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ABSTRACT: To explore the potential application of the tunnel damage identification method based on train acceleration, a three-

axis accelerometer was installed on a metro train carriage to collect acceleration signals. The original signals are segmented and 

aligned according to the stations, with data analyzed in terms of station sections. Next, the probability density distribution, fast 

Fourier transform spectrum, and one-third octave spectrum of the signal are calculated. A time-frequency domain fast analysis 

software for acceleration data is then developed. By comparing changes in time-frequency domain features, the anomalous section 

of the tunnel is identified. The results confirm that the tunnel damage identification method based on train acceleration is applicable 

for real-world metro tunnels. 
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1 INTRODUCTION 

With the rapid pace of urbanization, metro systems are playing 

an increasingly vital role in alleviating urban traffic congestion 

[1]. As a critical support infrastructure for metro trains, metro 

tunnels can experience issues such as settlement, water leakage, 

and lining cracks during their operational period [2]. These 

problems can arise from the combined effects of geological 

conditions, material aging, dynamic loads from trains, and 

nearby construction activities, all of which can compromise the 

structural integrity of the tunnels [3]-[4]. Therefore, monitoring 

the health condition of metro tunnels and performing timely 

maintenance are crucial for ensuring the safe and efficient 

operation of the metro system [5]. 

Li [6] proposed a method that involves installing acceleration 

sensors on metro trains to identify tunnel damage or anomalies 

by analyzing changes in train acceleration. The feasibility of 

this approach was demonstrated theoretically. This method 

offers advantages such as high efficiency and low cost, 

providing a novel approach to metro tunnel health monitoring. 

Following this, damage indicators based on wavelet packet 

energy change rates [6], spectral kurtosis change rates [6], and 

relative entropy of wavelet packet energy [7] were introduced 

for analyzing train acceleration signals to identify tunnel 

anomalies. Deep learning techniques, including convolutional 

variational autoencoders (CVAE) [7], convolutional neural 

networks (CNN) [8], and long short-term memory (LSTM) [8] 

networks, have been applied to classify tunnel damage types, 

with their performance validated through model tests. 

Compared to traditional damage indicators, deep learning 

methods effectively reduce the interference from noise and data 

inconsistencies. Although the feasibility of the tunnel damage 

identification method based on train acceleration has been 

theoretically and experimentally verified, real-world 

acceleration data from metro trains have yet to be collected to 

assess the feasibility of the method in field conditions. 

In this study, a three-axis accelerometer was installed on a 

metro train carriage to collect the train acceleration. The time-

frequency domain features of the acceleration signals are then 

calculated. By analyzing the changes in these features, the 

anomalous section of the tunnel is identified. The results 

confirm that the tunnel damage identification method based on 

train acceleration is feasible for real-world applications.  

2 FIELD TEST 

In this study, a field test was conducted on a complete metro 

line in a certain city, which includes two tunnels on the up and 

down lines, with a total of 19 stations. A wireless three-axis 

accelerometer, with a measurement range of 2g and a sampling 

frequency of 4000Hz, was installed under the seat in the middle 

of the train carriage to collect the train acceleration. The test, as 

outlined in Table 1, was conducted in three phases from April 

16 to September 20, 2021, spanning a total of 24 days. For each 

test day, a set of acceleration data was recorded from the 

starting station to the terminal station, with separate data sets 

collected for both the up and down line tunnels. 

Table 1. Test dates. 

Phase Dates 

Phase 1 April 16 - April 28 

Phase 2 May 12 - May 21 

Phase 3 September 20 

 

3 TEST DATA ANALYSIS 

 Original data 

The original signal is segmented and aligned based on the 19 

stations, dividing the line into 18 station sections for sectional 

data analysis. Taking a specific section as an example, the 

acceleration signal is shown in Figure 1. In this figure, the X 

direction represents the forward direction of the train, while the 

Z direction is perpendicular to the ground of the carriage. The 

acceleration in the X direction shows a clear ascending or 
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descending trend due to changes in train speed, whereas the 

acceleration in the Y and Z directions exhibits similar patterns 

of variation. 

In this study, the Z direction is selected to analyze the 

changes in train acceleration. The acceleration in the Z 

direction for 18 sections is shown in Figure 2. The number 

above each curve corresponds to the section's serial number. 

Due to variations in tunnel length, geological conditions, and 

track irregularities across the sections, the time-domain 

waveforms of acceleration exhibit distinct differences. 

The acceleration in the Z direction for 6 days in the same 

section is shown in Figure 3. The numbers above the curves in 

the figure represent the corresponding dates, with April 19 

recorded as 4.19, and so on. Since the train's speed and the mass 

of the carriage vary slightly each day, the acceleration values 

in the same section show some differences in amplitude. 

 
(a) 

 
(b) 

Figure 1. Acceleration signals in the X, Y, and Z directions: 

(a) Up line; (b) Down line. 

 

 
(a) 

 
(b) 

Figure 2. Acceleration signals in different sections: (a) Up 

line; (b) Down line. 
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(a) 

 
(b) 

Figure 3. Acceleration signals on different dates: (a) The 1st 

section of the up line; (b) The 18th section of the down line. 

 

 Probability density distribution 

The probability density distribution curve of the acceleration 

signals for 6 days within the same section is shown in Figure 4, 

with the FIT curve representing the normal distribution fit. The 

mean acceleration values within the same section are similar, 

while there are differences in variance. 

