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ABSTRACT: Structural health monitoring (SHM) has gained significant attention in recent decades due to several structural 

failures and the increasing maintenance demands from stakeholders. This urgency has been further amplified by the impact of 

predictive climate changes worldwide. Footbridges, as critical components of modern transportation systems, play a vital role in 

daily life and therefore require meticulous attention to their health conditions. Traditionally, monitoring footbridge conditions 

involves installing many sensors directly on the structure, which is often cost-prohibitive in engineering applications. Recent 

advancements have highlighted the indirect method of bridge health monitoring, where sensors are mounted on passing vehicles 

rather than the bridge itself. This approach is not only more economical but also easier to implement in practical engineering 

scenarios. This paper further extends the indirect monitoring method to classify footbridge damage using the responses of shared 

scooters. Advanced deep learning techniques are utilized to predict the severity of damage to the footbridge based on the vibrations 

recorded from shared vehicles. The proposed method was validated through field tests involving scooters and a footbridge. 

Furthermore, to interpret the outputs of the deep learning model, SHapley Additive exPlanations (SHAP) values were calculated, 

offering insights into the decision-making process of the model. 

KEY WORDS: structural health monitoring; footbridge; damage classification; convolutional neural networks; SHAP.

1 INTRODUCTION 

The assessment of bridge health has gained significant attention 

over the past decades due to widespread aging and deterioration. 

This concern stems from the fact that many of these structures 

were built in the previous century, with a large proportion 

having been in service for over 50 years. For instance, in 

Finland, the Finnish Transport Infrastructure Agency reported 

that, as of 2023, 882 out of 17,351 highway bridges (5.1%) 

were in poor condition, with aging structures from the 1960s 

and 1970s accumulating a growing maintenance backlog [1]. 

The European Commission has noted that bridges constructed 

after 1945 were typically designed for a lifespan of 50 to 100 

years. In 2001, it was reported that bridges in France, Germany, 

and the UK showed deficiency rates of 39%, 30%, and 37%, 

respectively [2]. These figures highlight the urgent need for 

effective health monitoring of in-service bridges, which can 

provide critical information on their condition and support 

informed decision-making by stakeholders. 

Traditional bridge inspections rely heavily on human vision, 

requiring engineers to conduct on-site visits and determine 

whether maintenance is needed [3]. However, as modern bridge 

construction becomes more extensive and complex, this 

approach faces several limitations, including being labor-

intensive, inefficient, and time-consuming. At the beginning of 

this century, structural health monitoring (SHM) systems 

gained popularity [4]. These systems involve installing various 

sensors on bridges to continuously collect different types of 

data. In practice, however, this approach has proven to be 

expensive. It typically involves a one-to-one setup, where the 

monitoring system is customized for a specific bridge and 

cannot be easily transferred to others. Moreover, the cost of 

installing numerous sensors can be high. As the number of 

aging and newly built bridges continues to rise, there is an 

increasing need for cost-effective and scalable monitoring 

technologies. 

In 2004, Yang et al. [5] proposed the indirect method, where 

sensors are installed on passing vehicles instead of the bridge 

itself. This approach is based on the vehicle-bridge interaction 

(VBI) process. During this interaction, the dynamic 

characteristics of the bridge are transferred to the vehicles 

equipped with sensors, allowing the vehicles to act as moving 

sensors that collect information about the bridge. In this 

pioneering study, the bridge was simplified as a simply 

supported beam, and the vehicle was modeled using a spring-

mass system. Under these assumptions, the authors 

demonstrated that the fundamental frequency of the bridge 

could be extracted from the vehicle’s response, laying the 

groundwork for future research in this area. 

In recent studies, researchers have further investigated the 

extraction of bridge modal shapes and damping ratios from 

vehicle response [6,7]. For example, Yang et al. [8] proposed 

using the Hilbert Transform to extract mode shapes from 

filtered vehicle responses, while González et al. [9] introduced 

a method for retrieving damping ratios by minimizing the errors 

in identified road roughness between the front and rear axles. 

In 2018, Yang et al. [10] introduced the concept of contact-

point (CP) response, which represents the response at the 

interface between the vehicle and the bridge. This response was 

found to be independent of vehicle characteristics, making it 

useful for identifying bridge properties from vehicle data [11]. 

In addition to vehicle influence, road roughness is another 

major source of interference when identifying bridge dynamic 

parameters from vehicle accelerations. This issue can be 

mitigated by using residual CP responses between vehicle axles, 
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which eliminates the effects of road roughness [12–14]. 

