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ABSTRACT: Population-Based Structural Health Monitoring (PBSHM) is an emerging field in Structural Health Monitoring that 

leverages data from multiple structures to enhance the assessment of individual structures. Unlike traditional SHM, which 

generally relies on data from a single structure, PBSHM utilises collective knowledge from a population to facilitate increasing 

the knowledge on an individual structure. Transfer learning enables the inference from a source structure to a target structure 

within the population. One of the limitations of this method is that a lot of transfer-learning methods require data models that are 

trained using substantial amounts of high-quality data which can be difficult to obtain. To support PBSHM research, the concept 

of the Population-based SHM Engineered Asset Resource (PEAR) has been introduced. PEAR is conceptualised as a benchmark 

dataset containing semi-realistic structures and associated data intended to drive the development and validation of PBSHM 

methodologies. This work advances the PEAR prototype by developing complete populations for two types of bridges, along with 

their associated data. The pipelines for generating these populations are presented, detailing how they produce structural data and 

PBSHM-specific models. Additionally, a simple analysis of the generated populations is conducted, demonstrating their utility in 

PBSHM research and showcasing the potential of PEAR as a resource for current and future PBSHM research.   

KEY WORDS: SHMII-13; Population-based Structural Health Monitoring, Benchmark Dataset, Irreducible Element Model, 

Bridges

1 INTRODUCTION 

In traditional Structural Health Monitoring (SHM), benchmark 

datasets such as the S101 [1] and Z24 [2] bridges have been 

pivotal in advancing the field. These datasets have provided 

researchers with common platforms to test, validate, and 

compare new SHM methods and algorithms. However, in the 

emerging field of Population-Based Structural Health 

Monitoring (PBSHM), data are leveraged from multiple 

structures to enhance the assessment of individual assets, no 

equivalent benchmark datasets currently exist. This gap is not 

only a reflection of the relative recency of PBSHM but also the 

inherent complexity of gathering multi-structure data 

necessitated to form a meaningful population. 

To address this challenge, the Population-based SHM 

Engineered Asset Resource (PEAR) was devised as a potential 

solution. The foundational principles and envisaged structure 

of PEAR were outlined in a previous conference paper [3], 

laying the groundwork for a benchmark dataset that integrates 

curated synthetic populations. The envisioned PEAR dataset 

aims to serve as a standard for evaluating and advancing 

PBSHM methodologies by providing researchers with readily- 

accessible, semi-realistic data representative of various 

structural populations. 

The fundamentals of the PEAR database have been 

established, this paper extends that work by developing two 

specific bridge populations for inclusion in the PEAR dataset. 

This work not only demonstrates the feasibility of generating 

synthetic populations but also how these populations can serve 

as a practical resource for PBSHM research.  

 

The remainder of this paper is structured as follows. First, a 

background section provides an overview of PBSHM, detailing 

existing databases, schemas, and benchmark datasets, and 

highlighting the motivation for this work. This section is 

followed by an overview of the foundations of PEAR and the 

specific requirements for creating a benchmark dataset that is 

applicable for a population-based approach. Next, the 

"Developing Bridge Dataset" section describes the process of 

generating the two initial bridge populations, focussing on the 

design of semi-realistic bridge structures and the simulation of 

their structural response data. Subsequently, the "Bridge 

Datasets" section presents the developed populations, including 

a simple analysis to showcase their utility in PBSHM methods. 

Finally, the paper concludes with a discussion of the current 

dataset’s limitations, potential avenues for future expansion, 

and the broader implications for advancing PBSHM research. 

2 BACKGROUND 

Population-Based Structural Health Monitoring (PBSHM) 

represents a shift from traditional SHM by focussing on the 

analysis of data from multiple structures within a related 

population. This approach not only provides valuable insights 

into the collective behaviour of the population but also 

enhances the understanding of individual structures. In contrast 

to conventional SHM methods that typically concentrate on a 

single structure, PBSHM enables the application of advanced 

techniques such as transfer learning, where knowledge gained 

from one task or structure is leveraged to improve performance 

on a related task in another structure. This methodology allows 

models to be adapted rather than built from scratch, thereby 
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enhancing efficiency and potentially making inferences about 

the condition of a structure that would otherwise be missed. 

