highlighting a significant limitation of 

traditional monitoring methods. 

 

Figure 1. Carola Bridge (Dresden, 1971). 

 Background on Structural Health Monitoring (SHM) 

Over the past 30 years, there has been increasing interest in 

using quantitative data, such as acceleration or displacement, to 

assess bridge health, a practice known as Structural Health 

Monitoring (SHM) [4]. Its widespread adoption has been 

limited, however, with one of the challenges being determining 

whether a bridge is healthy or damaged without a historical 

reference point for that structure. This process is challenging 

because SHM systems often rely on baseline data to detect 

structural deterioration. If you do not take measurements from 

the ‘healthy’ state, it is difficult to determine the difference 

between normal changes (caused by things like weather or 

traffic) and real damage, which raises the risk of false alarms 

or missed defects [4]. 

Correlation of natural frequencies of bridges that are under similar environmental 

conditions. 
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 Overview of Population-Based Structural Health 

Monitoring (PBSHM) to date and current limitations 

Researchers have begun exploring Population-Based Structural 

Health Monitoring (PBSHM) as a solution to address the 

challenges in traditional SHM, enabling the sharing of data 

across comparable structures. It allows data from one structure 

to be used to make inferences about the health of another 

structure within the same ‘population’ [5]. 

The foundations of PBSHM have been established through a 

series of published papers Towards Population-Based 

Structural Health Monitoring [6, 5, 7, 8, 9, and 10]. These 

papers examine methods for representing structures as graphs 

and developing similarity measures to compare them. 

PBSHM extends traditional SHM by focusing on monitoring 

populations of structures rather than individual assets. Unlike 

conventional SHM, which relies on baseline data for a single 

structure, PBSHM enables the transfer of knowledge across a 

group of similar structures. By leveraging data from one 

structure, engineers can make inferences about the condition of 

others within the population, helping to mitigate the challenge 

of missing baseline data [5]. 

However, for PBSHM to be effective, the population must 

consist of sufficiently similar structures. If the differences are 

too significant, knowledge transfer may become inaccurate, 

leading to negative transfer; indeed, the application of insights 

from one structure can act to introduce error rather than 

improving understanding [7]. 

In practice, populations of bridges in PBSHM are typically 

formed by identifying structures that are structurally similar. 

For instance, Gosliga et al. [11] identified a pair of similar truss 

footbridges and a group of two beam-and-slab bridges. These 

bridges were represented as graphs, and using a graph matching 

algorithm, a high similarity metric was observed. Following 

field testing, the authors compared their dynamic responses and 

confirmed that the frequencies and mode shapes of bridges 

identified as similar through graph matching were indeed 

consistent [12]. 

If populations are defined solely based on structural 

information, potentially valuable factors that could aid in SHM 

might be overlooked. This raises the question: Could 

populations be defined differently? For example, a population 

could include bridges within the same geographical area, 

meaning they would be subject to the same environmental 

conditions. While populations in PBSHM have thus far been 

considered based on structural similarity, exploring alternative 

conceptualisations of populations may prove to be equally 

useful. 

 Contribution of this work 

To explore whether bridges located in close proximity and 

therefore notionally experiencing the same environmental 

conditions could potentially form a population, long-term 

natural frequency data from two bridges 540 metres apart were 

analysed to determine the level of correlation between them. 

The results suggest that defining populations based on factors 

other than structural similarities could be potentially valuable, 

offering greater opportunities for PBSHM. 

2 BRIDGE SITES USED AND TEMPERATURE 

CORRELATION BETWEEN SITES 

 Bridge selection and data collection 

For this study, two bridges located 540 metres apart along the 

same river were selected. Bridge 1 is a 98-metre-long, 27-

metre-wide bowstring girder bridge (Figure 2a), while Bridge 

2 is a 76-metre-long, three-span composite concrete and steel 

bridge (Figure 2b). The proximity of these bridges allowed for 

a controlled investigation of how environmental factors 

influenced their dynamic behaviour. 

(a) 

 
(b) 

 

Figure 2. (a) Schematic of Bridge 1 (b) Schematic of Bridge 2. 

As described by O’Higgins et al. [13], long-term vibration 

data was collected using a single accelerometer on each bridge. 

It was observed that positioning the sensor near the quarter-

span point on both bridges allowed it to detect most modes and 

frequencies. 

