
13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-137 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 882 

The future of conservation: Citizen Science models for the Photomonitoring of 

cultural heritage 

 

Cosentino Antonio1,2, 0000-0002-7893-4693, Clementi Jessica1, 0000-0002-7576-4983, Molinari Antonio1, 0009-0001-9097-9640, Sanvito Veronica1, 0009-

0000-9707-0248, Mazzanti Paolo1,2,3 0000-0003-0042-3444 

 
1Department of Earth Sciences, “Sapienza” University of Rome and CERI Research Centre for Geological Risks, P.le Aldo 

Moro 5, 00185 Rome, Italy 
2IntelligEarth S.r.l.—Start UP, “Sapienza” University of Rome, Via V. Bachelet n. 12, 00185 Rome, Italy 

3Nhazca S.r.l.—Start UP, “Sapienza” University of Rome, Via V. Bachelet n. 12, 00185 Rome, Italy 

Email: antonio.cosentino@uniroma1.it, jessica.clementi@uniroma1.it, antonio.molinari@uniroma1.it, 

veronica.sanvito@uniroma1.it, paolo.mazzanti@uniroma1.it 

 

 

ABSTRACT: This study investigates the effectiveness of photomonitoring as a remote sensing technique for cultural heritage 

conservation, focusing on the Aurelian Walls (Rome) and the Church of Santa Apollonia (Ferrara), Italy. Using mobile devices 

such as smartphones and tablets, structural changes—including brick detachment and vegetation growth—were detected through 

Structural Similarity Index (SSI) mapping. The results highlight both the advantages and limitations of mobile-based monitoring, 

emphasizing its flexibility and rapid deployment. Key challenges include variations in pixel size and lighting conditions, which 

influence data consistency. Despite these limitations, the study supports the potential of citizen science integration to enhance 

spatial and temporal data collection. By leveraging crowdsourced imagery, monitoring efforts can become more comprehensive 

and cost-effective. The findings align with broader citizen science initiatives, demonstrating how non-invasive, mobile-based 

techniques can contribute to sustainable heritage preservation. Future research should focus on optimizing data acquisition and 

processing methodologies to improve the robustness of this approach. 

KEY WORDS: Photomonitoring, Structural Similarity Index, Cultural Heritage Monitoring, Mobile Sensing, Citizen Science, 

Remote Sensing, Image-Based Analysis 

 

1 INTRODUCTION 

The preservation of cultural heritage is a crucial endeavor, 

safeguarding the tangible expressions of human history and 

identity. The monitoring of immovable cultural assets—

including monuments, archaeological sites, and historic 

buildings—is essential to ensure their longevity and structural 

integrity. While traditional monitoring methods have long been 

utilized in heritage conservation, recent advancements in image 

analysis techniques, coupled with the growing role of citizen 

science, have significantly enhanced these practices. Cultural 

heritage sites face numerous threats, including environmental 

factors such as weathering, pollution, and natural disasters, as 

well as human-induced damages such as vandalism and urban 

expansion. Regular monitoring is essential for detecting early 

signs of deterioration, enabling timely interventions to prevent 

further damage and preserve the historical value of these sites. 

Additionally, continuous assessment supports informed 

decision-making regarding conservation strategies and 

resource allocation. 

Historically, cultural heritage monitoring has relied on several 

established techniques. Visual inspections remain a 

fundamental approach, with conservators and archaeologists 

conducting systematic assessments to identify surface 

anomalies, structural cracks, or material degradation. However, 

this method is inherently subjective and may fail to capture 

subtle changes over time. Standard photography has been 

widely used to document sites, facilitating comparative 

analysis, yet it is often insufficient for detecting underlying 

structural issues or material compositions. Furthermore, 

environmental monitoring devices such as dataloggers provide 

valuable data on temperature, humidity, and vibrations 

affecting cultural assets. While effective, these sensors often 

require intrusive installation, which may pose risks to fragile 

structures. 