A critical aspect of implementing transfer learning in 

PBSHM is the careful identification of structural similarities 

across the population. Without a clear understanding of these 

similarities, there is an increased risk of negative transfer, 

where inappropriate model adaptation could degrade 

performance. To combat this risk, techniques such as 

Irreducible Element (IE) models combined with graph-based 

approaches have been developed [4], [5]. These methods are 

instrumental in identifying and quantifying both the similarities 

and variations among structures, ensuring that transfer learning 

is applied only where it is most appropriate. This framework 

for similarity assessment forms the foundation for effective 

knowledge transfer across structures. 

Despite these methodological advancements, a significant 

challenge in PBSHM remains: the scarcity of comprehensive 

data representing populations of structures. Previous studies 

have attempted to address this gap by collecting data from 

similar populations, for example, one study collected data from 

four beam-and-slab bridges and two pedestrian footbridges [6]. 

Other research efforts have simulated populations using models 

with 10 degrees of freedom [7] or even toy structures  to 

validate PBSHM transfer-learning methods and graph-

matching algorithms [8]. However, these approaches have been 

limited in scope, so the developed datasets cannot always be 

used to test novel PBSHM methods. 

It is within this context of data scarcity and the development 

of new PBSHM methods that the need for benchmark datasets 

in PBSHM becomes evident. A robust benchmark dataset 

would not only facilitate the testing and validation of new 

methodologies but also drive forward the development of 

PBSHM research. This motivation underpins the development 

of the Population-based SHM Engineered Asset Resource 

(PEAR) dataset, which aims to provide the PBSHM community 

with a dedicated set of synthetic populations that represent real-

world structures and realistic structural behaviours for 

algorithm development and benchmarking. 

3 PEAR OVERVIEW 

This section gives an overview of the PEAR database, 

including its key requirements (Section 3.1), how the database 

is structured (Section 3.2), and the stages involved with 

producing populations of structures and data (Section 3.3). 

 Requirements 

Requirement 1: 

The primary objective for the dataset is to function as a robust 

testbed for both established and emerging PBSHM methods. It 

must support the development and evaluation of methods and 

techniques across the entire remit of PBSHM. This remit 

includes the calculation of similarity scores and transfer-

learning methods. Moreover, the dataset should facilitate 

structural comparisons via similarity metrics, including IE 

models and graph-matching algorithms, which are essential for 

guiding successful knowledge transfer. The datasets should 

also be compatible with various machine-learning techniques, 

ensuring high-quality data are available for training and 

validation purposes. 

 

Requirement 2:  

The dataset should be designed for ease of searchability, 

enabling users to quickly locate and extract relevant data 

subsets. To ensure this level of accessibility, the dataset must 

be thoroughly indexed so that key variables, such as the type of 

structure or, in the case of bridges, the number of spans, are 

easily queried and filtered. 

Requirement 3:   

The methodologies employed to generate the structures 

within the dataset must be transparent, clearly documented, 

and, whenever possible, grounded in real-world structural 

design practices. This approach guarantees that the simulated 

structures accurately reflect their real-world counterparts. 

Additionally, the dataset should capture the natural variability 

seen in practice, for instance, differences in span lengths, beam 

dimensions, and deck thicknesses in bridge designs, thus 

representing the diversity found in actual structural stocks. 

Requirement 4: 

A shared-data domain is fundamental to the success and 

broad adoption of PBSHM practices. Building on the work of 

Brennan et al. [5], the dataset will adhere to the PBSHM 

schema, a standardised format that ensures consistency in data 

storage and interpretation for PBSHM. All data and future 

additions to the dataset must comply with this schema. In cases 

where the current PBSHM schema does not accommodate 

certain data components, it will be necessary to propose and 

integrate an extension to the PBSHM schema to incorporate 

this data. 

 Dataset Structure 

Designing the dataset’s structure is important to ensure 

effective data retrieval and utilisation. A well-structured dataset 

will facilitate users to quickly access the specific data they 

need, making it easier to perform tasks with the datasets and 

subsets of the data. In the context of PEAR, the structure is 

crafted not only to organise the data logically for easy retrieval 

but also to accommodate the addition of new data without 

disrupting existing records. 

Figure 1 illustrates the four-level hierarchical organisation of 

the PEAR dataset: root category, subtype, dataset, and scenario. 

To illustrate how these levels interact, consider the analogy of 

a file system. At the highest level is a main “PEAR” folder. 

