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ABSTRACT: A major limitation in data-driven Structural Health Monitoring is the scarcity of labeled data for training machine 

learning models. Transfer Learning addresses this by enabling knowledge sharing across similar structures, reducing datasets 

distribution shift. This study proposes a novel Transfer Learning framework for damage identification in operational viaducts with 

similar spans, using modal frequencies as damage-sensitive features. Domain Adaptation is performed via Normal Condition 

Alignment, to map source and target features in a shared latent space. A baseline normal condition is established on source features 

through a linear regression model. Gaussian Mixture Models are trained on source residuals, and used to detect anomalies in the 

target domain, based on residual distributions. A real viaduct for which long-term monitoring data are available is used as a case 

study. The structure comprises two homogeneous datasets collected on the deck of similar spans. Source data pertain to a deck 

with extensive measurements, whereas target data refer to a second deck with a reduced dataset, due to sensor malfunctions. 

Damage is simulated in the target dataset by reducing the measured frequencies. Validation using data from real damaged scenarios 

will enable future scaling of the proposed framework to operational conditions, providing a practical tool for data-driven SHM of 

viaducts, enabling damage detection in under-instrumented areas by leveraging data from other spans. 

KEY WORDS: Domain adaptation; transfer learning; operational viaduct; SHM; anomaly detection; GMM; linear regression; 

temperature variations. 

1 INTRODUCTION 

The deterioration of infrastructures poses a considerable 

challenge to the safety and efficiency of Europe's roadway 

network, as evidenced by the significant number of bridges that 

are nearing the conclusion of their service life [1]. The 

implementation of permanent monitoring systems, designed to 

observe the evolution of structural behavior over time, is 

imperative to support effective management of the structure, 

planning of maintenance activities and timely interventions. 

However, the financial implications associated with the 

deployment of such systems across an entire bridge network 

constitute a major obstacle to the widespread implementation 

of continuous monitoring campaigns. Consequently, less costly 

alternatives are often considered, as point-in-time monitoring 

campaigns or the selective installation of sensors in critical 

sections or structural components.  

To tackle the limitations imposed by cost-saving measures 

and limited investments, while still guaranteeing an adequate 

level of safety, a promising solution involves transferring 

knowledge acquired from heavily instrumented structures or 

components to others with limited data availability to  support 

the assessment of their structural behavior. This can be 

achieved through Transfer Learning (TL), a method which has 

recently gained significant attention among researchers in the 

field of civil infrastructure monitoring, as a means to overcome 

the issue of scarcity of labelled data for operating structures [2], 

[3], [4]. The concept of leveraging data – and, by extension, 

knowledge – from multiple structures to inform inferences 

about a target structure was introduced for the first time within 

the Population-Based SHM framework [5], [6], [7], [8], [9]. 

Notably, Poole et al. [10] proposed a domain adaptation 

approach, referred to as Normal Condition Alignment (NCA), 

that aligns source and target datasets in a shared latent space, 

preserving the intrinsic meaning of damage-sensitive features, 

a capability not offered by other non-statistical approaches, 

such as DL. This statistical alignment technique has proven 

effective in several works concerning experimental and 

numerical datasets [11], [12], [13], in supervised settings with 

labelled data. 

This paper investigates the application of NCA to an 

operational bridge equipped with a permanent monitoring 

system. Data from a well-instrumented span are leveraged to 

allow anomaly detection on a second span, where sensor 

failures have resulted in intermittent data acquisition.  

The novelty of the proposed approach consists in the 

integration of a simple yet effective temperature compensation 

procedure following domain adaptation, to mitigate the 

confounding effect of temperature-induced variability on 

modal frequencies.  

In the considered case study, no damage has been identified 

through field inspections, thereby the data from the source span 

are assumed to represent the undamaged state. For the target 

span, only the first year of monitoring data is considered 

representative of the undamaged configuration. Damage 

scenarios are synthetically introduced into the target dataset by 

increasingly reducing natural frequencies, to perform a 

sensitivity analysis of the proposed anomaly detection 

framework.  

After domain adaptation is performed, a baseline normal 

condition for the source domain is established using a linear 

regression to model the relationship between temperature and 

natural frequencies. Residuals from this model are 
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subsequently employed to train a Gaussian Mixture Model 

(GMM) that is then used for anomaly detection in the target 

domain. The proposed approach is compared to a baseline 

method, where the GMM is trained directly on domain-adapted 

features of the source domain, and tested on domain-adapted 

features of the target. The results, evaluated in terms of F1-

score, indicate that training the GMM on residuals improves 

performance, particularly when a moderate temperature-

frequency correlation is present. 