However, in practical applications, modal parameters often 

show limited sensitivity to structural damage and may be 

significantly affected by operational conditions. Moreover, 

most existing studies on the indirect method have focused on 

road bridges. Although footbridges play an essential role in 

modern transportation and logistics, they are rarely equipped 

with SHM systems and have received little attention in indirect 

monitoring research. 

Over the past decade, advancements in computer science 

algorithms and hardware have significantly enhanced deep 

learning techniques, particularly through the widespread use of 

neural networks. Technologies such as large language models 

(LLMs) have transformed many aspects of daily life and have 

also made a notable impact on SHM for bridges. Researchers 

have increasingly applied machine learning and deep learning 

methods to assess bridge health using structural responses [15]. 

In the context of the indirect method, vehicle responses 

typically consist of three components: vehicle dynamics, road 

roughness, and bridge vibrations [16,17]. This complexity 

makes it challenging to isolate bridge-specific information for 

use as damage indicators. However, deep learning models are 

sensitive to subtle signal variations, making them well-suited 

for detecting damage-related changes in vehicle responses. For 

example, Li et al. [18] applied support vector machines and 

Mel-frequency cepstral coefficients (MFCCs) to predict the 

severity of bridge damage based on vehicle responses. Unlike 

earlier studies that focused only on low-frequency signals [19], 

this research also explored high-frequency responses. In 

addition, Corbally and Malekjafarian [20] used convolutional 

neural networks (CNNs) to classify the type, location, and 

severity of bridge damage using drive-by data. In their study, 

particle swarm optimization was employed to fine-tune the 

vehicle model, and the resulting simulated data were used to 

train the CNN. Laboratory experiments validated the 

framework, demonstrating its ability to accurately detect and 

classify damage in most cases. These studies highlight the 

promising role of deep learning in bridge health monitoring. 

However, most research to date has focused on road bridges, 

with footbridges largely overlooked [21]. Additionally, deep 

learning models are often applied without adequate explanation 

of how features are selected or interpreted, limiting the 

transparency and broader adoption of these approaches. 

In this paper, an explainable deep learning-based method is 

proposed to detect and classify damage in footbridges. Shared 

scooters equipped with smartphones are used to assess the 

health condition of footbridges when they pass the footbridge 

structures and collect dynamic data. 2D CNN is employed to 

extract key features from the time-frequency representations 

(TFRs) of the scooter’s response as it moves over the 

footbridge. A field test is conducted to validate the 

effectiveness of the proposed method. The structure of the 

paper is as follows: Section 2 introduces the fundamental 

scheme of the proposed method and architecture of the used 2D 

CNNs. Section 3 describes the field test setup and discusses the 

results. Finally, Section 4 presents the conclusions of the study. 

2 PROPOSED METHODOLOGY 

 Data collection 

 

In this study, smartphones were mounted on a scooter to record 

vibration data. The scooter first crossed the bridge multiple 

times when it was in a healthy state to establish a baseline. After 

the bridge had been in use for several months or years and 

potential damage had developed, the scooter was used again to 

collect vibration data. These recordings, from both healthy and 

possibly damaged states, were used to train neural networks for 

predicting the bridge’s health condition. 

 Data processing 

Before feeding scooter data into the 2D CNNs, signals are 

preprocessed in 3 steps: (1) synchronization: two smartphones 

on different scooter parts are synchronized using Unix time to 

align data collection; (2) channel formation: only vertical and 

pitch accelerations, the most relevant signals, are retained. 

Signals from misaligned sensors are combined to extract these 

components; (3) segmentation: only data collected while the 

scooter is on the footbridge is kept, removing unrelated signals 

before and after crossing. This ensures clean, relevant input for 

2D CNN training. 

 2D CNN 

CNNs are widely used for extracting damage-sensitive features 

from signals. In this study, the 2D CNNs based on a simplified 

Visual Geometry Group (VGG)-16 [22] architecture (with two 

instead of four fully connected layers) were developed to 

analyze scooter vibrations for footbridge monitoring. When 

sensors are mounted on a scooter, fewer measurement points 

are available, but key inputs: vertical body acceleration (𝑧̈𝑠) , 

angular acceleration (𝜃̈𝑠) , and front wheel acceleration (𝑧̈𝑡), 

can be collected using two smartphones. The 2D CNN uses 

TFRs of scooter vibrations as input. To standardize input size, 

signals are first truncated to a uniform time length (5 s in this 

study), then transformed into 2D representations using methods 

like short-time Fourier Transform [23]. Each CNN channel 

uses 2D kernels (kernel_size=3) with zero padding to keep the 

input size. The max-pooling (kernel_size = 2, stride = 2) is 

utilized to extract key features. Activation function was 

selected as rectified linear unit (ReLU), and the Cross-Entropy 

(CE) loss was employed [24]. The architecture of the 2D CNNs 

are shown in Table 1. 