Inside this folder, there is a separate folder for each root 

category. Each root category folder contains folders for its 

various subtypes, which differentiate structures based on 

design or purpose. Within each subtype folder, there are 

individual dataset folders; each dataset represents a collection 

of structures forming the population. At this level of the 

database a descriptive file outlining the general forms of the 

population and allowable variations of these structures will be 

stored. The IE models and the meta data about each structure 

will also be stored at this level. The final level, scenario, is 

analogous to a load case in a structural model, for example, 

applying a 40-ton load to the mid-span of a bridge would 

constitute a single scenario. 
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Figure 1: The hierarchical structure of the PEAR dataset 

 

In this hierarchical structure, a root category groups 

structures that are typically classified together, such as 

aeroplanes and bridges. Within each root category, subtypes 

further differentiate the structures. For example, within the 

aeroplane category, subtypes may be single-engine and multi-

engine, while the bridge category could be divided into truss 

bridges and suspension bridges. 

During the initial planning phase for PEAR, three primary 

root categories were identified for inclusion: bridges, masts, 

and wind turbines. Figure 2 shows the initial dataset organised 

into root and subtype levels. This work specifically generates 

data for two bridge populations: a beam-and-slab bridge 

population and a ladder-deck bridge population, each 

accompanied by a corresponding scenario. 

 

Figure 2: The initial ‘root categories’ and ‘subtypes’ for 

PEAR 

 

 Dataset Stages 

PEAR has been designed from the ground up to develop over 

time by iterations and expansion of the data included within. 

Defined stages serve as clear milestones, enabling collaborative 

efforts across the diverse disciplines involved in PBSHM. The 

initial design of the structure within any population is 

undertaken in Stage 0, the development of IE models in Stage 

1 and the simulation of structural responses in Stage 2+. By 

breaking the development into stages, different teams can 

contribute depending on their area of research. For example, 

one team can focus on constructing the IE models needed to 

derive similarity metrics (Stage 1) while another develops 

simulations for scenario data (Stage 2). Importantly, each stage 

builds exclusively on the data from the preceding stages; for 

instance, any Stage 2 processes rely only on the outputs from 

Stages 0 and 1. 

For a dataset to be integrated into PEAR, it must, at a 

minimum, complete Stage 0 and Stage 1. Once a dataset 

reaches this milestone, it is assigned a unique reference within 

PEAR, and the structures it contains are fixed to ensure 

consistency and reproducibility of results. The specific 

processes of Stage 2 are left flexible, allowing researchers to 

select the most relevant structural responses for their research 

as well as the most appropriate simulation method. The overall 

staging structure is designed to be generic, applying to all 

datasets regardless of their root category or subtype. 

Stage 0: Design of the Dataset Population 

In this initial stage, realistic structures are generated with 

pseudo-random properties drawn from a predefined range of 

parameters. These parameters, along with the methods used for 

their selection, are detailed and stored in the dataset. For each 

structure, a Structural Information (SI) model is created 

alongside a structural report. The report offers a detailed, 

human-readable description, while the SI model provides a 

computer-interpretable format that facilitates indexing and 

querying.  

Stage 1: IE Models 

At this stage, Irreducible Element (IE) models are developed 

for each structure in the population, i.e. one IE model for each 

SI model in Stage 0. The typical workflow for producing IE 

models will be using the parameters defined in the SI for each 

structure to create detailed IE models. After the completion for 

Stage 1 the dataset may be included in PEAR. 

Stage 2+: Scenario Data 

Using the data from Stages 0 and 1, simulated scenarios are 

then produced using the information in the generated IE 

models. Although PEAR does not prescribe specific simulation 

methods, the simulation outputs must be saved back into the 

dataset as valid PBSHM Schema data. Scenarios might include, 

but are not limited to, static-load displacements, natural 

frequencies, mode shapes, or frequency response functions. 

Moreover; a scenario can simulate conditions where the 

structure is considered 'healthy' or introduce 'damage' prior to 

simulation, with the results documented accordingly. 

4 DEVELOPING BRIDGE DATASETS 

This section outlines the process by which the two initial bridge 

populations have been developed for the PEAR dataset. The 

development process is divided into two major phases. The first 

phase focusses on designing semi-realistic bridges and creating 

their associated Irreducible Element (IE) models, 

corresponding to Stage 0 and 1 of the dataset. The second phase 

involves simulating the structural responses of these bridges, 

which represents Stage 2. This section describes these 

processes to create both a beam-and-slab bridge population and 

a ladder-deck bridge population.  