This study demonstrates the effectiveness of a simple domain 

adaptation technique and regression framework in enhancing 

novelty detection for bridge monitoring. The proposed 

framework offers a practical and cost-effective solution for 

optimizing the use of available monitoring data for critical 

infrastructure integrity management. 

The remainder of the paper is organized as follows: Section 

2 illustrates the methodology, Section 3 describes the case 

study and the datasets, Section 4 discusses the results, and the 

final section provides conclusion remarks. 

2 METHODOLOGY 

 Domain Adaptation via NCA 

Traditional machine learning algorithms rely on the assumption 

that training and testing data originate from the same 

underlying distribution [14]. When transferring knowledge 

from a source domain to a target domain, this assumption not 

necessarily holds, due to possible differences in the statistical 

distributions of the two domains. These differences may lead to 

degraded performance and increased generalization error. 

Domain Adaptation addresses this limitation mitigating the 

distribution shifts between source and target domains, aligning 

feature distribution into a shared latent space.  

In this work, source and target domains are aligned into a 

common feature space exploiting NCA. This statistical 

alignment technique incorporates prior knowledge about the 

health state of the structure: alignment is achieved by matching 

both the mean and standard deviation of the normal-condition 

data distributions to effectively reduce domain discrepancy 

between the source and the target datasets. 

Let 𝐷𝑆 = {𝒙𝑠,𝑖 , 𝑦𝑠,𝑖}𝑖=1

𝑛𝑠
  be the source domain, with 𝒙𝑠,𝑖 the 

source feature vector, 𝑛𝑆 the number of observations and 𝑦𝑠,𝑖 

the labels associated with each instance of the feature vector. 

Let also 𝐷𝑇 = {𝒙𝑡,𝑙 , 𝑦𝑡,𝑙}𝑙=1

𝑛𝑡
  be the target domain, with 𝒙𝑡,𝑙 the 

target feature vector, 𝑛𝑡 the number of observations and 𝑦𝑡,𝑙 the 

labels associated with each instance of the feature vector in the 

target domain. NCA is developed in two steps. First, the source 

domain is standardized:  

 𝒛𝒔,𝑖 =
𝒙𝒔,𝑖−𝝁𝒔

𝝈𝒔
 (1) 

being 𝝁𝒔, 𝝈𝒔 respectively the mean and the standard deviation 

of the source domain dataset. Then, the subset of the source 

domain consisting only of healthy instances 𝒙𝑠,𝑛,𝑖 is considered, 

and its statistics are computed 𝝁𝒔,𝒏, 𝝈𝒔,𝒏.  

Assuming that the target domain includes data associated 

with the undamaged configuration, reasonably identified as 

those collected from the start of the monitoring activity up to 

one year later, the statistics of this subset are computed and the 

following transformation is applied:  

 𝒛𝒕,𝑙 =
𝒙𝒕,𝑙−𝝁𝒕,𝒏

𝝈𝒕,𝒏
𝝈𝒔,𝒏 +  𝝁𝒔,𝒏 (2) 

being 𝝁𝒕,𝒏, 𝝈𝒕,𝒏 respectively the mean and the standard 

deviation of the target undamaged subset. 

In this paper we assume that the entire source dataset is referred 

to the undamaged configuration of the structure, hence 

resulting in 𝝈𝒔,𝒏 = 𝟏 and 𝝁𝒔,𝒏 = 𝟎. 

 Linear regression 

Natural frequencies are sensitive to the influence of 

environmental and operational fluctuations, being temperature 

the most significant source of variability. To filter out the effect 

of temperature on the modal properties of the structure, 

regression models have been widely proven effective, being 

able to characterize the relationship between temperature and 

eigenfrequencies [15], [16]. 

Considering the frequencies time history depicted in Figure 

2, a linear dependency of the modal parameters on temperature 

can be appreciated. Hence, following the alignment of source 

and target data in the latent feature space, we train a linear 

regression model on the source features 𝒛𝒔,𝑖 to learn the 

expected, temperature-dependent behavior of the structure. By 

doing so, the regression model establishes a baseline that 

characterizes the normal behavior of the source span.  For each 

mode, the linear regression model reads as follows: 

 𝒛̂𝒔,𝒊 = 𝛽0 + 𝛽1𝑻𝒊 (3) 

being 𝒛̂𝒔,𝒊 the predicted source feature in the latent space, 𝑻𝒊 the 

temperature corresponding to the i-th source feature 𝒛𝒔,𝑖 in the 

latent space, and 𝛽0, 𝛽1 the regression coefficients. 