The Structural Health Monitoring (SHM) system used for 

long-term monitoring consisted of one MEMS accelerometer 

and one environmental sensor. The accelerometer employed 

was the Multifunction Extended Life (MEL) Data Logger from 

Gulf Coast Data Concepts. This accelerometer was housed in 

an enclosure, which was then attached to the deck of each 

bridge. One of these enclosures is shown in Figure 3. 

The environmental variables were measured using an 

environmental sensor capable of recording both air temperature 

and humidity. To ensure accurate temperature readings, the 

sensors were not placed within the enclosure to avoid the 

effects of solar gain. Instead, they were positioned out of direct 

sunlight to provide a representative measure of the local air 

temperature. On each bridge, the temperature sensors were 

placed on the abutment shelf or at the base of an abutment, both 

out of direct sunlight. 

 

Figure 3. Monitoring enclosure and MEL data. 
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 Correlation of temperature data 

A key objective of this study was to determine whether the two 

bridges experienced similar environmental conditions. To 

assess this, temperature data from both bridges were compared 

using a hexbin plot (Figure 4). A hexbin plot is a 2D histogram 

where the bins are hexagonal, and the colour intensity 

represents the number of data points within each bin. 

Figure 4 shows a strong positive correlation between the 

temperature measurements of both bridges, with a correlation 

coefficient of 0.98, indicating that higher temperatures on 

Bridge 2 correspond to higher temperatures on Bridge 1. This 

suggests that the two bridges experience nearly identical 

environmental exposure. 

However, some variability was observed between January 6 

and February 17, during which Bridge 1 exhibited slightly 

higher temperatures in the 0-5°C and 5-10°C ranges. The cause 

of these anomalies remains uncertain, but potential 

explanations include differential shading and differences in 

material thermal properties. 

While these discrepancies are noticeable in the plot, they do 

not significantly impact the overall trend. There are up to 

14,000 data points in the yellow bins and fewer than 2,000 data 

points in the dark blue bins, reinforcing the stability of the best-

fit line. This indicates that most of the data follows a linear 

relationship, with only a brief period showing anomalous 

values. 

 

Figure 4. Temperature data from Bridge 1 versus temperature 

data from Bridge 2. 

3 NATURAL FREQUENCY ANALYSIS 

 Extraction of Natural Frequency 

As per O’Higgins et al. [13], acceleration data was segmented 

into 30-minute intervals and processed using the Stochastic 

Subspace Identification (SSI) method to extract the bridge 

frequencies. The data was recorded from October 2018 to May 

2021, though some gaps occurred due to limited personnel 

availability for data collection and disruptions caused by the 

COVID-19 pandemic. 

For this work, a simple outlier analysis was undertaken on 

natural frequency data so that the complexity of data analysis 

was reduced and data visualisation was clearer. Any data point 

that was more than three scaled median absolute deviations 

from the median of the data was removed. 

 Time-domain work 

Figure 5 presents the time-series data for the natural 

frequencies of both bridges. Bridge 1 exhibits five natural 

frequencies ranging from approximately 1.2 Hz to 5.2 Hz, 

while Bridge 2 has five natural frequencies ranging from 

approximately 2.7 Hz to 9.3 Hz. Overall, Bridge 2 demonstrates 

higher frequency values compared to Bridge 1. 

 

Figure 5. All frequency data over the whole monitoring 

period. 

Figure 6 consists of two subplots, both illustrating the 

relationship between bridge frequencies and temperature over 

time. Frequency and temperature are plotted against the left and 

right vertical axes, respectively. 

In plot (a), the temperature (purple line) exhibits seasonal 

variations, with distinct peaks and troughs. When analysing 

annual data, a seasonal trend is observed for frequency 5 of 

Bridge 1 and frequency 4 of Bridge 2, with evidence of an 

inverse correlation between the frequencies and temperature. 

Additionally, Bridge 1 and Bridge 2 appear correlated, with 

both bridges showing an inverse relationship with temperature 

on an annual scale. 

In plot (b), which focuses on daily temperature cycles, there 

is some correlation between the two frequencies. As seen in 

plot (a), higher temperatures correspond to lower frequency 

values, a trend that is even more noticeable in plot (b). This 

aligns with expectations, as increasing temperature may cause 

a reduction in structural stiffness, leading to lower natural 

frequencies [14]. 
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Figure 6. Frequency 5 of Bridge 1 and frequency 4 of Bridge 

2 (a) Whole monitoring period (b) A week of monitoring data. 