 General Form of Population 

For each population included in PEAR, the first step is to define 

the general form of the structure. This general form specifies 

the primary structural components and their arrangement, 

ensuring a consistent yet flexible framework for generating 

individual structures. Once the general form is established, a 

set of rules and parameters is defined to guide the creation of 

each structure within the population. These rules, grounded in 

engineering principles, ensure that the generated structures are 

PEAR Database 

├── 1. Bridges 

│    ├── 1.1 beam-and-slab 

│    ├── 1.2 ladder-deck 

│    └── 1.3 truss 

├── 2. Wind Turbines 

│    ├── 2.1 monopole-tower 

│    └── 2.2 lattice-tower 

└── 3. Masts 

     ├── 3.1 monopole-tower 

     └── 3.2 lattice-tower 

Root Category  

└── Subtype  

└── Dataset  

└── Scenario 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-135 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 867 

both realistic and representative of real-world variations. The 

diversity within each population is achieved by systematically 

varying these parameters, allowing for a range of structures that 

share a common form while exhibiting meaningful differences. 

The following subsections detail the general forms and 

parameterisation approaches for the beam-and-slab bridge 

population and the ladder-deck bridge population. 

4.1.1 Beam-and-Slab Bridge 

The general form of a beam-and-slab bridge consists of precast 

concrete beams that serve as the primary structural components 

of the bridge. These beams are typically lifted into place, where 

they are supported by piers or abutments that have been 

constructed in advance. Once the beams are positioned, an in 

situ concrete deck is poured over them to form the main deck 

of the bridge. Below are the main components and a brief 

description of a typical beam-and-slab bridge: 

• Precast Prestressed Bridge Beams: These are the 

primary load-bearing components of the bridge. 

Precast off-site and prestressed to increase their load-

carrying capacity, these beams are designed to resist 

the main traffic loads of the bridge. 

• Reinforced Concrete Deck: The reinforced concrete 

deck is poured in situ on top of the precast beams, 

forming the main surface of the bridge.  

• Diaphragm: The diaphragm is a transverse structural 

element placed between the bridge beams. Its primary 

function is to distribute loads evenly across the bridge 

and provide lateral stability, and help transfer load to 

the supporting structure of the bridge. 

• Columns: Columns are vertical structural supports 

that transfer the load from the bridge deck and beams 

down to the foundation. 

4.1.2 Ladder-Deck Bridge 

The general form of a ladder-deck bridge consists of steel 

girder beams that serve as the primary structural components of 

the bridge. These beams are situated at the edge of the bridge 

with smaller steel girder beams spanning transversely, 

connecting the main beams. Once the beams are positioned and 

connected, an in situ concrete deck is poured over them to form 

the main deck of the bridge. Below are the main components 

and a brief description of a typical beam-and-slab bridge:  

• Longitudinal Girder Beams: These are primary load-

carrying members that run along the length of the 

bridge (parallel to the roadway). They bear the main 

loads from the deck and transfer them to the piers or 

abutments. These are typically made of steel and are 

placed at the two edges of the bridge.      

• Transverse Girder Beams (Cross Beams): These are 

secondary beams that span between the longitudinal 

girders, providing lateral support and distributing 

loads from the deck to the longitudinal girders. These 

are also typically made of steel.      

• Concrete Deck: The reinforced-concrete deck is 

poured in situ on top of the longitudinal and transverse 

beams, forming the main surface of the bridge.  

• Columns: Columns are vertical structural supports 

that transfer the load from the bridge deck and beams 

down to the foundation. 

 Structural Parameters  

This section outlines the parameters that can be adjusted within 

the general forms described in the previous section. These 

parameters are the tools used to create a varied population of 

structures while ensuring that each model remains realistic and 

grounded in sound engineering principles.  Methods have been 

developed to select these parameters, ensuring that any 

variations still adhere to the constraints of real-world structural 

behaviour. For clarity, the parameters are divided into two 

groups: 

1. Generic Bridge Variables: These parameters are 

common to all bridges, such as the number of spans 

and overall bridge length. 

2. Subtype-Specific Parameters: These parameters are 

unique to each bridge subtype. For instance, in a 

beam-and-slab bridge, a key parameter might be the 

selection of the precast beam geometry. 

By systematically varying these parameters, the PEAR 

dataset is able to generate diverse yet realistic bridge structures. 