 
(a) 

 
(b) 

Figure 4. Probability density distribution curves of 

acceleration signals on different dates: (a) The 1st section of 

the up line; (b) The 18th section of the down line. 

 

 Fast Fourier transform 

The acceleration signals from 24 days are analyzed using fast 

Fourier transform (FFT), converting the time-domain signals 

into the frequency domain. As shown in Figure 5, the blue 

curve represents the average of the FFT results from all the 

signals. The signal energy is concentrated between 200 and 800 

Hz, with peaks around 450 Hz and 700 Hz. 

 
(a) 

 
(b) 
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Figure 5. Fast Fourier transform spectrum of acceleration 

signals: (a) The 1st section of the up line; (b) The 18th section 

of the down line. 

 

 One-third octave 

Figure 6 shows the one-third octave spectrum of the 

acceleration signals over 24 days, illustrating the distribution of 

signal energy across different frequency bands. The blue curve 

in the figure represents the average energy of all the signals. 

Similar to the FFT spectrum, the signal energy exhibits a peak 

around 700 Hz. 

 
(a) 

 
(b) 

Figure 6. One-third octave spectrum of acceleration signals: 

(a) The 1st section of the up line; (b) The 18th section of the 

down line. 

 

 Time-frequency domain fast analysis software 

As shown in Figure 7, a time-frequency domain fast analysis 

software for acceleration data is developed using MATLAB 

App Designer. First, click “Data loading” to read the train 

acceleration signal from the input “File na e”. Next, select or 

enter the line direction (Left, i.e., Down, or Right, i.e., Up), 

section number, date, and acceleration direction (X, Y, or Z). 

Finally, by clicking the “Ti e do ain data”, “Probability 

density curve”, “Fast Fourier transfor ”, and “One-third 

octave” buttons, users can quickly co pute and visualize the 

time-frequency domain features of the signal, facilitating 

further comparative analysis. 

 
(a) 

 
(b) 

Figure 7. Time-frequency domain fast analysis software for 

acceleration data: (a) Software interface; (b) Visualization of 

analysis results. 

 

4 DATA ANALYSIS OF ANOMALOUS SECTION 

 Time domain analysis 

As shown in Figure 8 and Figure 9, during the data analysis, it 

is observed that the acceleration signals in the 2nd section of 

the up line and the 17th section of the down line show 

significant changes over time. These two sections correspond 

to the left and right tunnels of the same station segment. 

Comparing this with the section's operation and maintenance 

records reveals that, during the field test, the tunnel linings of 

this station segment experienced excessive uplift, which altered 

the tunnel's stiffness and boundary conditions. This change is 

reflected in noticeable differences in the train's vibration signal 

waveforms. Additionally, on the test day, September 20, which 

was a rainy day, the tunnel's boundary conditions were further 

modified, resulting in a significant increase in the train's 

acceleration amplitude. 
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(a) 

 
(b) 

Figure 8. Acceleration signals of the anomalous section: (a) 

The 2nd section of the up line; (b) The 17th section of the 

down line. 

 

 
(a) 

 
(b) 

Figure 9. Probability density distribution curves of 

acceleration signals in the anomalous section: (a) The 2nd 

section of the up line; (b) The 17th section of the down line. 

 

 Frequency domain analysis 

Further analysis of the frequency domain features for the 

acceleration signals in the anomalous section, shown in Figure 

10 and Figure 11, reveals an increase in energy around 700 Hz 

compared to the normal sections.  

The discovery of the anomalous section validates the 

feasibility of tunnel damage identification method based on 

train acceleration for field applications. By analyzing the 

changes in the time-frequency domain features of the train's 

acceleration signals, tunnel anomalies can be indirectly 

identified. 
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(b) 

Figure 10. Fast Fourier transform spectrum of acceleration 

signals in the anomalous section: (a) The 2nd section of the up 

line; (b) The 17th section of the down line. 

 

 
(a) 

 
(b) 

Figure 11. One-third octave spectrum of acceleration signals 

in the anomalous section: (a) The 2nd section of the up line; 

(b) The 17th section of the down line. 

 

5 CONCLUSIONS 

In this study, a three-axis accelerometer was installed on the 

train carriage to collect acceleration signals throughout the 

entire journey. The time-frequency domain features of the 

signals are analyzed. The main conclusions of this study are as 

follows: 

 ) The acceleration in the direction of the train’s  otion 

shows distinct ascending or descending segments due to 

changes in train speed. The acceleration in the two directions 

perpendicular to the train’s  otion exhibits a si ilar trend.  

2) The train acceleration signals in normal sections on 

different dates show slight differences in amplitude due to 

variations in train speed and carriage mass. In contrast, the train 

acceleration signals in anomalous sections on different dates 

exhibit significant differences in waveform, caused by changes 

in the tunnel's stiffness and boundary conditions, with more 

substantial fluctuations in signal amplitude. 

3) By calculating the probability density distribution, fast 

Fourier transform spectrum, and one-third octave spectrum of 

the acceleration signals, changes in the time-frequency domain 

features can reveal anomalous sections of the tunnel. This 

analysis validates the feasibility of tunnel damage identification 

method based on train acceleration in real-world applications. 

Future work will involve selecting additional metro tunnels, 

installing sensors on trains to collect field data, and building a 

comprehensive dataset. Machine learning or deep learning 

techniques will then be applied to further identify tunnel 

anomalies. 
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