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ABSTRACT: Recent research for correlation prediction from spatial-temporal monitoring data of bridge groups has explored 

graph neural networks and state space models, offering new angles and advanced algorithms. However, current research still faces 

significant challenges: (1) constructing suitable graph structures to accurately reflect complex spatial-temporal correlations, (2) 

designing an effective spatial-temporal neural network to capture spatial-temporal dependencies during the service state evolution 

of bridge groups, and (3) fully making use of spatial-temporal monitoring data to boost prediction accuracy and efficiency. To 

tackle these challenges, this study introduces a graph selective state space model for spatial-temporal prediction of environmental 

temperature and traffic flow for bridge groups. Firstly, a spatial-temporal graph structure is set up to account for data characteristics 

in both spatial and temporal aspects and forecast the dynamic evolution of bridge group system. Then, a state space model is built 

to produce a structured state space sequence and introduce a selective mechanism to dynamically adjust model behaviors and 

optimize computational resources. Lastly, through decomposing and reintegrating spatial-temporal features of monitoring data for 

bridge groups under different complexities, validation experiments are performed to show the efficacy, universality, and efficiency 

using multi-type, multi-scale, and multi-granularity spatial-temporal monitoring data of environmental temperature and traffic 

flow. 

KEY WORDS: Spatial-Temporal Correlation; Time Series Prediction; Graph Model; Environmental Temperature; Traffic Flow. 

1 INTRODUCTION 

The rapid progression of urbanization in China has made the 

consistent serviceability of bridge groups a pivotal factor in 

determining the efficiency and safety of urban traffic. As urban 

transport system essentials, bridge groups consist of multiple 

interconnected bridges with interdependent serviceability. 

These bridges inside a city region are exposed to various related 

factors including environmental conditions and traffic flow, 

which can notably affect their structural integrity and 

operational efficiency. Accurately predicting the serviceability 

of bridge groups is crucial for traffic safety and maintenance 

strategy optimization. Traditional methods employed for 

predicting the service state of bridge groups often focus on 

individual bridges, neglecting the spatial-temporal correlations 

amongst different bridges in the group. This can cause 

inaccurate predictions and thus insufficient maintenance 

strategies, potentially causing significant safety risks and 

leading to considerable economic losses. 

Recent deep learning advances have created new ways to 

predict the service state of bridge groups. Graph neural 

networks (GNNs) have shown great ability in dealing with data 

that has complex relational structures, like the interactions 

between different bridges in a group. Additionally, state space 

models (SSMs[1-4]) have drawn increasing interests due to their 

capability to model dynamic systems and capture the temporal 

evolution of structural service states. But even with these 

advances, current research faces big challenges. A main 

challenge is building a suitable graph structure that can truly 

reflect the complex spatial-temporal correlations embedded in 

the monitoring data of bridge groups. Another challenge is 

designing an effective neural network architecture that can 

capture both spatial and temporal dependencies during the 

dynamic evolution of service states for regional bridges. 

Furthermore, it is crucial to leverage the abundant spatial-

temporal data available for bridge groups to enhance prediction 

accuracy and efficiency. 

To tackle these challenges, this study proposes a graph 

selective state space model for spatial-temporal prediction of 

environmental temperature and traffic flow for bridge groups. 

The model uses the core capacities of GNNs and SSMs to 

achieve comprehensive and accurate predictions of spatial-

temporal variables. The main contributions of this study are as 

follows: 

• An adaptive multi-granularity data fusion is designed to 

integrate multi-granularity data of recent, cyclic, and trend 

information from bridge groups. This fusion method not 

only captures various temporal patterns but also assesses 

their impacts on operational states of bridges. This 

approach strengthens the model's ability to handle complex 

spatial-temporal dependencies, thereby improving 

prediction accuracy. 

• A novel spatial-temporal graph convolution module 

(STGCM) is introduced to consider the spatial-temporal 

correlation of environmental temperature and traffic flow. 

• A graph selective state space module (GSSSM) is 

developed to model how spatial-temporal dependencies in 

regional monitoring data evolve for bridge group, which 

dynamically adjusts the model's learning behavior and 

optimizes computational resources. The GSSSM 

prioritizes the most relevant parts of regional monitoring 

data for environmental temperature and traffic flow, 
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thereby enhancing the model capacity to capture spatial-

temporal correlations. 