We then use this model to predict the features for both the 

source and the target domain, using the temperature values 

pertaining to each of them. The residuals, defined as the 

differences between the observed and predicted features values, 

are subsequently analyzed to detect potential anomalies or 

deviations from the expected structural behavior. 

 Gaussian Mixture Models for anomaly detection 

Gaussian Mixture Models (GMMs) are probabilistic models 

employed in unsupervised machine learning for identifying 

clusters in data. They assume that data are generated from a 

mixture of multiple Gaussian distributions, each with unknown 

parameters. This assumption makes them suitable for 

modelling real-world monitoring data, which often exhibit 

multimodal distributions characterized by overlapping 

Gaussian components, due to changes in the data induced by 

factors such as temperature fluctuations and potential structural 

damage. Formally, the probability density function of the 

GMM is defined as:  

 𝑝(𝒙) =  Σ𝑘=1
𝑁 𝜋𝑘𝑁(𝒙|𝝁𝒌, 𝚺𝒌) (4) 

where 𝜋𝑘 is the mixing coefficient (the weight) for the k-th 

Gaussian component, satisfying 0 ≤  𝜋𝑘 ≤  1 and Σ𝑘=1
𝑁 𝜋𝑘 = 1, 

and 𝑁(𝒙|𝝁𝒌, 𝚺𝒌) is the k-th Gaussian distribution of the 

mixture, having 𝝁𝒌 mean vector and 𝚺𝒌 covariance matrix. The 

parameters of the GMM are estimated via the Expectation 

Maximization algorithm, which iteratively optimizes them by 

maximizing the likelihood of the observed data [14], [17]. 

GMMs are soft clustering algorithms, as they assign samples 

to a cluster based on the likelihood that each data point belongs 
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to that cluster in particular. In this paper we use the GMMs for 

anomaly detection. Specifically, for each mode, we train a 

GMM on the source domain residuals. Once the model is fitted, 

the log-probability density function (log-PDF) of each instance 

is evaluated and a detection threshold is established based on a 

low quantile of the log-PDF distribution, to distinguish normal 

from anomalous data points. The trained GMM is then applied 

to the target domain residuals and the log-PDF is computed and 

compared to the previously defined threshold. Instances falling 

below this threshold are identified as anomalies, indicating a 

deviation from the normal behavior modeled using source data. 

Last, we compare the results of the proposed anomaly 

detection framework, combining linear regression and GMM, 

to those obtained using GMM alone. This is to assess the 

effectiveness of the integrated approach versus a direct 

application of GMM. More specifically, a separate GMM is 

trained, for each mode, using a dataset comprising the 

frequency and temperature vectors associated with the source 

domain in the latent space. Each GMM employs full covariance 

matrices to capture the correlations between frequency and 

temperature, and the optimal number of components for each 

model is selected based on the Akaike Information Criterion 

(AIC), to balance model complexity and goodness of fit. Then, 

for each mode, each GMM is tested against the target dataset in 

the latent space, including once again the frequency and 

temperature vectors associated with the selected mode. 

 Performance evaluation 

To assess the performance of the proposed anomaly detection 

framework, the number of true positives (TP), true negatives 

(TN), false positives (FP), false negatives (FN) is computed. 

These quantities enable the evaluation of precision and recall 

metrics, which in turn are used to compute the F1 score. 

Precision measures the proportion of detected anomalies 

among all instances (TP / (TP + FP)), while recall measures the 

fraction of correctly detected anomalies (TP / (TP + FN)) [14]. 

Then, the harmonic mean of the two metrics is computed, 

resulting in the F1-score:  

 F1 − score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

The F1-score is a commonly used metric to assess the 

performance of classification algorithms in presence of 

unbalanced dataset, a common issue in SHM datasets, where 

the number of healthy instances often exceeds the number of 

damaged ones by far. 

3 CASE STUDY 

 The viaduct 

The structure under consideration in this study is an operational 

viaduct located in northern Italy. Constructed in 1968, the 

viaduct comprises 41 spans, extending for a total length of 

1673.5 meters. The deck features continuous pre-stressed 

Gerber beams, each resting on two cast-in-place piers, and 

suspended Gerber spans (Figure 1). Of particular note is the 

monitoring of eleven spans that intersect with a river bed. In 

this section, the piers are spaced 61.5 meters apart, with a total 

length of 676.5 meters.  

