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ABSTRACT: The practical implementation of Population-based Structural Health Monitoring (PBSHM) often involves 

distributed which face challenges from limited compute resources, power budgets, and variable communication bandwidths, for 

example, IoT devices with battery-powered wireless sensor network gateways uploading data over metered connections. Building 

upon the data flow architecture presented in our first paper in this special session, this paper demonstrates how inherent state 

within data streams' can be leveraged for optimisation. This paper introduces a novel, plug-and-play aggregation pipeline 

specifically designed to address these limitations. We present an optimised data representation and transmission strategy that 

minimises computational and bandwidth requirements at the network edge. By leveraging efficient data serialisation techniques, 

our pipeline achieves a significant reduction in data payload size with negligible information loss, thereby enhancing the scalability 

and financial viability of PBSHM systems. This work validates an enabling technology for the real-world deployment of large-

scale, low-power monitoring ecosystems. It does so by comparing two data formats, JavaScript Object Notation (JSON) and 

Concise Binary Object Representation (CBOR), using monitoring data from a long-term bridge campaign. The results show a 

reduction in the volume of transmitted data by up to 12.2 times. 

KEY WORDS: Population-based Structural Health Monitoring (PBSHM); Resource-constrained systems; data optimisation; data 

serialisation.

1 INTRODUCTION 

Infrastructure monitoring requires methods to track structural 

condition and optimise maintenance schedules. Structural 

health monitoring (SHM) has developed considerably in recent 

years [1]. Population-Based SHM (PBSHM) offers potential 

advantages over traditional SHM approaches by analysing data 

across multiple structures rather than analysing each 

independently. This approach enables knowledge transfer 

between similar structures, improving damage detection and 

diagnostic capabilities [2], [3], [4], [5]. 

While the definition of a computing framework for PBSHM 

is established [6], the practicalities of data logistics in 

heterogeneous, resource-scarce environments remain a 

significant research gap. Implementing PBSHM systems 

requires the integration of data from many different monitoring 

systems. Previous work has developed a methodology for the 

transmission of data from a data generator, to the PBSHM 

database [7]. 

Practical deployment faces challenges that haven't been fully 

addressed to date, for example, many monitoring scenarios 

such as wireless sensor networks, remote sites, and temporary 

deployments operate with limited resources. These systems 

must operate within constraints on bandwidth, computing 

power, energy supply, and storage capacity. These limitations 

become more significant as PBSHM networks expand to 

include more structures and sensors.  

The focus of this work lies in the creation of a holistic and 

optimised data aggregation pipeline tailored for resource 

constrained systems on the network edge. We directly address 

the challenge of minimising data footprints prior to their arrival 

at a central repository, a critical step that has hitherto been 

underexplored. This paper thus provides a foundational 

component for the next generation of truly scalable and 

deployable PBSHM systems. 

This paper presents a stateful, connection-oriented approach 

to PBSHM data transmission designed for resource-constrained 

environments. Our transmission process establishes session 

contexts for data generators, handling metadata exchange 

during session initialisation rather than with each data sample 

for the period of the session. This reduces redundant 

information while maintaining schema compliance and plug-

and-play functionality, allowing new data generators to join the 

system with minimal configuration. Functionality that becomes 

particularly useful for temporary monitoring campaigns or 

rapid PBSHM monitoring system rollout. 

The main contributions of this work are: 

• Development of a stateful, session-oriented pipeline 

architecture for PBSHM data transmission that 

reduces redundancy through session payload 

optimisation while retaining plug-and-play data 

generator integration. 

• Demonstration and validation of a resource-

efficient aggregation pipeline, using empirical 

evaluation with field monitoring campaign data to 

demonstrate its feasibility for real-world PBSHM 

applications. 

The paper is organised as follows: Section 2 introduces the 

concept of a session-oriented pipeline; Section 3 details the 

case study used to validate the data and a proposed pipeline 

design; Section 4 analyses the results; and Section 5 concludes 

with a summary and future directions. 

2 METHODOLOGY 

To optimise data flow from a structure to a PBSHM server, a 

key aspect that must be considered is the data representation 
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used. The PBSHM schema defines the representation that must 

be provided to the PBSHM Framework. 