Table 1. Architecture of the 2D CNNs. 

Layers Output shape Kernel size Activation 

Input 3 × 402 × 257 - - 

Conv 2D 64 × 402 × 257 3 ReLU  

Conv 2D+MaxPooling 64 × 201 × 128 3 ReLU  

Conv 2D 128 × 201 × 128 3 ReLU  

Conv 2D+MaxPooling 128 × 100 × 64 3 ReLU  

Conv 2D 256 × 100 × 64 3 ReLU  

Conv 2D 256 × 100 × 64 3 ReLU  

Conv 2D+MaxPooling 256 × 50 × 32 3 ReLU  

Conv 2D 512 × 50 × 32 3 ReLU  

Conv 2D 512 × 50 × 32 3 ReLU  

Conv 2D+MaxPooling 512 × 25 × 16 3 ReLU  

Conv 2D 512 × 25 × 16 3 ReLU  

Conv 2D 512 × 25 × 16 3 ReLU  

Conv 2D+MaxPooling 512 × 12 × 8 3 ReLU  

Flattened 49152 - - 

Fully connected 4 - - 
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3 FIELD TESTS AND DISCUSSIONS 

 Field test setups 

Field tests were carried out using scooters equipped with two 

smartphones to validate the proposed footbridge damage 

detection method (see Figures 1 and 2). Smartphone 1 (iPhone 

12) was mounted on the scooter body, and Smartphone 2 

(iPhone 8) on the front wheel. The scooter passed the 

footbridge multiple times under similar road roughness. A short 

acceleration zone was used for the scooter to reach a top speed 

of 20 km/h, which can be powered by an electric motor without 

human pedaling force. MATLAB Mobile was used on 

smartphones to collect data with sampling frequency of 100 Hz. 

The footbridge investigated in the field tests is shown in Figure 

3. To simulate experimental damage cases (EDCs), different 

masses (people standing at the center) were used, which is a 

practical approach and has been validated in prior studies [25–

27]. The added masses were 55 kg, 125 kg, and 185 kg for 

damage cases 1, 2, and 3, respectively. EDC 0 refers to the 

undamaged case with no added mass.  

 

Figure 1. Scooter with two smartphones. 

 

Figure 2. Scooter with a rider. 

 

Figure 3. Experimental damage cases. 

All EDCs and corresponding scooter runs are detailed in 

Table 2. Impulse excitation was applied by having a person 

jump on the bridge to assess the effect of added mass. A 

smartphone placed at the 1/4 span of the footbridge recorded 

the resulting vibrations. For EDC 0, accurate natural 

frequencies cannot be obtained with this method, as at least one 

person is required to apply the excitation. Instead, an alternative 

approach using the bridge’s free vibration after scooter crossing 

is utilized. Frequency values for all EDCs are listed in Table 2, 

where 𝑓𝑏1 − 𝑓𝑏4  represent the first four frequencies of the 

explored footbridge. It can be seen that when more people are 

standing on the footbridge, the first two frequencies of the 

footbridge 𝑓𝑏1  and 𝑓𝑏2  decrease apparently. However, for the 

third and fourth frequencies 𝑓𝑏3 and 𝑓𝑏4, the frequency values 

sometimes remain unchanged due to the measuring accuracy. 

Even though the frequency changes can be observed from the 

first two frequencies, the change ratio can be minor, say 1.22% 

for the fundamental frequency in EDC 1 compared to that of 

EDC 0. It can be challenging to determine the damage 

condition only based on the changes in frequencies. Therefore, 

the following will investigate the use of data-driven methods 

for damage detection of the footbridge using scooter vibrations.  

Table 2. Footbridge frequencies in all EDCs. 

EDCs People mass 𝑓𝑏1 𝑓𝑏2 𝑓𝑏3 𝑓𝑏4 Runs 

EDC 0 0 kg 4.028 Hz 4.468 Hz 10.486 Hz 11.316 Hz 124 

EDC 1 55 kg 3.979 Hz 4.443 Hz 10.486 Hz 11.304 Hz 65 

EDC 2 125 kg 3.955 Hz 4.431 Hz 10.486 Hz 11.304 Hz 63 

EDC 3 185 kg 3.918 Hz 4.370 Hz 10.437 Hz 11.304 Hz 60 

 

 Results and discussions 

For analysis, 63 runs were randomly selected from EDC 0, 

yielding a total of 251 runs in the experimental dataset. Of 

these, 70% were used for training and 30% for testing. The 

CNN configurations matched those used in simulations. 