The instrumentation installed on the eleven monitored spans 

comprises a total of 219 biaxial MEMS inclinometers and 100 

triaxial MEMS accelerometers, installed in 2020 to monitor the 

dynamic characteristics of the bridge and trigger alarms when 

fixed thresholds are exceeded. The accelerometers are not 

distributed uniformly across each span; rather, they are 

positioned on only half of each span. 

The present study focuses on accelerometer data collected 

from May 2022 to December 2024. The structure is found to be 

in normal condition and is currently in service. Consequently, 

no damage configuration labels are available, as there is no 

evidence of damage to the structure. Temperature information 

is available for each of the set of eigenfrequencies obtained 

from the acceleration time histories. 

 Description of the dataset 

The objective of this study is to leverage the large volume of 

monitoring data available for a single span of the viaduct (the 

source) to perform anomaly detection on another similar span 

(the target), with reduced data availability due to sensors 

malfunction. Two continuous spans are considered. Both the 

source and target dataset consist of time series observations that 

include the first three eigenfrequencies and the corresponding 

temperatures measured at each time step. Specifically, the 

source dataset comprises 4346 observations organized in a 

4346 × 4 matrix, while the target dataset includes 2143 

observations structured in an analogous 2143 × 4 matrix. 

As previously stated, according to available inspection 

records, there is not any evidence of damage affecting the 

viaduct so far. Hence, both the source and target dataset 

considered contain observations which are reflective of the 

normal condition of the relative spans. For the source dataset, 

this condition is treated as factual throughout the study. Instead, 

we assume that only the observations acquired during the first 

year of monitoring of the target span are associated with its 

undamaged configuration. Additionally, we simulate the 

Figure 1. Part of the longitudinal section of the viaduct. Span 34 is the source one. In magenta the 

accelerometers installed. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-136 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 876 

occurrence of damage in the target by reducing the frequency 

values acquired from August 2024 by 2% and 5%. This enables 

us to conduct a sensitivity analysis on the performance of the 

anomaly detection procedure implemented. 

The study is conducted in an unsupervised setting. However, 

to assess the performance of the framework in detecting 

anomalies in a real scenario, labels are assigned to the target 

dataset to mark the instances of reduced frequencies simulating 

damage, making it possible to compute the F1-score. 

Figure 2 illustrates the first three natural frequencies for both 

source and target spans. The fundamental frequency f1 is 

approximately equal to 1.5 Hz for both the spans, and exhibits 

a similar trend for both domains. The second natural frequency 

f2 oscillates around 2.6 Hz. In this case, while there is a marked 

dependency of the source f2 on temperature, the corresponding 

target frequency displays a smoother trend. Finally, the third 

natural frequency of the two spans differs significantly, with f3 

of the source domain having a mean value of 4.4 Hz, whereas 

f3 of the target dataset is lower, with a mean value of 3.6 Hz. 

Furthermore, a strong sensitivity to daily temperature 

fluctuations can be appreciated in the third eigenfrequency of 

the source span, with respect to the target one. Figure 3 depicts 

the temperature measurements recorded by the accelerometers 

installed on both spans. Figure 4 illustrates the time histories of 

f1, f2 and f3 of the target domain, highlighting the artificially 

reduced frequencies starting from August 2024 onward to 

simulate damage. 

Figure 2. First three natural frequencies for source (in blue) 

and target dataset (in red). Frequencies f1 and f2 range around 

1.5 and 2.6 Hz respectively, while f3 is around 3.6 Hz for the 

target domain and higher, around 4.3Hz, for the source 

domain. 

 

Figure 3. Source and target dataset temperature records. 

 

 
a) 

 
b) 
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c) 

Figure 4. Original and synthetic data for the target domain. 

Frequencies of the target domain are reduced by 2% and 5% 

starting from August 2024 to simulate damage. Subfigures a), 

b), c) refer respectively to the first, second, and third natural 

frequencies. 

4 RESULTS 

Normal Condition Alignment has been applied to the source 

and target datasets, and the resulting features in the latent space 

are depicted in Figure 5 and Figure 6. Figure 5a and Figure 6a 

are relative to the case where damage is simulated as a 2% 

reduction in natural frequencies, while Figure 5b and Figure 6b 

refer to a 5% frequencies reduction. 