 The PBSHM data integration pipeline (Figure 1) segments 

the process from the data generator, which is an entity that 

produces data either already compliant with or transformable to 

the PBSHM schema, to the PBSHM Network, Framework, and 

Database, using defined scopes [7]. Using this definition, 

anything in and transmitted to the PBSHM Network, 

Framework and Database scope must be within the PBSHM 

schema representation.  However, this approach allows data 

within scopes preceding the PBSHM Network, Framework, 

and Database to take any form, as long as it can be reconciled 

with the PBSHM schema, even if it does not initially conform 

to it. By exploiting this, we can attempt to optimise the data 

representation in the “structure” and “aggregation” scopes. 

 

Figure 1. The PBSHM data integration system in which copes 

where data representations are not enforced is highlighted 

Although the data representation is not explicitly defined 

within these scopes, there are significant advantages to 

developing a reusable implementation, particularly for time 

series channel data. Optimising data representations is crucial 

when considering the application of streaming techniques to 

handle vast amounts of data efficiently. Given the potential for 

integrating multiple data generators to monitor a single system, 

such as data from various sensors in an SHM system, SCADA 

data, and weather data from an application programming 

interface (API) - a unified aggregation pipeline can provide a 

sensible solution. This approach would support all these 

sensors cohesively, ensuring efficient and effective data 

management. Creating a generic data representation that 

reduces redundancy within that data and therefore 

communications bandwidth utilisation would allow systems 

with resource constraints to share data integration pipelines 

which increases scalability while maintaining acceptable 

bandwidth utilisation. 

A primary motivation for performing data reduction and 

standardisation directly on the sensor node is to achieve a truly 

'plug-and-play' and interoperable system. While it is possible to 

offload metadata enrichment to a gateway or middleware server 

in its entirety, such an approach creates a dependency, binding 

the sensor node to a specific gateway with the requisite 

processing capabilities. This method, by contrast, ensures that 

each sensor node transmits a self-contained, efficient, and 

standardised data packet. This makes the capable of being 

integrated into any PBSHM ecosystem with a compatible 

endpoint, without requiring specialised intermediate hardware. 

This approach enhances deployment flexibility, as a node can 

be replaced or relocated with the guarantee that it will function 

correctly with the central server, independent of the local 

network topology or available gateway resources. This is 

particularly advantageous in large-scale, heterogeneous 

deployments where multiple vendors and network types may 

coexist. 

For a plug-and-play aggregation pipeline, enough 

information must be encoded into the data representation to 

enable compliance with the PBSHM schema when the data is 

transmitted to the PBSHM server whilst reducing the 

redundancy of information within said data representation. To 

achieve this, we must first identify the key aspects of the 

PBSHM schema that must be retained. 

In this paper, we focus on time series channel data. Therefore, 

the key information that’s encoded into a channel data object 

and must therefore be recoverable is: 

• Structure name 

• Population name 

• Timestamp 

• Channel name(s) 

• Channel type(s) 

• Channel unit(s) 

• Channel value(s) 

First, we must consider implementing this in such a way that 

all this information is explicitly stated for each timestamp. To 

illustrate this, consider two JavaScript object notation (JSON) 

objects compliant with the PBSHM schema that represent 

multiple sensor readings at two different time stamps one 

second apart as shown in Figure 2. 

We can identify multiple items of redundant information 

across the two objects (i.e., structure name, population, channel 

names, channel types and channel units). 

Many communication protocols incorporate mechanisms for 

tracking the origin of messages, enabling the inference of the 

communication state. For instance, protocols like TCP/IP and 

MQTT include metadata that identifies the sender and the 

context of the message. This capability allows us to avoid 

sending redundant information, as we can pair existing data 

with the sender's identity. 

Therefore, we can split up the object into duplicated and non-

duplicated data (when considering multiple objects from the 

same data generator) as shown in Table 1. As can be seen; by 

only transmitting updated data (or non-duplicated fields), we 

can significantly limit the number of fields that have to be 

transmitted for every object. 