Generic Bridge Parameters 

The generic bridge parameters define common 

characteristics shared by both bridge populations, such as the 

number of spans, span lengths, deck dimensions, column 

details, and material properties. The selection process for these 

parameters combines random selection from predefined ranges 

with engineering constraints to ensure that the resulting 

structures remain realistic and consistent with real-world 

practices. For example, the number of spans is determined by 

randomly choosing a value within a range that typically mirrors 

actual bridge stocks, usually between one and five spans. Once 

the number of spans is set, the span lengths are similarly 

selected from a defined range. However, to avoid unrealistic 

configurations, such as pairing an exceptionally long span with 

an extremely short one, an additional constraint is imposed. All 

selected span lengths must fall within 70% of each other, 

ensuring a realistic design. 

Other parameters, like the width and thickness of the deck, 

are also chosen from ranges that reflect standard practices in 

bridge construction. The inclusion of columns is treated as a 

variable feature; whether columns are present is determined 

randomly, and if they are included, further details, such as their 

height and quantity, are specified. These column characteristics 

are based on established engineering principles; for instance, 

the minimum column height adheres to government standards 

for bridge clearance. Material properties, too, are selected from 

realistic ranges that reflect common construction materials, 

contributing to the overall authenticity of the generated 

structures while proving realistic variation in the population. 

Subtype-Specific Parameters 

Subtype-specific parameters are the parameters that are only 

relevant to each bridge subtype. For the beam-and-slab 

population, some key parameters include the beam centre-to-

centre distance, the number of primary beams, the geometry of 

both primary and edge beams, and the diaphragm geometry. 

For the ladder-deck bridges, the parameters include the number 

of transverse beams and the geometry of both the primary and 

secondary girders. The methods for selecting these parameters 

tend to be more involved than those used for generic bridge 

variables to ensure that each choice results in realistic 

engineering practices.  
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The process of selecting these parameters is highly dependent 

on the subtype and the accepted process for designing the 

structure. For instance, when determining the primary bridge 

beam geometry for each beam-and-slab bridge, the process 

begins with a list of common bridge beam types. Beam types 

that are incompatible with the given span length or bridge width 

are eliminated using span tables provided by bridge beam 

manufacturers. From the remaining viable options, a beam type 

is then randomly selected. This method ensures that the chosen 

beam geometry is suitable for that span length while allowing 

for variation in the population. 

Similarly, for the ladder-deck subtype, the main structural 

component is determined using a range of acceptable span-to-

depth ratios sourced from the encyclopedia for UK steel 

construction (SteelConstruction.info). A random ratio is 

selected from this range and, together with the predetermined 

span length, used to set the depth of the girder. Additional 

properties such as flange width and thickness are subsequently 

determined using comparable ratios from the same source. 

The parameterisation strategy for the two bridge datasets 

employs a total of 17 distinct parameters for beam-and-slab 

bridges and 23 for ladder-deck bridges. By integrating 

randomness while adhering to sound engineering principles, 

the established general form and corresponding parameter sets 

create a robust framework for generating a diverse yet realistic 

population of bridge structures. This approach not only mirrors 

real-world variability but also enables the production of 

thousands of unique and plausible structures, significantly 

enhancing the utility of the PEAR dataset for PBSHM research. 

 

 Dataset Scenarios 

A scenario is defined as a specific set of actions applied to the 

generated structures within a given population. These scenarios 

are designed to simulate various conditions or loads to 

determine the structural responses. The scope of the scenarios 

is flexible and can vary considerably based on the intended 

requirements. There is no single prescribed workflow for 

transforming the generated population into simulated structural 

responses, provided that the outputs remain compliant with 

PBSHM standards. In this work, we implement a simple 

scenario for both bridge types by employing finite-element 

models (software: LUSAS) to simulate their structural 

responses. However, alternative approaches, such as 

computational fluid dynamics, might be more appropriate for 

other applications, leaving the choice of methodology to the 

scenario authors. 

4.3.1 Description of the Implemented Scenario 

In this study, two simple scenarios were implemented to 

evaluate the structural response of the two generated bridge 

populations. Scenario 1 was the application of only the dead 

load on the bridge. Scenario 2 was the application of a point 

load of 40 kN at the mid-span of every span on each structure. 

After the mid-span load is applied, the maximum displacement 

and its corresponding location are extracted and recorded in a 

PBSHM-compliant format. This scenario is intentionally 

simple, which facilitates basic validation, such as comparing 

the self-weight of the structures with reaction forces of the FE 

models. 