In recent decades, the integration of advanced image analysis 

techniques has revolutionized cultural heritage monitoring, 

offering precise and non-invasive methods for assessing and 

preserving historical sites. The fusion of image analysis with 

geomatics and remote sensing technologies has significantly 

expanded heritage monitoring capabilities. The use of satellite 

imagery, such as data from Sentinel-2, allows for large-scale 

monitoring of archaeological sites, providing critical insights 

into environmental impacts and structural changes over time 

[1]. The incorporation of artificial intelligence (AI), 

particularly deep learning algorithms, has enhanced damage 

assessment accuracy in cultural heritage conservation. 

Automated detection and classification of deterioration patterns 

improve the efficiency of preservation efforts [2]. 

Moreover, linking hyperspectral imaging with other non-

destructive analytical methods has further advanced research 

potential in this field. The integration of hyperspectral imaging 

with tensor-based learning models has improved the automated 

inspection of cultural monuments, allowing for detailed 

material characterization and defect classification, enhancing 
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the accuracy of preservation strategies [3]. The application of 

unsupervised clustering techniques to hyperspectral images has 

been explored for monitoring cultural heritage degradation, 

enabling the detection of decomposition and corrosion levels, 

providing valuable data for conservation efforts [4]. Deep 

learning methods, such as autoencoders and Generative 

Adversarial Networks (GANs), have been successfully 

employed for anomaly detection on ancient stone stele surfaces 

[5], while convolutional neural networks (CNNs) have been 

utilized to identify structural damage in heritage buildings [6]. 

By processing high-resolution images, these AI-driven 

techniques facilitate the timely detection of defects, supporting 

proactive conservation efforts. 

These image-based techniques offer several advantages over 

traditional methods: they are non-invasive, minimize direct 

interaction with artifacts, and generate high-resolution data that 

can be quantitatively analyzed. Furthermore, their digital nature 

allows for the creation of permanent records that can be 

revisited for future studies or restoration initiatives. 

In 2022, the Italian Ministry of Culture and the CERI Research 

Center at the University of Rome Sapienza entered into a 

collaboration agreement to develop new guidelines for the 

monitoring of deformations that affect cultural heritage sites. 

Within this framework, our research group is testing various 

innovative, non-invasive monitoring techniques, from the 

landscape scale down to individual cultural heritage buildings. 

Photomonitoring has emerged as a cost-effective, precise, and 

rapid alternative to traditional analytical methods [7; 8]. By 

leveraging low-cost tools such as smartphones and entry-level 

cameras, photomonitoring enables accurate multitemporal 

analysis to detect vegetation growth, mortar detachment, and 

structural deterioration. Based on Digital Image Processing 

principles, this approach extracts both qualitative and 

quantitative insights into structural changes by analyzing and 

comparing images of the same area taken at different time 

intervals [9;10]. This paper explores the potential of 

photomonitoring through case studies, including the Aurelian 

Walls in Rome and S. Apollonia Church in Ferrara. The results 

demonstrate its effectiveness in providing detailed insights into 

structural changes, offering a sustainable solution for heritage 

management. 

Having established the reliability of photomonitoring, the next 

objective is to involve communities in data collection through 

mobile and web applications. Initiatives such as IntelligEarth 

exemplify the intersection of technology and citizen science. 

This startup aims to revolutionize heritage monitoring by 

integrating crowdsourcing systems and citizen participation, 

enabling real-time reporting and analysis of environmental 

risks to cultural sites. 

Citizen science—the active involvement of non-professional 

researchers in scientific initiatives—has become an invaluable 

component of cultural heritage monitoring and conservation. 

Integrating citizen science not only complements traditional 

monitoring efforts but also democratizes the preservation 

process, fostering a sense of collective responsibility. Equipped 

with smartphones and digital cameras, individuals can capture 

and upload images of heritage sites, contributing to large-scale 

monitoring databases. This approach significantly expands the 

spatial and temporal scope of data collection beyond what 

professional teams alone can achieve. Furthermore, engaging 

the public in heritage monitoring raises awareness about 

cultural preservation. Educational programs and workshops 

can empower communities to take an active role in 

conservation efforts. 