Table 1. Identifying duplicated and non-duplicated fields 

within the PBSHM Schema when considering multiple time 

series objects 

Duplicated Fields Non-duplicated Fields 

Structure name Timestamp 

Population name Channel value(s) 

Channel name(s)  

Channel type(s)  

Channel unit(s)  

 

 

As such, we can define two new objects, the initialisation in 

which all the duplicated fields for a given data generator are 
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represented and the sample in which we represent the non-

duplicated fields.  

With these new objects, we can define the process by which 

communications take place. For the data generator, first, we 

send the initialisation object, and then we send every sample 

object available as shown in Figure 3. These sample objects can 

optionally be added to a buffer to increase the efficiency of 

communications (i.e. only turning on radios for brief periods or 

trying to limit the number of packets sent). For the case in 

which each sample object is sent individually the buffer size 

would be one. 

With these communication processes if there was a need to 

change the format of the sample objects (i.e. adding a channel, 

removing a channel or changing properties about a channel) 

this could also be achieved by closing the communication 

session and re-opening it with the new channel information in 

the same way the session is initialised as described previously. 

Furthermore, if the data generator was disabled for any reason 

the communications would be closed, and the process would 

also have to be re-initialised. In such cases, any incomplete 

sample objects and session state affected by the disconnection 

would be discarded. Any samples still in the send buffer would 

then need to be retransmitted where de-duplication would take 

place between the transit and the PBSHM framework, network 

and database. 

Within the aggregation scope (shown in Figure 4), we then 

receive the initialisation message from the data generator and 

then receive the buffer (which fulfils the role of the cache 

from the PBSHM data integration system). From the buffer, 

we add the “redundant fields” to the sample to make a JSON 

object compliant with the PBSHM Schema and then transmit 

said object to the PBSHM Framework. We then wait to 

receive a new buffer or close the communication. 

 

 

Figure 3. Data generator communications process 

These two processes allow the use of a reduced 

communication schema to reduce the bandwidth utilised in the 

transmission of PBSHM data from a given data generator. 
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Figure 2. Two example JSON documents containing multiple sensor readings one second apart 
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Figure 4. Aggregation pipeline communication process 

3 CA E  TUDY 

 
The structure under test is a bridge that supports a dual 

carriageway, which consists of two lanes designated for one-

way traffic, as well as a footpath for pedestrians. The structure 

of the bridge is composed of 13 concrete Y beams that provide 

support for a reinforced concrete deck. Adjacent is an older 

masonry arch bridge. These two bridges are constructed 

without any visible gap between them, making it unclear how 

much the concrete bridge deck is restrained on one side. 

 

Figure 5. The structure under test in the case study 

The SHM system implemented for this bridge was designed 

with versatility and ease of installation in mind. This system 

allows for the accelerometer to be installed directly on the 

surface of the bridge deck. The placement of the accelerometer 

is optimised by accounting for the variations in bridge types. It 

comprises a single MEMS accelerometer and an environmental 

sensor. The accelerometer employed is the Multifunction 

Extended Life (MEL) Data Logger from Gulf Coast Data 

Concepts. This device measures acceleration in three axes 

within a range of ±2 g and includes a real-time clock to 

timestamp each acceleration measurement. The acceleration 

data collected by the sensor is stored locally on an SD card at a 

sampling rate of 128 Hz, and the sensor is powered by two D-

cell batteries, which provide a run-time of up to 60 days of 

continuous recording. The MEL accelerometer is housed in an 

enclosure that is securely attached to the deck of each bridge. 

An example of one of these enclosures is shown in Figure 6. 

 

Figure 6. MEL accelerometer and enclosure 
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Figure 7. MEL sensor in place 

In addition to the accelerometer, the SHM system includes an 

environmental sensor that measures both air temperature and 

humidity. To ensure accurate temperature readings, the 

environmental sensors are not placed within the enclosure to 

avoid the effects of solar gain. Instead, these sensors are 

positioned out of direct sunlight, to provide a representative 

measurement of the local air temperature. 

 Data description 

The data provided by the system is in a comma-separated 

values (CSV) format, of which an example showing ten values 

is shown in Table 2. Within the CSV document, the first 9 rows 

contain contextual information about the samples. The 

following rows contain time series data. 