The implementation of this scenario can be defined using the 

following three actions.  

1. The Irreducible Element (IE) models are converted 

into Finite Element (FE) models. This conversion 

uses the detailed information contained within the 

IE models to generate FE model files.  

2. Loading parameters are defined by extracting 

necessary information from the Structural 

Information (SI) models. This step involves 

producing scripts for each load case, with one script 

generated per span for each bridge.  

3. The generated loading scripts are integrated with the 

FE models to run simulations. Once the simulations 

are complete, the mid-span vertical displacements 

and reaction forces are extracted from the 

simulation results and stored in the output folder in 

the correct PBSHM format. 

4.3.2 Validation of Structures and Data 

Validation of the populations ensures that the generated 

structures and associated data are reliable, accurate, and true to 

the design intentions. By confirming that both the individual 

models and the overall dataset behave as expected, researchers 

can trust the integrity of the PEAR dataset and confidently use 

it for their PBSHM research. 

During Stage 0 (design of structures), there are two main 

validation checks. The first is to check if the produced IE 

models comply with the required PBSHM schema. They are 

required to comply with the format to ensure consistency and 

that the developed PBSHM methods can be used on the IE 

models. The second validation step during Stage 0 is the 

examination of dataset statistics. These statistics verify that the 

composition of the populations aligns with the predetermined 

design process. Analysing parameter distributions and other 

statistical metrics ensures that the variability within the 

population matches what is expected based on the defined 

ranges and engineering principles. A discussion of the two 

populations developed for this work can be found in Section 

5.1. 

Further validation is carried out during the scenario stage by 

comparing simulated structural responses with theoretical 

predictions. The specifics of this will depend on the workflow 

to obtain the structural responses of the structure. For 

illustration purposes, the validation methods that were used in 

this work will be described. These methods are expected to be 

applicable when FE models are used as part of the workflow. 

After converting the IE models to FE models, two key 

validation methods are employed. First, dead-load reaction 

forces are extracted from the FE models and compared with the 

calculated weights of the structures as determined in Stage 0. 

This comparison confirms that the transition from the IE model 

to the FE model has maintained the integrity of the original 

design, ensuring that the overall weight remains consistent. 

Figure 3 presents the percentage difference between the design 

self-weight and the reaction forces from the produced FE 

models. With the average percentage difference being 1.69% 

and 1.55% for the beam-and-slab population and the ladder-

deck population, respectively, there is very good agreement 

between the design stage and the FE model stage. For the 

second validation, a point load was applied to the structures, 

and displacement across the deck was recorded from the FE 
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simulation. These displacements were checked to ensure there 

were no discontinuities in the deformed mesh. This comparison 

serves to verify that the FE models are simulating sensible 

structural behaviour. 

 

 

Figure 3: Percentage difference between the design self-

weight of the bridges and the reaction forces from the FE 

models for (a) beam-and-slab population and (b) Ladder-deck 

population 

As a further validation step data from all stages will go 

through a testing phase here the data will be accessible to the 

public for review and comments for a period of time. Following 

this review period it will be uploaded to the published version 

of the PEAR database. 

5 BRIDGE DATASETS 

In this section, the populations for both beam-and-slab bridges 

and ladder-deck bridges are presented. Firstly the structural 

composition of each population is examined, detailing how the 

individual structures come together to form a representative 

population of each bridge subtype. Following this, a simple 

analysis of the outputs from the scenario described in Section 

4.3 is presented to demonstrate the practical application of 

these populations within the PBSHM framework. Finally, a 

similarity analysis of the populations is presented in section 5.3. 

This analysis serves to highlight how the PEAR dataset can be 

used as a valuable benchmark resource for evaluating transfer 

learning and other advanced PBSHM methods. 

 Dataset Statistics 

Examining the overall composition of the two generated bridge 

populations provides insights and validation at the population 

level. By presenting a range of statistics, including the 

distributions of key parameters and variability, this analysis 

provides an insight into the composition of the populations. The 

main purpose of examining the dataset statistics is to ensure 

that the variations in the dataset reflect realistic engineering 

principles and expected real-world trends. Additionally, these 

statistical insights serve as a validation step, confirming that the 

methods used to select the parameters yielded the expected set 

of structures. 