Recent case studies highlight the effectiveness of citizen 

participation in heritage monitoring. The Tirtha project, 

launched in 2023, exemplifies the integration of technology and 

public engagement in cultural heritage preservation. This web 

platform enables crowdsourcing of heritage site images to 

generate detailed 3D models using advanced photogrammetry 

techniques. Contributors submit photographs that are processed 

to create accurate three-dimensional representations of cultural 

landmarks [11]. Monitoring and documenting remote heritage 

sites pose significant challenges for large heritage 

organizations. By encouraging tourists and local residents to 

share images captured during their visits, organizations can 

collect valuable data to assess the condition of sites, especially 

those that are unstaffed or in remote locations. This approach 

proved particularly valuable during the COVID-19 pandemic, 

ensuring continued monitoring despite travel restrictions [12]. 

The role of citizen science in cultural heritage conservation 

extends beyond data collection, fostering increased public 

awareness and community engagement. A compelling example 

of this dynamic is presented in the study of Kumar [13], which 

analyzed the response to the 1966 Florence flood and 

demonstrated how crowdsourcing efforts—long before the 

internet era—enabled effective heritage recovery through 

monetary donations, volunteer labor, and material support. The 

study further identified key motivational factors for public 

participation in such initiatives, including direct calls to action, 

media influence, and personal connections to affected cultural 

assets. These findings suggest that properly structured citizen 

science initiatives have the potential to mobilize extensive 

public participation in cultural heritage conservation, even in 

the aftermath of disasters. 

The monitoring of immovable cultural heritage is a complex 

yet evolving field that has been greatly enhanced by 

technological advancements. While traditional methods have 

provided the foundation for conservation practices, the 

integration of sophisticated image analysis techniques has 

significantly improved the precision and efficiency of 

monitoring efforts. Simultaneously, the rise of citizen science 

has introduced a collaborative dimension, enriching data 

collection and fostering public involvement. Together, these 

advancements contribute to more effective and inclusive 

strategies for preserving the invaluable cultural legacies of 

humanity. 
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2 MATERIALS AND METHODS 

2.1 Instrumentation and Source Data 

In the frame of this work, the acquisitions have been performed 

with two different sensors, one for each site. In both cases, it 

has been chosen a multi-temporal approach to monitor the 

evolution of the phenomenon over time, providing a more 

comprehensive and accurate perspective. 

The first dataset of images was taken using a Tablet Samsung 

Galaxy Tab S7+, whose features are shown in Table 1. 

Table 1 - Samsung Galaxy Tab S7+ characteristics  

Sensor 13 MP 

Sensor size 1/3.4" 

Focal length 3 mm 

 

To acquire the second dataset, a Smartphone Samsung Galaxy 

A54 was used, whose characteristics are shown in Table 2. 

Table 2 - Samsung Galaxy A54 characteristics  

Sensor 12 MP 

Sensor size 1/1.56" 

Focal length 6 mm 

 

As for the acquisitions, the images taken with the tablet were 

captured manually, while a tripod was used for those acquired 

with the smartphone. In order to keep the same position and the 

same camera orientation between one acquisition and another, 

it has been used the software of feature tracking CARE, that 

allows to obtain the same exact position of the previous 

acquisition. This is essential to ensure the best performance 

during the analysis, giving a more accurate result in the co-

registration process. 

Data collection lasted for more than a year. The tablet dataset 

has been collected in two phases, the first one from November 

to December 2022; the second one from December 2023 to 

November 2024. The smartphone dataset has been acquired 

over a period of one year, from February 2024. 