Hyperparameters were set as follows: batch size = 32, 

optimizer = Adam, learning rate = 1𝑒−6, weight decay = 1𝑒−5, 

loss function = CE loss, activation = ReLU, and number of 

epochs = 400. CE loss and damage prediction accuracy are 

shown in Figure 4. 

 

Figure 4. Loss and accuracy using 2D CNNs. 

Figure 4 showed that the 2D CNN achieved early and sharp 

drops in both training and testing losses. The training loss 

nearly reached zero, and despite a minor rise in testing loss after 

150 epochs, testing accuracy remained consistently above 90%.  

To further interpret these findings, Shapley Additive 

Explanations (SHAP) were used to explain the 2D CNN’s 

predictions. SHAP values reveal each feature’s contribution to 

the model’s output [28,29]. One sample from each EDC was 

analyzed to show how the 2D CNN classified bridge conditions. 

Figure 5 displays the SHAP values and predicted probabilities 
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for each TFR image. Red pixels (positive SHAP values) 

support the model’s prediction, blue pixels (negative SHAP 

values) oppose it, and grey pixels have little impact. 

The SHAP value images reveal that most significant features, 

those with strong positive or negative contributions, are 

concentrated in the 0–30 Hz range. This aligns with the fact that 

the bridge’s natural frequencies, identified through impulse 

excitation (Table 2), also lie below 30 Hz. In EDC 0, for 

instance, image 2 shows that key features appear between 0.5–

3.5 s as distinct non-horizontal lines and points, corresponding 

to peaks in the footbridge’s frequency response. The 2D CNN 

confidently classified this sample as EDC 0 with a 99.98% 

probability. Images 4 and 5 contain blue regions indicating 

features that helped the model rule out EDCs 2 and 3. However, 

image 3 shows some overlap with EDC 1, resulting in a small 

0.01% probability being assigned to that class. In EDC 1 

(image 8), time-varying features near 1.5 s played a critical role, 

especially in distinguishing it from EDC 2. Because of the 

resemblance to EDC 0 around the same time, the model 

assigned a minor 0.08% probability to EDC 0. For EDC 2, 

distinct features were noted at 2.5 s and 4 s, while in EDC 3 

(image 20), key contributions appeared around 4 Hz and 20 Hz. 

Although EDC 3 shared similar patterns with EDC 0 between 

1.5–2.5 s, additional higher-frequency features around 1.5 s 

enabled the 2D CNN to correctly identify it as EDC 3. 

 

Figure 5. Explanation of 2D CNNs (P: Probability). 

These observations confirm that the 2D CNN identifies 

damage-sensitive features based on both time and frequency 

information. Therefore, using TFRs as input to a 2D CNN 

provides good damage detection performance in the indirect 

method with vehicle-mounted sensors. This advantage stems 

from the inherently non-stationary dynamics of VBI systems, 

where both vehicle and bridge frequencies shift during 

interaction [30–32]. Therefore, by preserving time-varying 

characteristics, the 2D CNN in this study can effectively 

identify key features in scooter vibrations. 

4 CONCLUSIONS AND FUTURE WORK 

This paper proposes a method for detecting and classifying 

footbridge damage by analyzing scooter vibrations collected 

via smartphones and processed through explainable deep 

learning. Specifically, TFRs of scooter vibrations were used 

with a 2D CNN to assess damage severity. The method was 

validated through real-world field tests. It was found that the 

2D CNN can accurately predict the damage severity of the 

footbridge by using the TFRs of scooters. The 2D CNN’s 

superior performance is linked to its ability to capture the non-

stationary characteristics of VBI responses. SHAP analysis 

confirmed that damage-sensitive features vary over time in the 

scooter’s vibrations.  

Future work will focus on enhancing the practicality and 

robustness of the proposed method by exploring alternative 

smartphone placements (e.g., on the standing slab or handlebar), 

considering the behaviors of the drivers, incorporating 

influential factors such as temperature, road roughness 

variations, and pedestrian presence, and reducing reliance on 

labeled data through unsupervised learning. Furthermore, the 

authors understand that using standing people on the footbridge 

to simulate synthetic damage scenarios can not fully represent 

the real damage in practical engineering. In our future studies, 

we would like to test the proposed method on other bridges with 

real damage to evaluate the generalization. 
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