Table 2. Extract from the CSV data provided by the data 

logger containing headers and 15 samples 

;Title http://www.g

cdataconcept

s.com 

x2-2 Kionix 

KXRB5

-2050 

 
 

;Version 1107 Build 

date 

Oct 20 

2015 

SN:CC

D 

C10022

6A4EB2 

 

;Start_time  2018-11-08 11:48:2

3.440 

  
 

;Temperature 13 deg C Vbat 3076 mv 

;Gain high 
    

;SampleRate 128 Hz 
   

;Deadband 0 counts 
   

;DeadbandTimeout 0 sec 
   

;Headers time Ax Ay Az 
 

0.222 49 328 -13136 
  

0.229 28 314 -13129 
  

0.237 7 296 -13099 
  

0.245 21 296 -13101 
  

0.253 30 324 -13136 
  

0.261 33 341 -13161 
  

 

To evaluate the efficacy of the proposed pipeline 

architecture, a 30-minute window of the data has been selected. 

This can be seen represented in Figure 10.  

 Test pipeline models 

As such, we can develop a pipeline that would allow 

transmission of data from the bridge under test to the PBSHM 

server which is shown at the top of the Universal Markup 

Language (UML) diagram of Figure 8. This model of the 

pipeline first extracts the data from the GCDC data store and 

converts it to the PBSHM schema format. Data in the PBSHM 

schema format is then loaded into the PBSHM Schema Cache 

on the Docker Server, where it is then loaded into the PBSHM 

server via a Representational State Transfer (REST) API. 

Figure 8. Universal markup language diagram showing two data integration pipelines (PBSHM Schema rep. above, 

reduced data rep. below) 
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Figure 10. Single-axis raw acceleration over 30 minutes 

measured using the MEL accelerometer 

The diagram at the bottom of Figure 8 shows a similar 

pipeline, however, this uses a reduced data representation as 

discussed in Section 2. Within the on-premises computer, data 

is extracted from the GCDC store and transformed into an 

initialisation object (which contains all the duplicated fields 

shown in Table 1) and a set of samples objects. The 

initialisation object, of which an example is given at the top of  

Figure 11, is first transmitted to the Reduced Representation 

Cache which resides on the docker server. Samples, an example 

of which is shown in the bottom of Figure 11, are then 

transmitted to the Reduced Representation Cache. These 

samples are then transformed into PBSHM Schema compliant 

files which are then uploaded to the PBSHM server via the 

PBSHM server. 

From these models, we can simulate the performance of the 

multiple data representations (namely the PBSHM schema in a 

JSON format and concise binary object representation (CBOR) 

format as well as a reduced representation in both JSON and 

CBOR formats) using real-world data captured from the line 

bridge over a simulation test bench. 

 

Figure 11. Initialisation object (above) and sample object 

(below) in the reduced data representation 

Figure 9. Universal markup language diagram showing the simulation test bench (PBSHM Schema rep. 

above, reduced data rep. below) 
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4 RE ULT  

To assess the performance of the methodology presented in 

Section 2 a simulation of the systems shown in Figure 8 was 

developed using individual docker containers running on a 

docker server (with the PBSHM schema version of the pipeline 

shown above in Figure 9 and the reduced representation version 

shown below). 

This simulation test bench emulates all of the components in 

the systems described in Figure 8, however, integrates all the 

components that were shown to be implemented with on-

premises equipment in the Docker Server to allow for greater 

control of the data pipeline and easy access to metrics. 

In this paper, the size of the total payload for the selected 30-

minute window is the metric used to evaluate the efficacy of 

the pipeline. This was chosen as within this setting, the size of 

the data transmitted over the period will likely impact 

bandwidth requirements and power requirements for resource-

constrained systems. 

This test bench was used to evaluate multiple data 

representations. The PBSHM Schema in JSON format was 

used as a benchmark data representation as it provides all the 

necessary context for the PBSHM server. This was then 

repeated by the reduced representation in JSON format. 