 

Table 3 - Images characteristics  

Subject Date Dimensi

ons 

Dista

nce 

Pixel 

Size 

K11-K12 

section 

27-12-

2022/19-01-

2024 

6.27 MB 

– 5.84 

MB 

30 m 19,3 

mm 

K12-K13 

section 

19-01-

2024/19-09-

2024 

6.67 MB 

– 6.19 

MB 

32 m 20,6 

mm 

Sant’ 

Apolloni

a Church 

13-06-

2024/26-09-

2024 

9.56 MB 

– 8.39 

MB 

6 m 2,67 

mm 

 

  
Fig. 1 Map showing the Aurelian Wall cases of study and the 

positions of acquisition (a). Frame of the K12-K13 section (b). 

Frame of the K11-K12 section (c).  
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Fig. 2 Map showing Santa Apollonia Church case of study and 

the positions of acquisition (a). Frame of acquisition (b).  

 

2.2 Methodology  

The data acquired for this study were processed using Change 

Detection (CD) algorithms. Change Detection is a Digital 

Image Processing (DIP) technique that allows to identify 

variations between images acquired at different time intervals 

by comparing a reference image (master) with one or more 

successive images (slave) [14]. Digital images, represented as 

numerical matrices, enable the identification of features such as 

points, lines, patterns, color, brightness, and contrast. The 

comparison of these features between temporally successive 

images allows for the precise detection of changes within the 

area of interest [9]. Several Change Detection methods have 

been developed to date. Pixel-based approaches directly 

compare intensity values between successive images. 

Statistical approaches, such as the Mean Squared Error (MSE) 

and the Peak Signal-to-Noise Ratio (PSNR), quantify 

variations based on error metrics [14, 15]. Perceptual-based 

methods, such as the Structural Similarity Index (SSIM), 

analyze changes while accounting for human visual perception 

[16]. The accuracy of Change Detection, regardless of the 

method adopted, depends on the quality of the acquired images 

and the ability to distinguish actual structural modifications 

from variations induced by atmospheric conditions or 

illumination differences. Additionally, the presence of 

distinctive patterns or appropriate speckle models in the scene 

is also essential to ensure robust identification of corresponding 

features in successive images. Therefore, accurate image co-

registration is essential to guarantee proper spatial alignment 

between consecutive datasets, minimizing geometric 

distortions that could compromise the analysis [16]. The CD 

approach implemented within the software utilizes the 

Structural Similarity Index (SSIM) method [16; 17]. SSIM is 

an algorithm developed to quantify image similarity by 

analyzing three fundamental components: luminance, contrast, 

and structure [17]. Compared to conventional metrics such as 

MSE and PSNR, SSIM is based on a perceptual model, offering 

a more accurate assessment of visually perceptible 

modifications [16]. This method has demonstrated 

considerable potential for detecting changes due to its 

robustness and accuracy [18]. 

The SSIM index is defined by the following equation (Eq. 1): 

𝑆𝑆𝐼𝑀(𝑥, 𝑦)  = [𝑙(𝑥, 𝑦)]𝛼 × [𝑐(𝑥, 𝑦)]𝛽 × [𝑠(𝑥, 𝑦)]𝛾 (1) 

where l(x,y) represents luminance, which evaluates the 

difference in brightness between the two images, c(x,y) 

expresses contrast, which differentiates the intensity range 

between the brightest and darkest regions of the images, and 

s(x,y) represents structure, which compares the local luminance 

pattern between two images to assess similarity and 

dissimilarity. The exponents α, β and γ are positive constants 

that govern the weight of each component in the final 

computation. The algorithm is applied to local windows within 

the images and returns a value ranging from 0 to 1, where 0 

indicates a complete change and 1 indicates an area where no 

changes have been detected. Intermediate values suggest partial 

variations, indicating potential structural modifications or 

illumination changes. The Change Detection analysis in the 

IRIS software begins with the selection and uploading of the 

master and slave images, followed by an additional image co-

registration phase to achieve perfect dataset alignment [7]. The 

next step involves selecting the Window Size (WS) parameter. 