2 RELATED WORKS 

 Spatial-Temporal Graph Neural Networks 

Most spatial-temporal graph neural networks (STGNNs) are 

categorized into three types: those based on recurrent neural 

networks (RNNs), those based on convolutional neural 

networks (CNNs), and those based on attention mechanisms. 

Seo et al. (2018)[5] presented a graph convolutional recurrent 

network, capturing spatial-temporal dependencies by filtering 

inputs and hidden states in a recurrent unit via graph 

convolution. Later works adopted different strategies, for 

example, Li et al. (2017)[6] developed a diffusion convolutional 

recurrent neural network, integrating diffusion convolution 

with gated recurrent units (GRUs) to grasp spatial and temporal 

dependencies at the same time, and Zhang et al. (2018)[7] 

proposed gated attention networks, which combine GNNs with 

a convolutional subnetwork to assess the importance of each 

attention head. Another parallel work was that Jain et al. 

(2016)[8] used node-level and edge-level RNNs in their work to 

handle different aspects of temporal information. The main 

drawbacks of RNN-based approaches are that they become 

inefficient for long sequences and the gradients are more likely 

to explode when combined with graph convolution networks 

(GCNs). CNN-based approaches combine graph convolutions 

with standard 1D convolutions, for example, Yu et al. (2018)[9] 

proposed a spatial-temporal graph convolution network 

(STGCN), combining GCNs with temporal convolutional 

networks (TCN[10]) to capture spatial and temporal 

dependencies. A recent work about attention-based approaches 

is that Li et al. (2023)[11] proposed GCN-Informer, which 

combines GCNs with Informer to capture long-term 

dependencies in time series data. Although these three types of 

approaches are computationally efficient, they generally need 

to stack multiple layers or use global pooling to expand the 

neural network model's receptive field, which is a limitation 

that the proposed Spatial-Temporal Graph Selective State 

Space Model (STGSSSM) addresses by employing stacked 

dilated casual convolutions to capture temporal dependencies 

more effectively with fewer layers. 

 State Space Models 

State Space Models (SSMs) are powerful tools for modeling 

dynamic systems, offering flexible frameworks to capture 

temporal evolution through state transitions influenced by 

external inputs. The recent fusion of SSMs with GNNs has 

achieved promising results in managing complex spatial-

temporal graph-structured data. 

For instance, Zhao et al. (2024)[12] proposed the graph state 

space network, the first model to incorporate SSMs into the 

spectral filter design of GNNs, thus overcoming the limitations 

of conventional methods in dealing with complex graph spectra. 

Behrouz et al. (2024)[13] introduced graph mamba (selective 

state space model) networks, an SSM-based framework for 

graph learning, which uses neighborhood tokenization, token 

ordering, bidirectional SSM encoder, and local encoding to 

efficiently handle long-range dependencies and heterophilic 

graphs. Wang et al. (2024)[14] presented graph-mamba, a novel 

graph model that uses a mamba module for efficient context 

selection, achieving linear complexity and superior 

performance in long-range graph tasks. Yuan et al. (2024)[15] 

proposed dynamic graph-mamba, a dynamic graph structure 

learning framework that combines mamba and a kernelized 

dynamic message-passing operator to efficiently learn dynamic 

graph structures and capture long-range dependencies.  

Although these approaches can dynamically adjust the 

learning behavior of the model and has high computational 

efficiency, they are relatively singular in feature extraction and 

lack in-depth extraction of spatial-temporal features, which is a 

limitation that the proposed STGSSSM addresses by utilizing 

STGCM to extract diverse spatial-temporal features. 

 Spatial-Temporal Traffic Forecasting 

Traffic forecasting is crucial for optimizing urban 

transportation systems. Recent progress in spatial-temporal 

graph neural networks have greatly boosted the prediction 

accuracy by capturing complex spatial-temporal dependencies. 

Spatial-temporal traffic forecasting has been also investigated 

by RNN-based, CNN-based, and attention-based approaches. 