Finally, both tests were repeated with CBOR which allows a 

1:1 mapping with JSON allowing it to be implemented with 

little to no modification to the existing PBSHM schema. 

Table 3. Size of a 30-minute capture (230,400 samples of tri-

axis acceleration data) in CSV, PSBHM Schema, and reduced 

representation data formats 

Format Size (MiB) Ratio to CSV 

CSV 5.14 1.00 

PBSHM Schema (JSON) 131.42 25.58 

Reduced (JSON) 34.30 6.68 

PBSHM Schema (CBOR) 45.26 8.81 

Reduced (CBOR) 10.77 2.10 

 

From the results captured and presented in Table 3, it can be 

concluded that using the PBSHM schema in a JSON format 

dramatically increases the storage required for the 30-minute 

sample window compared to the original CSV data. This can 

be significantly reduced using a compressed format like CBOR, 

reducing the data size by 2.9x. 

However, by using the reduced data representation, this can 

be further reduced. In the JSON format, the reduced data 

representation offered a 3.8x size reduction whilst the CBOR 

format of the reduced data representation offered a 12.2x size 

reduction when compared to the PBSHM Schema in JSON 

format. These results are plotted as shown in Figure 12. 

By utilising the reduced data representation in the CBOR 

format, the ultimate size of data to be transmitted is 2.1x the 

original CSV data. 

 

Figure 12. Bar chart plotting the different data representations 

and formats of a 30-minute capture (230,400 samples of tri-

axis acceleration data) 

 

5 DI CU  ION, LIMITATION  AND  UTURE WORK 

The findings presented in this paper provide a strong proof-of-

concept for the proposed pipeline; however, several limitations 

should be acknowledged, and these point towards avenues for 

future research. 

The results in Table 2 show a reduced file size from CSV 

format produced by the data acquisition system when compared 

to the schema under test. This shows that in situations in which 

an aggregation pipeline can be implemented on a case-by-case 

basis dependent tailored to the data produced by the data 

generator there is an inherent advantage to doing so. This will 

be true in almost all cases where this is possible as no extra 

information is required to allow the transformation of data 

produced by the data generator into the PBSHM schema 

format. However, as stated, this requires that each 

implementation of the aggregation scope be tailored to the 

specific data generator. 

By utilising this plug and play aggregation pipeline design, it 

is possible, to reuse components across multiple data 

generators. This limits the effort required to develop new 

tailored aggregation components for each data generator as 

well as allows data from many data generators to be integrated 

into the PBSHM data ecosystem using few data aggregation 

components. 

However, the validation was conducted using a homogenous 

set of accelerometer data. The “plug-and-play” architecture is 

designed to be extensible, yet its performance with a more 

diverse array of sensor modalities, such as strain gauges, 

acoustic emission sensors, or environmental sensors has not yet 

been empirically validated. Future work will focus on 

developing and testing data models for these sensor types 

within the pipeline. 

Furthermore, while our work focuses on data representation, 

it does not currently incorporate specific protocols for secure 

data transmission. For deployment on critical infrastructure, 

ensuring data integrity and confidentiality through 

authenticated encryption schemes (e.g., using TLS/DTLS) 

could be employed. 

A key focus of our future work will be on hardware-in-the-

loop testing, further developing robust reference 

implementations of the technology demonstrated within the 
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aggregation scope to provide practical guidance for both 

current and future SHM system operators seeking to integrate 

their monitoring within PBSHM data domains. 

6 CONCLUDING REMARK  

This paper has presented the potential of session-defined 

communication for PBSHM data within PBSHM data 

aggregation pipelines. By defining the processes that would be 

undertaken to achieve reduced bandwidth utilisation, we have 

demonstrated how to achieve reduced bandwidth requirements 

whilst maintaining plug-and-play functionality for PBSHM 

monitoring systems. 

We demonstrate that it is possible to reduce the amount of 

data required to provide the necessary context for PBSHM 

when transmitting sample data providing a method to reduce 

the required data by 12.2x. This results in a transmission size 

that is 2.1x the original data size, which whilst a marked 

increase, allows for reasonable requirements for resource-

constrained PBSHM monitoring systems. 
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