This parameter is crucial as the software employs a sliding 

window approach, computing the SSIM index on patches 

defined by the Window Size (WS) and assigning the calculated 

SSIM value to the central pixel of each patch. 

 

Fig. 3: Conceptual scheme illustrating the process of change 

detection (CD) analysis. Two images are compared to identify 

changes that occurred during the time interval t0–t1 

Once the desired Window Size is selected, the next step 

involves assigning the weight of the individual contributions in 

the SSIM computation. This step is critical for ensuring the 
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correct execution of Change Detection. The software allows for 

adjustment of the α, β and γ exponents, exponentially 

increasing the analysis sensitivity based on specific cases. 

Operating at a local scale, the software iteratively evaluates 

image similarity within small pixel subsets defined by the WS, 

enabling the automatic detection of change regions.  

The choice of the Window Size (WS) is fundamentally 

informed by the expected scale of detectable changes within the 

monitored structures. A properly defined WS allows the analyst 

to selectively filter out minor disturbances or non-structural 

changes that are not relevant to the analysis objectives. This 

tuning capability is particularly useful when addressing noise 

induced by lighting variations or acquisition-related 

inconsistencies, such as slight displacements, shadows, or 

differences in ambient conditions. 

To further refine the detection process, the software supports 

semi-automatic calibration of the exponential weighting factors 

α, β, and γ within the SSIM algorithm. These parameters 

respectively control the contribution of luminance, contrast, 

and structural components, and their adjustment is essential for 

minimizing false positives caused by non-structural changes 

(e.g., shadow displacement or illumination shifts). By 

modulating these parameters in accordance with the selected 

WS, it is possible to enhance the robustness of the analysis, 

isolating meaningful structural variations while attenuating the 

influence of irrelevant fluctuations. This methodological 

flexibility is key to adapting photomonitoring workflows to 

diverse environmental and acquisition conditions. 

 

The result of this analysis is a raster map that visualizes SSIM 

values for each individual pixel through a color gradient. Green 

indicates an SSIM value of 1, implying no change, while blue 

represents an SSIM value of 0, indicating a complete change. 

3 CASE STUDY 

One of the selected case studies is the Aurelian Walls in Rome, 

a monumental archaeological structure that once served as the 

primary defensive boundary of the city and now forms a 

significant part of Rome’s UNESCO World Heritage 

designation. As the largest surviving monument in the city, the 

walls hold immense historical and architectural value. 

However, they are increasingly threatened by invasive 

vegetation, including species such as Hedera helix L., Ficus 

carica L., and Capparis orientalis Veill. (Capparis spinosa L.), 

with Ailanthus altissima emerging as the most invasive and 

difficult species to control [19, 20, 21, 22].  

Geologically, the Aurelian Walls are located in an area 

characterized by Quaternary volcanic formations and Holocene 

alluvial deposits from the Tiber River. Constructed under 

Emperor Aurelian between 270 and 275 AD, with subsequent 

completion under Emperor Probus, the walls originally 

extended approximately 19 km, though only 12.5 km remain 

today due to partial demolitions. Structurally, they consist of a 

combination of tuff and brick masonry, with an inner core 

composed of loosely bonded tuff blocks. Over the centuries, 

conflicts and environmental factors have contributed to their 

deterioration, prompting numerous restoration interventions. 

Notably, during the 16th century, Pope Pius IV commissioned 

extensive reinforcements to enhance their stability [23, 24]. 

More recently, the Capitoline Superintendence has undertaken 

conservation projects aimed at safeguarding the remaining 

sections and preventing structural collapses.  