As a result of the application of NCA, when a 5% frequency 

reduction is introduced to simulate damage (Figure 5b and 

Figure 6b), we see that the normal instances of the target 

domain overlap the healthy features of the source. In contrast, 

the simulated damage instances tend to form distinct and distant 

clusters in the latent space. On the other hand, when damage is 

simulated through only a 2% reduction in frequencies, the 

corresponding damage instances of the target tend to cluster 

closely with, and even overlap, the healthy source and target 

features (Figure 5a and Figure 6a).   

 

 
a) 

 
b) 

Figure 5. Source and target features (z1 and z2) after domain 

adaptation. Figure 5a depicts the scenario in which damage is 

simulated through a 2% reduction in natural frequencies, 

whereas Figure 5b corresponds the case of a 5% frequency 

reduction. 

 
a) 

 
b) 

Figure 6. Source and target features (z1 and z3) after domain 

adaptation. Figure 6a depicts the scenario in which damage is 

simulated through a 2% reduction in natural frequencies, 
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whereas Figure 6b corresponds the case of a 5% frequency 

reduction. 

In the following, the results associated with the 5% reduction 

in frequencies will be first illustrated, while those associated 

with the 2% frequency reduction for damage simulation will be 

discussed in the remainder of this section. 

Separate linear regression models have been trained for each 

of the three source features (Figure 7, Figure 8,  

Figure 9) to capture their relationship with the corresponding 

temperature values. Each trained model has then been utilized 

to make predictions on both source data and target data, and the 

residuals between the actual feature values and the predicted 

ones have been computed. 

 

Figure 7. Linear regression of feature z1 of the source domain 

vs temperature. 

 

Figure 8. Linear regression of feature z2 of the source domain 

vs temperature.

 
Figure 9. Linear regression of feature z3 of the source domain 

vs temperature. 

A Gaussian mixture model has been independently trained on 

the source residuals for each mode. Following the training, the 

log-PDF of each GMM was evaluated, and a detection 

threshold was established at the 5th quantile for modes 1 and 3, 

and at the 1st quantile for mode 2. Subsequently, the trained 

GMMs have been applied to the target residuals for the 

corresponding modes, enabling anomaly detection by 

comparing the log-PDF values for the target against the 

predefined thresholds. The results are illustrated in  

Figure 10, Figure 11, and  

Figure 12, and the performance metrics are listed in Table 1.  

Table 1. Anomaly detection results using GMMs trained on 

source residuals, evaluated on the target dataset with synthetic 

damage simulated by a 5% reduction in natural frequencies. 

 TP FP FN TN Precision Recall F1 

score 

f1 219 95 0 1829 0.70 1.00 0.82 

f2 219 475 0 1449 0.32 1.00 0.48 

f3 219 14 0 1919 0.94 1.00 0.97 

 

As we can see from the table, the GMMs tested on target 

residuals are in all cases able to detect the true damage 

instances, while detecting few false positives for z1 and z3. In 

the case of z2, the number of false positives is considerable, and 

this is probably due to the fact that frequency f2 of the target 

does not exhibit the same strong temperature dependence that 

is inherently present in the second natural frequency of the 

source domain. 

Comparing these results with those obtained by training, for 

each mode, a GMM directly on the source features and 

temperatures (Table 3) in the latent space, a slight improvement 

in the F1-score can be appreciated when residual analysis is 

applied. As a matter of fact, from Table 2 we can see that, even 

though also in this case all the true anomalies are correctly 

identified, the baseline GMM produces a slightly higher 

number of false positives with respect to the residual-based 

approach. This demonstrates that the proposed framework can 

enhance the anomaly detection process by reducing the false 

alarms that would otherwise arise from applying the GMM to 

latent variables directly. 
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Table 2. Anomaly detection results using GMMs trained on 

source features directly, evaluated on the target dataset with 

synthetic damage simulated by a 5% reduction in natural 

frequencies. 

 TP FP FN TN Precision Recall F1 

score 

f1 219 126 0 1798 0.63 1 0.78 

f2 219 520 0 1404 0.30 1 0.46 

f3 219 57 0 1867 0.79 1 0.88 

 
Figure 10. Target anomalies detected by GMM trained with 

source features residuals r1. The threshold is set to the 0.05 

quantile of the log-PDF. 

 
Figure 11. Target anomalies detected by GMM trained with 

source features residuals r2. The threshold is set to the 0.01 

quantile of the log-PDF. 

 
Figure 12. Target anomalies detected by GMM trained with 

source features residuals r3. The threshold is set to the 0.05 

quantile of the log-PDF. 

 

Table 3. F1 scores comparison on the target dataset with 

synthetic damage data, reduction of 5%. 