For example, Zhao et al. (2019)[16] combined GCN with GRU 

to model temporal dynamics, effectively capturing long-term 

dependencies and achieving validation on the Los-loop dataset. 

Wu et al. (2019)[17] developed Graph WaveNet, using dilated 

causal convolutions to grasp long-term dependencies. Wu et al. 

(2020)[18] proposed the multivariate time series graph neural 

network (MTGNN), which integrated GCN and TCN for 

adaptive graph learning, delivering high performance on the 

large-scale METR-LA and PEMS-BAY datasets. In the 

attention-based approach, Zheng et al. (2020)[19] proposed 

graph multi-attention network, which utilized multi-attention 

mechanisms to weigh the significance of different nodes and 

time steps, achieving high accuracy on Xiamen and PeMS 

datasets. Guo et al. (2021)[20] developed an attention-based 

spatial-temporal graph neural network, combining dynamic 

GCN with transformers to adapt to dynamic traffic patterns, 

and showing robustness on the PEMS dataset. 

 Spatial-Temporal Temperature Forecasting 

Environmental temperature greatly affects the service state 

of bridge groups, and spatial-temporal graph models can 

conduct highly efficient and accurate temperature predictions, 

which are summarized from RNN-based, CNN-based, and 

attention-based aspects. 

Zhao et al. (2024)[21] presented an adaptive spatial-temporal 

graph recurrent network model. It used dynamic graph 

structures with a spatial-temporal recurrent network for sea 

surface temperature forecasting. Yang et al. (2023)[22] 

introduced a hierarchical graph recurrent network which 

utilized adaptive node embedding and hierarchical graph 

convolution to predict global sea surface temperatures 

accurately. Yu et al. (2021)[23] proposed a spatial-temporal 

graph neural network model that integrated graph attention 

networks and GRU for air temperature forecasting. Guo et al. 

(2025)[24] introduced spatial-temporal fusion graph neural 

networks with mixed adjacency, a model that leveraged spatial-

temporal fusion GNNs with mixed adjacency and integrated 

GNNs with self-attention mechanisms to capture both long-

term temporal periodicity and short-term spatial-temporal 

dependencies for temperature forecasting. Xu et al. (2024)[25] 

proposed the dynamic graph former model, a physics-guided 
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dynamic graph neural network for weather forecasting which 

combined GNNs and the Reformer architecture for temperature 

forecasting. 

Despite the progress in traffic and temperature forecasting 

based on novel deep learning models, some challenges remain 

in multi-granularity data fusion, in-depth extraction of spatial-

temporal features, dynamic adjustment of learning behavior 

and computational efficiency. This study addresses these 

limitations by integrating the multi-granularity data fusion, 

STGCM and GSSSM to enhance the prediction accuracy and 

efficiency.  

3 METHODOLOGY 

In this section, the mathematical definition is first formulated 

for the investigated issue of environmental temperature and 

traffic flow prediction of bridge groups in this study. Then, the 

overall schematic of the proposed STGSSSM is presented, 

along with detailed descriptions of its two core modules, i.e., 

spatial-temporal graph convolution module (STGCM) and 

graph selective state space module (GSSSM), which are 

combined together to capture the spatial-temporal 

dependencies. 

 Problem Definition 

A graph of bridge groups can be represented as 𝐆𝑡 =
(𝐕, 𝐄𝑡 , 𝐀) , where V denotes the set of nodes, representing 

bridges in a bridge group; 𝐄𝑡  denotes the set of edges 

(connections), describing the relationships between different 

bridges at time step t; and A denotes the adjacency matrix with 

elements 𝐴𝑖𝑗  representing the connection weight between 

nodes𝑣𝑖and𝑣𝑗. The input feature matrix of the bridge group at 

time step t is denoted as X𝑡 ∈ ℝ𝑁×𝐷, where N is the number of 

bridges in a bridge group, and D represents the number of 

feature dimensions, i.e., D = 1 represents the investigated 

variable of environmental temperature or traffic flow.  

The graph-based spatial-temporal prediction task is to use 

the graph of bridge groups 𝐆𝑡 and feature matrix X𝑡  to learn a 

mapping function f (the proposed STGSSSM) which can 

accurately predict the prospective environmental temperature 

and traffic flow of bridge groups. 