The second case study focuses on the Church of Santa 

Apollonia in Ferrara, a city recognized as a UNESCO World 

Heritage Site since 1995. Originally built in the 15th century, 

the church underwent significant reconstruction in 1612, 

transforming into an oratory with an expanded classical 

octagonal layout. Further modifications were made in 1662, 

including the incorporation of the portal from the Church of the 

Holy Spirit (Chiesa dello Spirito Santo), which had been 

demolished in 1839. The church remained closed since 1975 

and was later deconsecrated. Over time, it has fallen into severe 

neglect and structural decay. Santa Apollonia has since been 

placed under state management as part of a broader restoration 

and redevelopment initiative aimed at repurposing its interiors 

into an exhibition space for the nearby National Archaeological 

Museum of Ferrara. The building, like many others in the 

region, is constructed on permeable fluvial sand deposits, 

which have contributed to significant water infiltration and 

accelerated degradation. Located north of the so-called Isola di 

Sant’Antonio, the structure exhibits pronounced signs of 

moisture-induced deterioration, with severe cracking observed 

along the left lateral wall, highlighting the urgent need for 

intervention. 

4 RESULTS 

Over a time span of more than a year, numerous changes have 

been identified in the two datasets. The changes observed 

during this period affect the vertical external curtain of the 

Aurelian Walls and the wall facing of Santa Apollonia church 

and consist mainly in detachments of bricks or mortar and 

vegetation growth. The product of the analysis is shown as a 

Structural Similarity Index Map where the changes are 

differentiated on the SSI values. Areas where no changes are 

present are highlighted in green, while changes are highlighted 

in red/purple, depending on their magnitude.  

 

4.1 Aurelian Walls 

K11-K12 section: The map in Fig. 4 c) shows some brick 

detachment on the external curtain. These bricks have a low 

similarity index value and are highlighted in red. Although the 

primary objective of the analysis was to detect structural 

changes, in this specific case the SSIM mapping also revealed 

variations associated with the growth of invasive vegetation 

(see upper-left portion of the image). These changes, while not 

structural in nature, contribute to the overall degradation of the 

wall surface and are thus relevant for conservation monitoring.  
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Fig. 4 - Detail of the Change Detection Map showing the bricks 

detachment from the K11-K12 section.  

 

K12-K13 section: The map in Fig. 5 c) shows the vegetation 

growth. The areas of growth can be seen in red due to their low 

similarity index value.  

 

Fig. 5 - Detail of the Change Detection Map showing 

vegetation growth from the K12-K13 section. 

 

 

 

4.2 Sant’Apollonia Church  

Sant’Apollonia Church: The map in Fig. 6 c) shows a brick 

detachment in conjunction with the pre-existing crack.  

 
 

Fig. 6 - Detail of the Change Detection Map showing the brick 

detachment from the facing wall of Santa Apollonia Church. 

Sant’Apollonia Church: In the Change Detection map in Fig. 7 

c) it is shown, in purple, a mortar detachment connected to a 

pre-existing crack. 

 

 

Fig. 7 - Detail of the Change Detection Map showing mortar 

detachment from the facing wall of Santa Apollonia Church. 

 

5 DISCUSSIONS 

The results of this study highlight both the effectiveness and the 

limitations of using mobile devices, such as smartphones and 

tablets, for environmental and cultural heritage monitoring. A 

key logistical advantage observed during field activities was 

the increased speed of repositioning and orienting the sensor 

when used manually compared to tripod-mounted systems. In 

this context, the tablet proved more efficient than the tripod-

mounted smartphone, allowing for immediate sensor 

realignment and reducing the time required for data acquisition. 

This aspect is particularly relevant in scenarios where 

monitoring must be performed rapidly or in spatially 

constrained environments, confirming previous findings on the 

advantages of mobile device-based monitoring methodologies 

[12]. 
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The type of changes detected by the two sensors was 

comparable, suggesting that smartphone and tablet cameras can 

provide similar results in image-based monitoring. However, a 

critical aspect to consider is pixel size, which depends not only 

on the intrinsic characteristics of the sensor but also on the 

distance from the observed object. In field conditions, this 

distance is often dictated by logistical constraints rather than 

experimental design, making it a variable that is not always 

controllable. Since pixel size directly affects the level of detail 

in image analysis, these factors must be carefully considered 

when designing a monitoring approach based on mobile 

sensors. Previous studies on cultural heritage monitoring 

through crowdsourcing emphasize the importance of such 

considerations, particularly when comparing images acquired 

with different devices under varying shooting conditions [13, 

25]. 