 Frequency correlation work 

Figure 7 presents hexbin plots for all the frequencies of Bridges 

1 and 2, with the correlation coefficient displayed in the top left 

corner of each plot. The histograms on the diagonal illustrate 

the distribution of each frequency. 

The figure reveals a strong correlation between frequencies 

within the same bridge (rows 1-5, columns 1-5). However, the 

most relevant information is in the top right section of the 

figure, highlighted by a dashed black box, which shows the 

correlation between frequencies of Bridge 1 and Bridge 2. The 

column references (1 to 10) are displayed at the top, while the 

row references are shown on the right. 

For example, the plot in row 1, column 6 represents the 

correlation between frequency 1 of Bridge 1 and frequency 1 

of Bridge 2, with a correlation coefficient of 0.31, indicating a 

relatively weak correlation. Similarly, the plot in row 1, column 

7 shows the correlation between frequency 1 of Bridge 1 and 

frequency 2 of Bridge 2, with a coefficient of 0.5. A zoomed-

in view of the area inside the dashed black box in Figure 7 is 

shown in Figure 8. Figure 8 illustrates the varying correlations 

between frequencies, with correlation coefficients ranging 

from 0.13 to 0.64.

 

 

Figure 7. All correlation plots for all the frequencies. 
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Figure 8. Correlation between pairs of frequencies in Bridge 1 and Bridge 2.

The highest correlation of 0.64 is observed between 

frequency 3 of Bridge 1 and frequency 2 of Bridge 2 (shown in 

row 3, column 7 in the dashed red box in Figure 8), and this is 

shown on a larger scale in Figure 9. 

 

Figure 9. Most correlation between frequencies. 

The lowest correlation of 0.13 is observed between frequency 

4 of Bridge 1 and frequency 3 of Bridge 2 (shown in row 4, 

column 8 in the dashed magenta box in Figure 8), and this is 

shown on a larger scale in Figure 10. 

 

Figure 10. Least correlation between frequencies. 
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Having identified the pair of frequencies with the highest 

correlation (Figure 9) and the lowest correlation (Figure 10), 

we now look at the time series plots associated with these 

frequencies to try and get further insight into why some are 

better correlated than others. To this end, Figure 11 presents the 

pair of frequencies with the highest correlation, specifically 

frequency 3 of Bridge 1 (plotted against the left-hand vertical 

axis) and frequency 2 of Bridge 2 (plotted against the right-

hand vertical axis). Plot (a) displays data spanning the entire 

monitoring period from October 2018 to May 2021, while plot 

(b) focuses on a 7-day period. The strong correlation between 

these frequencies is evident from the synchronised sinusoidal 

patterns observed in both bridges. 

 

Figure 11. Frequency 3 of Bridge 1 and frequency 2 of Bridge 

2 (a) Whole monitoring period (b) A week of monitoring data. 

Figure 12 shows the least correlated frequencies between 

both bridges, specifically frequency 4 of Bridge 1 and 

frequency 3 of Bridge 2. This figure follows the same format 

as Figure 11, with the overall monitoring period shown in plot 

(a) and the same 7-day period shown in plot (b). When plotted 

as a time series, these natural frequencies exhibit a lower 

correlation to those shown in Figure 11, which is consistent 

with the expectations based on the hexbin plot in Figure 10. 

 

Figure 11. Frequency 4 of Bridge 1 and frequency 3 of Bridge 

2 (a) Whole monitoring period (b) A week of monitoring data. 

4 CONCLUSION 

Temperature data from two bridges located near each other 

shows a strong correlation (with a correlation coefficient of 

0.98), suggesting that the bridges experience similar 

environmental conditions. The natural frequencies of the two 

bridges also exhibit significant correlation, with coefficient 

values for some pairs of frequencies reaching up to 0.64. 

Traditionally, Population-Based Structural Health Monitoring 

(PBSHM) has defined populations based on structural 

similarities. This paper suggests the potential for defining 

populations based on shared environmental conditions. Given 

the sufficient correlation in temperature and frequency data, it 

may be possible to infer information about Bridge 1 based on 

the data collected from Bridge 2. This will be further explored 

in future work through correlation analysis, such as 

cointegration on the data. 

Future studies will examine a wider range of bridge types to 

determine whether the same correlations apply. Additional 

research could also explore the conditions under which these 

correlations remain valid and when they begin to break down. 
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