Assuming a future time step T, the prediction process can be 

expressed as: 

 [X𝑡+1, ⋯ , X𝑡+𝑇] = 𝑓[(X𝑡−𝑇+1, ⋯ , X𝑡) ;(G𝑡−𝑇+1, ⋯ , G𝑡)] (1) 

where [X𝑡+1, ⋯ , X𝑡+𝑇] ∈ ℝ𝑁×𝐷×𝑇  is the predicted 

environmental temperature or traffic flow in the future T time 

steps, (X𝑡−𝑇+1, ⋯ , X𝑡) ∈ ℝ𝑁×𝐷×𝑇 is the observed 

environmental temperature or traffic flow in the current T time 

steps. 

 Overall Schematic of STGSSSM 

The proposed STGSSSM comprises two primary modules of 

STGCM and GSSSM for environmental temperature and traffic 

flow prediction of bridge groups, as depicted in Figure 1. 

Three temporal granularities of input data, recent data X𝑟 , 

cyclic data X𝑐  and trend data X𝑞  are individually fed into 

STGCM, which consists of N ST-Blocks and an output layer 

that consists of the ReLU activation function and a linear layer, 

each ST-Block employs a series of layers including 1×1 

convolution, gated temporal convolution (Gated TC), self-

attention diffusion graph convolution (SADGC), residual 

connection (Add), and batch normalization (BN); and 

adaptively fused after being passed through N layers of spatial-

temporal graph convolution blocks (ST-Block) with skip 

connections and the output layer; In each ST-Block, the result 

of Gated TC is processed via a 1×1 convolution, and the 

resulting output is skip-connected to the result of the last ST-

Block. 

Furthermore, X𝑟  is fed into GSSSM, which consists of M 

GSSS-Blocks. Each GSSS-Block incorporates a series of layers 

including layer normalization (Layer Norm), m parallel 

dynamic filter graph convolution (Dynamic Filter GC), 

concatenation and linear layer (Concat & Linear), graph state 

space selection mechanism (GSSS-Mechanism) which consists 

of two main algorithms of Parameter Calculation and Graph 

Selective Scan, linear layer and residual connection (Linear & 

Add). N, M and m are hyperparameters. 

The outputs of three STGCMs are first fused using an 

adaptive fusion module and then adaptively fused with the 

output of GSSSM. The final fusion result of STGCM and 

GSSSM is then passed through a fully connected layer to obtain 

the final output X𝑝𝑟𝑒𝑑 . 

The regularized mean squared error (MSE) is used for 

training the proposed STGSSSM and defined as 

 𝐿 =
1

𝐵
(∑ (

1

𝑇𝑁𝐷
∑ ∑ ∑ (𝑋̂𝑖,𝑗,𝑘

𝑏 − 𝑋𝑖,𝑗,𝑘
𝑏 )𝐷

𝑘=1
𝑁
𝑗=1

𝑡+𝑇
𝑖=𝑡+1

2
)𝐵

𝑏=1 + 𝜆𝑅(Θ)) (2) 

 

where 𝑋𝑖,𝑗,𝑘
𝑏 ,𝑋̂𝑖,𝑗,𝑘

𝑏  represents the model-predicted and ground-

truth data for the b-th segment; i, j, k denote the indexes of time 

step, bridge node, and feature dimension; B and D denote the 

number of batch size and considered feature dimension (i.e., D 

= 1 represents environmental temperature or traffic flow); λ is 

the regularization coefficient, and R(Θ) is the regularization 

term. 

 

Figure 1. Overall schematic of the proposed STGSSSM. 

4 EXPERIMENT STUDIES 

 Datasets 

Two real-world datasets are utilized here to assess the 

proposed approach for spatial-temporal prediction of 

environmental temperature and traffic flow for bridge groups. 

Training samples for time series are typically obtained by 

sliding a window of length P + T across the original time series. 