Another critical factor influencing data quality was the 

variability in lighting conditions. Sudden changes in natural 

light posed challenges for image acquisition, affecting both 

processing and interpretation of results. This issue is well-

documented in the literature, particularly regarding the impact 

of brightness variations on image-based analyses [25]. In some 

cases, excessive differences in lighting conditions between 

successive images introduced artifacts or inconsistencies in the 

final data, highlighting the need for adaptive calibration 

techniques or post-processing corrections to minimize these 

effects.  

To address these lighting-related challenges, during this study 

we experimented with the adjustment of the α, β, and γ 

exponential parameters in the SSIM computation. Fine-tuning 

these parameters proved effective in minimizing the influence 

of illumination variation between successive image 

acquisitions. By reducing the contribution of luminance and 

contrast inconsistencies, the analysis becomes more sensitive 

to actual structural changes rather than to superficial alterations 

induced by light fluctuations. As a result, this approach 

enhances the robustness of the change detection process by 

suppressing noise and emphasizing the “true” changes that are 

structurally relevant to the monitored object. 

An alternative but more computationally intensive strategy 

could involve the use of a redundant analytical framework, 

leveraging a broader image database for each observation. This 

would allow for comparative filtering and normalization across 

multiple acquisitions, thereby reducing the risk of localized 

errors introduced by individual source images. While this 

method could significantly improve result stability, it requires 

higher processing power and longer computation times, which 

may limit its applicability in real-time or field-based contexts. 

Additionally, adjusting the Window Size (WS) also contributed 

to filtering the results based on the expected scale of the 

changes of interest. Smaller WS values allowed for detection 

of fine-grained alterations, while larger WSs enabled the 

system to disregard minor fluctuations and focus on broader 

structural modifications. This flexibility supports the 

customization of the methodology to different conservation 

goals, depending on whether fine detail or macroscopic patterns 

are prioritized. Moreover, the application of photomonitoring 

for field-based heritage monitoring must also consider several 

site-specific environmental factors that may compromise the 

accuracy and interpretability of the results. As discussed in 

[26], there are a number of additional techniques and 

methodological improvements that can be adopted to enhance 

the overall accuracy, precision, and sensitivity of the analysis. 

However, the effective implementation of these advanced 

strategies requires careful calibration and expert knowledge, 

underscoring the importance of involving trained professionals 

in the design and interpretation of photomonitoring protocols. 

Future studies should explore solutions such as High Dynamic 

Range (HDR) imaging or automated color correction 

algorithms to mitigate the impact of uncontrollable lighting 

variations and improve the robustness of mobile-based 

monitoring techniques. Alternatively, integrating the workflow 

presented in this study with Citizen Science approaches would 

enable the collection of large datasets with high temporal 

resolution, allowing for the calibration of AI models and 

mitigating the issue of varying lighting conditions and/or 

shadows. 

Despite these challenges, the results demonstrate that effective 

monitoring can be achieved without the installation of fixed 

cameras or permanent sensors, relying solely on mobile 

devices. This outcome is particularly significant in the context 

of non-invasive cultural heritage monitoring, where 

minimizing physical interference is often a priority. Similar 

conclusions have been reached in Citizen Science studies, 

which emphasize how mobile technology can be leveraged for 

large-scale data collection while maintaining high 

methodological rigor [27, 28]. The ability to conduct fully 

contactless monitoring without requiring pre-installed 

instrumentation broadens the applicability of these 

methodologies, particularly in remote or sensitive sites where 

conventional instrument installation is impractical. 