For illustration, Figure 4 below displays the distributions of 

four key parameters for the beam-and-slab bridge dataset: the 

number of spans, the centre-to-centre spacing of the beams, the 

number of primary beams, and the width of the deck (subplots 

(a) to (d), respectively). The distribution of the number of spans 

is approximately even between one and five, which aligns with 

expectations, given that this value is selected randomly without 

influence from other design factors. In contrast, the 

distributions for the centre-to-centre spacing, the number of 

primary beams, and the deck width are less uniform because of 

their interdependent selection processes. 

In Figure 4(b), the distribution of the centre-to-centre spacing 

reflects the specific weighting applied during parameter 

selection, following a ratio of 4:2:3:1:1, which is clearly visible 

in the resulting histogram. Figure 4(c), which shows the 

number of primary beams, indicates a skew towards higher 

numbers. Although the number of beams is randomly chosen 

between 4 and 10, this selection is further refined by ensuring 

that the combination of the number of beams and the centre-to-

centre spacing produces a bridge width within the range of 6 to 

20 meters. This constraint necessitates reselecting the number 

of beams when the initial combination falls outside the 

acceptable range, thereby skewing the distribution toward 

larger values. Finally, the distribution seen in Figure 4(d) for 

the deck width is a direct consequence of the deck width being 

determined by using the centre-to-centre spacing and the 

number of primary beams. 

 

 

Figure 4: Beam-and-slab population statistics (a) the number 

of spans (b) the centre-to-centre spacing of the beams (c) the 

number of primary beams and (d) the width of the deck  
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Figure 5 presents the distributions of four key parameters for 

the ladder-deck bridge dataset: the number of spans, the width 

of the deck, the height of the main girder, and the height of the 

cross girders (subplots (a) through (d), respectively). The 

number of spans is distributed approximately evenly between 

one and five, similar to the statistics for beam-and-slab bridges. 

In contrast, the deck width, shown in Figure 5(b), displays a 

roughly even distribution as well; this is because of its 

independence from other design parameters in ladder-deck 

bridges, unlike in the beam-and-slab case. 

The height of the main girders, illustrated in Figure 5(c), is 

determined using defined span-to-girder depth ratios and so is 

dependent on the length of the spans, with the span limitations 

setting clear upper and lower bounds for the distribution. 

Similarly, the height of the cross girders, depicted in Figure 

5(d), is selected based on specific span-to-girder depth ratios, 

but with the additional constraint that they must not exceed the 

depth of the main girder.  

 

 

Figure 5: Ladder-deck population statistics (a) the number of 

spans (b) the width of the deck (c) the height of the main 

girder and (d) the height of the cross girders 

 Scenario Analysis 

In this section, the results from the two implemented scenarios 

and conduct a simple analysis are presented. The aim is to 

provide the reader with a clear example of the types of data that 

can be generated from the populations, illustrating the 

applications of the PEAR dataset within PBSHM research.  

Figure 6 illustrates the displacement responses of a 

representative ladder-deck bridge under the various loading 

conditions simulated. In Figure 6(a) the vertical displacement 

of the bridge under dead load is presented. Figure 6(b) to (d) 

present the displacement responses when a 400 kN load is 

applied at the mid-span of each of the three spans, respectively. 

From the displacement results shown in Figure 6, the maximum 

displacement values for each load case were extracted. These 

values were then compared against the corresponding 

maximum displacements from the rest of the population.  

 

 
 

Figure 6: Vertical displacement output from FE model for (a) 

dead load (b) 400 kN applied to span 1 (c) 400 kN applied to 

span 2 (d) 400 kN applied to span 3 

Figure 7 presents the combined maximum displacement 

values extracted from all of the FE models from the ladder-deck 

population, plotted against the span length where the point load 

was applied. In this figure, the colour of each data point 

represents the height of the main beam, with blue indicating the 

smallest beam depths and yellow indicating the largest. The 

displacements vary from 0.0018 m to 0.0653 m. This figure 

illustrates the relationship between the span length, the main 

beam depth and the displacement of the bridge. One of the key 

observations from the figure is the presence of distinctive 

bands. These bands show that as the span length increases, 

there is a corresponding increase in the depth of the beams, a 

trend that is consistent with design principles used for the 

ladder-deck bridges. 
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Figure 7: Span length vs the max displacement with the 

datapoints coloured with respect to main beam depth 

 Similarity Analysis 

In this section, a basic similarity analysis between the 

populations will be presented. As stated in the prior, similarity 

assessments are key to PBSHM as they show where it is 

appropriate to undertake transfer learning between structures. 