Here, the first P time steps are used as historical data, and the 

subsequent T time steps are used as future data; and the datasets 

are detailed as follows: 

• KnowAir[26]: This temperature dataset contains spatial-

temporal temperature data from weather stations across 

184 main cities in China from September 1, 2016, to 
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January 31, 2017. It contains 184 nodes (weather stations) 

and 11688 time steps of temperature data with a 1-hour 

time interval; and the adjacency matrix of the graph is 

constructed based on the geographical locations of the 

weather stations. In the released KnowAir dataset, P = 

7×24, and T = 12. 

• PEMS04[9]: This traffic dataset consists of spatial-

temporal traffic flow data on California road network from 

January 1, 2018, to February 28, 2018. It contains 307 

nodes (traffic monitoring stations) and 16992 time steps of 

data with a 5-minute time interval; and the adjacency 

matrix of the graph is constructed based on the 

geographical locations of the traffic monitoring stations. In 

the released PEMS04 dataset, P = 7×24×12, and T = 24 or 

36. 

 Experimental Setup 

All the datasets are split with a ratio of 7:1:2 for 

training/validation/testing sets, respectively. Before starting the 

model training process, all the data samples are normalized into 

range [0,1] with min-max normalization. The batch size is set 

as 48, and AdamW is employed as the optimizer. Model 

training epochs is set as 200. The number of ST-Blocks is set 

as N = 8 with a sequence of dilation ratios R = 1 or 2, and the 

number of GSSS-Blocks is set as M = 4. The diffusion step K 

= 2 in Eq. (5), and the number of parallel Dynamic Filter GC, 

m = 3 in Eq. (7). Hyperparameters in Eq. (3) of MSE loss 

function are set as the regularization coefficient λ of 1e-2 and 

the learning rate of 1e−4. 

All experiments are conducted under the software 

environment of PyTorch 1.12.1 and Python 3.8.10 with a 

NVIDIA GeForce RTX 3090 24GB GPU to accelerate neural 

computing. The training process requires nearly 4h for 

obtaining a well-trained model with acceptable accuracy. 

 Comparative Studies with Baseline Models 

Two recent Graph-based spatial-temporal predictive model 

of STGCN[9] and MTGNN[18] are utilized as baselines for 

comparative studies. STGCN integrates graph convolutional 

layers to model spatial dependencies and gated temporal 

convolutional layers to capture temporal dynamics in traffic 

data. MTGNN considers the features in the time-series to be 

multivariate and captures spatial dependencies through a 

learned graph structure, which uses a mix-hop propagation 

layer to handle spatial dependencies and a dilated inception 

layer for temporal dependencies.  

In comparative studies with STGCN and MTGNN models, 

to ensure fairness, several trials are conducted to select an 

acceptable model with good accuracy though not necessarily 

optimal. For STGCN, the graph and temporal convolution 

kernel sizes are set to 3. Chebyshev polynomial approximation 

and first-order approximation are used in STGCN. For 

MTGNN, the propagation depth and dilation factor are set to 2 

and 1, respectively. During training, the Adam optimizer is 

employed with a 1e-3 learning rate, a regularization coefficient 

of 1e-4, and a dropout rate of 0.3. These adjustments made sure 

that the baseline models performed well on our datasets, which 

enable a fair comparison of model performances and a better 

evaluation of the proposed STGSSSM's strengths. 

Evaluation metrics of mean absolute error (MAE), root mean 

squared Error (RMSE), and mean absolute percentage error 

(MAPE) are utilized to measure and assess the accuracy of 

various methods. 

The MAE is defined as 

 MAE𝑡𝑒𝑠𝑡 =
1

𝑇𝑁𝐷
∑ ∑ ∑ |𝑋̂𝑖,𝑗,𝑘 − 𝑋𝑖,𝑗,𝑘|

𝐷
𝑘=1

𝑁
𝑗=1

𝑡+𝑇
𝑖=𝑡+1  (3) 

The RMSE is defined as 

 RMSE𝑡𝑒𝑠𝑡 = √
1

𝑇𝑁𝐷
∑ ∑ ∑ (𝑋̂𝑖,𝑗,𝑘 − 𝑋𝑖,𝑗,𝑘)

2𝐷
𝑘=1

𝑁
𝑗=1

𝑡+𝑇
𝑖=𝑡+1  (4) 