5% 

reduction 

GMM 

trained on 

source 

features 

GMM 

trained on 

source 

residuals 

F1-score 

improvement 

f1 0.78 0.82 5.13 % 

f2 0.46 0.48 4.35 % 

f3 0.88 0.97 10.23 % 

 

Finally, Table 4 illustrates the results for the scenario where 

damage is simulated via a reduction of the actual target 

frequency values by 2%. In this case, we can see that the 

performances of the GMMs trained on source residuals are 

slightly worse than in the case with the 5% frequency reduction, 

standing the same detection thresholds. Nevertheless, the F1-

scores computed for the residual-based anomaly detection 

approach still exhibit higher values than those achieved by 

GMMs trained on source latent features (Table 5), registering 

an increase in the F1-score value up to 10.5% for the third 

natural frequency (Table 6). This outcome highlights that the 

proposed framework is effective even when the damage is 

subtle, helping to mitigate the number of false positives that can 

occur in such cases.  

Table 4. Anomaly detection results using GMMs trained on 

source residuals, evaluated on the target dataset with synthetic 

damage simulated by a 2% reduction in natural frequencies. 

 TP FP FN TN Precision Recall F1 

score 

f1 202 94 17 1830 0.68 0.92 0.78 

f2 178 472 41 1452 0.27 0.81 0.41 

f3 168 14 51 1910 0.92 0.77 0.84 
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Table 5. Anomaly detection results using GMMs trained on 

source features directly, evaluated on the target dataset with 

synthetic damage simulated by a 2% reduction in natural 

frequencies. 

 TP FP FN TN Precision Recall F1 

score 

f1 201 126 18 1798 0.61 0.92 0.74 

f2 180 543 39 1381 0.25 0.82 0.38 

f3 171 62 48 1862 0.73 0.78 0.76 

 

Table 6. F1 scores comparison on target dataset with synthetic 

damage data, reduction 2%. 

2% 

reduction 

GMM 

trained on 

source 

features 

GMM 

trained on 

source 

residuals 

F1-score 

improvement 

f1 0.74 0.78 5.41 % 

f2 0.38 0.41 7.89 % 

f3 0.76 0.84 10.53 % 

 

5 CONCLUSIONS 

In this paper, we have proposed a novel domain adaptation 

framework aimed at enhancing unsupervised anomaly 

detection in operational viaduct components. We have utilized 

the Normal Condition Alignment algorithm to leverage the 

extensive dataset available for a source span, to support 

anomaly detection in a target span with limited observations 

due to sensor malfunction. The novelty of this work lies in the 

use of a linear regression model to capture the dependency 

between frequency and temperature in the source domain after 

domain adaptation. This enables the establishment of a baseline 

normal condition for the source span in the latent space, which 

can then be “transferred” to the target span. Residuals from the 

source linear regression model have been used to train a 

Gaussian Mixture Model for each mode, enabling the detection 

of deviations from the expected normal behavior in the target 

domain when the trained models are tested against the target 

residuals.  

We have compared the results of our residual-based 

framework against those obtained by training and testing the 

GMMs directly on domain-adapted features. The outcomes 

have highlighted that our method reduces the number of false 

positives, especially for modes where the natural frequencies 

are strongly influenced by temperature fluctuations, and even 

in the case in which the presence of damage is subtle, such as 

when frequencies from the normal condition are reduced by 

2%. This is particularly relevant considering that even slight 

shifts in natural frequencies may correspond to severe 

structural damage.  

Furthermore, from Figure 5a and Figure 6a we have seen that 

in the case of a 2% frequency reduction, the damaged instances 

of the target domain tend to overlap the healthy clusters of both 

source and target domains in the latent space. Relying solely on 

source features to train the GMM, without accounting for 

temperature in the establishment of a baseline normal 

condition, would have led to even poorer performances 

compared to using both features and temperatures. In fact, 

overlapping damaged instances would likely be misclassified 

as healthy, thus increasing the number of false negatives. 

In conclusion, the findings of this study underscore the 

significance of explicitly incorporating environmental 

variability into the knowledge transfer process. Future research 

will focus on examining the applicability of the proposed 

framework in contexts involving dissimilar source and target 

spans, as well as datasets with substantial data gaps. 

Additionally, validating the framework with data from actual 

damaged scenarios will pave the way for its future application 

to operational conditions. This will support the development of 

a practical, data-driven SHM tool for viaducts, capable of 

detecting damage even in under-instrumented spans by 

leveraging information from other ones. 
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