In this work, the Jaccard index, a method used in graph theory 

[9], is employed to measure the similarity between IE models. 

The method used here will be slightly amended by embedding 

a geometry attribute of the elements in the IE model, specific 

details of this method can be found in [5]. The goal of this 

section is to highlight the suitability of the data in the PEAR 

being used for similarity analysis. Figure 8 shows the similarity 

matrix for a subset of 125 ladder-deck bridges. In the figure 

each pixel represents the similarity of one ladder-deck structure 

with another with dark blue representing least similar and 

yellow representing most similar. In this figure the structures 

are grouped by how many spans the bridges have; one-span 

bridges being grouped in the first 25 structures (indicated by 

the red box) and two-span bridges grouped in the next 25 

positions and so on. Grouping in this way means that pattens 

can be observed about the relationship between the number of 

spans a bridge has and the similarity of other bridges with the 

same number of spans. In the case presented in Figure 8 it can 

be seen that the one-span bridges show a higher level of 

similarity with each other than with bridges of differing span. 

This pattern is repeated with the two-span bridges but the 

pattern seems to be diminished as the numbers of spans 

increase.  

 

 

Figure 8: Similarity matrix for a subset of 125 ladder-deck 

bridges grouped by number of spans 

To investigate this pattern further the similarity scores can be 

averaged across bridges with the same number of spans. This 

average is presented in Figure 9 and confirms the pattern seen 

in Figure 8. The bridges with the highest similarity are those 

with one span and as the number of spans increases the level of 

similarity decreases.  

 

 

Figure 9: Similarity matrix for a subset of 125 ladder-deck 

bridges averaged by number of spans 

This process was repeated for the beam-and-slab bridge 

population and the results are presented in Figure 10. This 

population largely follows the same pattern however the 

variability seems to be higher than that compared to the ladder-

deck population this is most likely because of the other 

variations (other than number of spans) in the population 

affecting the similarity score. 
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Figure 10: Similarity matrix for a subset of 125 beam-and-slab 

bridges averaged by number of spans 

The similarity analysis in this section is the result of the 

question of how the number of spans of structures effects the 

similarity score between other members of the same 

population? This was chosen as an illustrative example of how 

a similarity analysis may be undertaken; however, it is only a 

single example of what may be considered in a similarity 

analysis. This produced dataset allows for a bespoke similarity 

assessment based on the needs of the specific research. 

 

6 CONCLUSION 

A fundamental challenge in Population-Based Structural 

Health Monitoring (PBSHM) is the need for data spanning 

multiple structures within a population. Ideally, these data 

would be sourced from real-world structures; however, 

acquiring comprehensive datasets across similar populations is 

challenging because of practical constraints, including data 

availability, monitoring costs, and access limitations. To 

address this issue, the database presented in this paper provides 

a synthetic dataset specifically tailored to the requirements of 

PBSHM research. 

This work serves as a proof of concept for generating realistic 

populations of structures and associated data within a 

structured database. Two distinct bridge populations, beam-

and-slab bridges and ladder-deck bridges, have been developed 

using engineering principles to maximise their realism. These 

structures have been validated via statistical analysis and 

comparison with theoretical expectations obtained from FE 

simulations. The FE models enabled structural responses under 

different loading conditions to be obtained.  

The processes outlined in this work have been developed to 

be generalisable, meaning that aspects of engineering design 

can be incorporated into the population, such as varying 

material properties to adjust the material's strength. More 

complex design aspects, such as the amount of reinforcement 

or prestressed reinforcement, can be incorporated if the 

numerical simulation (e.g., an FE model) allows for it.  

The results presented in this study demonstrate that it is 

feasible to create synthetic bridge populations that exhibit 

realistic structural behaviours, making them suitable for 

PBSHM development and validation. Although the analysis 

performed in this paper is relatively simple, it highlights the 

potential of the database for a range of PBSHM methodologies, 

including data-driven condition assessment and transfer-

learning applications.  

The approach outlined in this paper has been intentionally 

designed to be flexible, allowing for the generation of both 

bespoke structural populations and corresponding datasets 

depending on specific research needs. Future work will build 

on this foundation by expanding the database with additional 

structural populations and scenarios, further enhancing its 

applicability for PBSHM research and facilitating broader 

adoption within the field. 
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