The MAPE is defined as 

 MAPE𝑡𝑒𝑠𝑡 =
100%

𝑇𝑁𝐷
∑ ∑ ∑ |

𝑋̂𝑖,𝑗,𝑘−𝑋𝑖,𝑗,𝑘

𝑋̂𝑖,𝑗,𝑘
|𝐷

𝑘=1
𝑁
𝑗=1

𝑡+𝑇
𝑖=𝑡+1  (5) 

Table 1 shows the performance comparison of the proposed 

STGSSSM with baseline models of STGCN and MTGNN. In 

the experimental results, 12 hours with a time interval of 1 hour 

corresponds to 12 time steps for temperature prediction; 6 hours 

with a time interval of 5 minutes corresponds to 72 time steps 

for traffic flow prediction; 9 hours corresponds to 108 time 

steps for traffic flow prediction. 

Table 1. Performance comparison of the proposed STGSSSM 

with baseline models of STGCN and MTGNN. 

KnowAir 
12h 

MAE RMSE MAPE 

STGCN 0.35 0.51 3.77% 

MTGNN 0.33 0.48 3.34% 

STGSSSM 0.28 0.44 3.02% 

PEMS04 
6h 

MAE RMSE MAPE 

STGCN 14.21 20.85 12.95% 

MTGNN 13.28 19.67 12.34% 

STGSSSM 13.39 19.47 12.12% 

PEMS04 
9h 

MAE RMSE MAPE 

STGCN 17.60 26.39 14.96% 

MTGNN 16.76 25.13 14.39% 

STGSSSM 16.37 24.01 14.23% 

 Ablation Study 

To assess the effectiveness of each model component within 

STGSSSM, three kinds of model variants are first designed, 

and their forecasting performance is evaluated on the KnowAir 

and PEMS04 datasets: (1) the full model of STGSSSM, (2) 

GSSSM without STGCM, (3) STGCM without GSSSM. 

To further evaluate the effects of three temporal granularities 

of recent, cyclic, and trend data, another three kinds of model 

variants are designed: (4) STGSSSM without cyclic and trend 

data, (5) STGSSSM without cyclic data, (6) STGSSSM without 

trend data. 

Table 2. Model performances of ablation study for different 

modules of STGSSSM. 

KnowAir 
12h 

MAE RMSE MAPE 

STGSSSM 0.28 0.44 3.02% 

GSSSM w/o STGCM 0.39 0.54 4.15% 

STGCM w/o GSSSM  0.31 0.47 3.27% 

STGSSSM w/o cyclic 

and trend 
0.40 0.55 4.27% 

STGSSSM w/o cyclic 0.30 0.45 3.16% 

STGSSSM w/o trend 0.29 0.44 3.13% 

PEMS04 
6h 

MAE RMSE MAPE 
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STGSSSM 13.39 19.47 12.12% 

GSSSM w/o STGCM 18.86 28.94 15.72% 

STGCM w/o GSSSM 14.48 21.46 12.29% 

STGSSSM w/o cyclic 
and trend 

13.94 20.25 12.22% 

STGSSSM w/o cyclic 13.51 19.57 12.01% 

STGSSSM w/o trend 13.45 19.63 11.93% 

PEMS04 
9h 

MAE RMSE MAPE 

STGSSSM 16.37 24.01 14.23% 

GSSSM w/o STGCM 18.99 29.21 15.66% 

STGCM w/o GSSSM 18.38 27.86 15.11% 

STGSSSM w/o cyclic 

and trend 
16.83 24.92 14.81% 

STGSSSM w/o cyclic 16.39 24.36 13.95% 

STGSSSM w/o trend 16.38 24.27 13.93% 

The results in Table 2 show the contributions of each module 

to the overall performance. 