Overall, these findings support the potential of mobile device-

based monitoring approaches as viable alternatives to 

traditional fixed-sensor systems, offering a flexible and 

scalable solution for environmental and cultural heritage 

analysis. However, further refinement of data processing 

techniques is needed to account for environmental variability 

and ensure consistency across different devices and 

observational conditions. 

6 CONCLUSIONS 

The primary objective of this study was to assess 

photomonitoring as a remote sensing technique for the 

monitoring and preservation of cultural heritage. The results 

demonstrate that photomonitoring represents an effective and 

non-invasive approach to detecting structural variations, such 

as mortar detachment in the masonry of the Aurelian Walls and 

the Church of Santa Apollonia in Ferrara. The use of widely 

accessible devices, including smartphones, tablets, and entry-

level cameras, makes this methodology not only cost-effective 

but also adaptable to the specific requirements of different 

monitored sites. 
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The potential integration of citizen science into this framework 

presents a promising opportunity for expanding spatial and 

temporal data collection. Volunteers, acting as "sensor-

visitors," could contribute images and observations that 

complement the work of professional conservation teams. This 

collaborative approach has the potential to enhance data 

coverage, bridging the gaps between scheduled professional 

surveys and ensuring more continuous monitoring of 

degradation dynamics. As noted by Bonney et al. [27], citizen 

science has been successfully implemented across various 

scientific fields, significantly improving data collection and 

public engagement. The economic implications of 

photomonitoring are particularly relevant, considering the 

extraordinary volume of images generated daily. It is estimated 

that in 2023, approximately 4.7 billion photographs were taken 

per day, predominantly using smartphones (93%), resulting in 

an annual total of approximately 1.8 trillion images. This 

statistic highlights an immense, yet largely untapped, visual 

resource that could be harnessed for cultural heritage 

monitoring. Through crowdsourcing and advanced data 

analysis, the simple act of taking a photograph can be 

transformed into a valuable tool for conservation. This 

approach not only reduces costs but also increases the 

frequency and geographical coverage of observations. As the 

quality of images and computational capabilities continue to 

improve, the integration of citizen-generated data into heritage 

conservation strategies could evolve into a sustainable and 

scalable solution [12]. 

The findings of this study align with a broader context of citizen 

science initiatives, which have demonstrated dual benefits: 

enhancing scientific productivity and democratizing research. 

Unlike basic crowdsourcing, citizen science projects are 

designed to achieve specific scientific objectives, involving 

non-expert volunteers in both data collection and analysis [26]. 

Contributions from participants are not limited to quantitative 

data but often include qualitative observations, reports of 

unauthorized interventions, and even personal narratives 

related to historic sites. As highlighted in studies such as that 

of Constantinidis [28], these elements provide valuable 

contextual information that can influence both short-term 

conservation decisions and long-term management strategies. 

Looking ahead, the integration of photomonitoring with 

structured citizen science programs could be further explored 

through collaborations with other institutions (i.e. 

Superintendences for Cultural Heritage), and local 

governments. A promising development in this direction is the 

potential use of civil service programs for structured 

photomonitoring campaigns. By engaging volunteers through 

civil service initiatives, it would be possible to create 

systematic and large-scale monitoring efforts that ensure 

sustained data collection and improved methodological rigor. 

This approach could also provide training opportunities, 

fostering a new generation of conservation advocates equipped 

with digital skills relevant to heritage preservation. 

As imaging technologies and computational capabilities 

continue to advance, the integration of citizen-generated data 

into professional conservation strategies could evolve into a 

sustainable and idely adopted practice. Future research should 

focus on refining methodologies to optimize data acquisition 

and processing while exploring policy frameworks that support 

the ethical and effective implementation of citizen science in 

heritage conservation. By embracing photomonitoring as a 

collaborative tool, the preservation of cultural heritage can be 

made more accessible, inclusive, and resilient to emerging 

threats. 
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