(1) Influence of STGCM: The STGCM, which processes 

recent, cyclic, and trend data through a series of spatial-

temporal graph convolution operations, is essential for 

capturing complex spatial-temporal dependencies. The results 

show that removing the STGCM leads to a substantial decline 

in performance across both datasets. For instance, on the 

KnowAir dataset, the MAE, RMSE, and MAPE increase from 

0.28, 0.44, and 3.02% (full model) to 0.39, 0.54, and 4.15% 

(GSSSM w/o STGCM), respectively. Similarly, on the 

PEMS04 dataset, the MAE, RMSE, and MAPE rise from 

13.39, 19.47, and 12.12% (6h prediction) to 18.86, 28.94, and 

15.72% (GSSSM w/o STGCM). This shows that the STGCM 

greatly boosts the model's ability to handle multi-granularity 

data and extract meaningful spatial-temporal features. 

(2) Influence of GSSSM: The GSSSM, which models the 

evolution of spatial-temporal dependencies and optimizes 

computational resources, also makes a significant contribution 

to the model's performance. Removing the GSSSM results in a 

significant decline in performance. On the KnowAir dataset, 

the MAE, RMSE, and MAPE increase to 0.31, 0.47, and 

3.27%, respectively. On the PeMS04 dataset, the MAE, RMSE, 

and MAPE rise to 14.48, 21.46, and 12.29% (6h prediction). 

This demonstrates the importance of the GSSSM in 

dynamically adjusting the model's behavior and focusing on the 

most relevant parts of the data. 

(3) Influence of Multi-Granularity Data Fusion: The fusion 

of recent, cyclic, and trend data is another critical aspect of the 

model. The results illustrate that removing both cyclic and 

trend data (STGSSSM w/o cyclic and trend) results in a 

significant decline in performance. On the KnowAir dataset, 

the MAE, RMSE, and MAPE increase to 0.40, 0.55, and 

4.27%, respectively. On the PEMS04 dataset, the MAE, 

RMSE, and MAPE rise to 13.94, 20.25, and 12.22% (6h 

prediction). This shows that the fusion of multi-granularity data 

is crucial for seizing diverse temporal patterns and enhancing 

prediction accuracy. 

(4) Influence of Individual Data Components: The results 

also illustrate the contributions of individual data components 

(cyclic and trend data). Removing only the cyclic data 

(STGSSSM w/o cyclic) or only the trend data (STGSSSM w/o 

trend) leads to moderate performance declines. On the 

Temperature dataset, removing cyclic data results in MAE, 

RMSE, and MAPE of 0.30, 0.45, and 3.16%, while removing 

trend data results in 0.29, 0.44, and 3.13%. On the PEMS04 

dataset, removing cyclic data leads to MAE, RMSE, and 

MAPE of 13.51, 19.57, and 12.01% (6h prediction), while 

removing trend data results in 13.45, 19.63, and 11.93%. These 

results indicate that both cyclic and trend data boost the model's 

performance, with cyclic data having a slightly more significant 

impact. 

The proposed STGSSSM model gains from the integration 

of the multi-granularity data fusion, STGCM and GSSSM, 

which jointly deliver accurate and efficient spatial-temporal 

predictions for bridge groups. 

5 CONCLUSION 

This study introduced a Graph Selective State Space Model 

(STGSSSM) for predicting environmental temperature and 

traffic flow in bridge groups, integrating Graph Neural 

Networks (GNNs) and State Space Models (SSMs). The main 

contributions of the model include adaptive fusion of multi-

granularity data, a Spatial-Temporal Graph Con-volution 

Module (STGCM), and a Graph Selective State Space Module 

(GSSSM). Experiments on real-world datasets (KnowAir and 

PEMS04) show STGSSSM outperforms state-of-the-art 

models like STGCN and MTGNN in prediction accuracy and 

efficiency. Ablation experiments validate that each component 

is effective, necessary, and enhances accuracy in capturing 

complex spatial-temporal dependencies. The proposed 

STGSSSM achieves overall prediction accuracy improvements 

of environmental temperature at the ranges of [13.70%, 20.00%] 

and [8.30%, 15.15%] and traffic flow at the ranges of [4.90%, 

9.00%] and [1.02%, 4.46%] compared with STGCN and 

MTGNN, respectively. Specifically, the reported STGCM, 

GSSSM and multi-granularity data fusion decreases the relative 

prediction error at the ranges of [7.93%, 28.99%], [1.32%, 

13.80%], and [0.49%, 29.50%], respectively.  

Future work may extend the model to more complex data and 

other infrastructure systems. 
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