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ABSTRACT: Vision fundamental models demonstrate considerable competitiveness in structural surface crack segmentation due 

to their strong generalization ability. Vision fundamental models improve the fitting capacity for various objects by increasing 

image encoder complexity. However, for crack segmentation, the excessive number of these parameters leads to slow running 

speeds and large space occupation. This paper presents a lightweight Segment Anything Model (SAM)-based crack segmentation 

method using model distillation technology, aiming for consistent crack image embedding. Firstly, end-to-end automatic crack 

segmentation is achieved by modifying the SAM model through the addition of a crack segmentation head. Secondly, model 

distillation is employed to transfer features from the heavy-parametric encoder in SAM with minimal loss. Comparative analysis 

of cutting-edge crack segmentation techniques across eight frequently utilized datasets demonstrates their effectiveness and 

precision. The findings reveal the potential of mobile deployment of civil structure damage identification based on vision 

fundamental models. 
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1 INTRODUCTION 

Crack is a kind of critical apparent damages in civil structures, 

and crack identification serves as a fundamental basis for 

evaluating structural condition and determining maintenance 

strategies [1,2]. Currently, structural surface crack 

identification heavily relies on visual inspection by engineers, 

which suffers from limitations such as low efficiency and 

subjectivity. To address this issue, researchers have started to 

replace human eye inspection with visible light cameras, 

enabling the automatic identification of cracks through the 

acquisition of structural visual images and the design of 

corresponding algorithms. Common methods of image 

acquisition include portable digital cameras, fixed monitoring 

systems, smartphones, unmanned aerial vehicles, climbing or 

underwater robots, etc., which significantly reduce the cost and 

risk associated with obtaining apparent structural information 

[3,4]. 

After obtaining structural visual images, researchers employ 

digital image processing algorithms for structural surface crack 

identification. Considering the impressive advancements of 

deep learning (DL) in various fields, there is a gradual shift 

within the field of crack identification towards automatic 

feature extraction utilizing deep learning models [5,6]. 

Researchers have employed DL-based object classification 

algorithms to classify multiple patches cut from crack images 

to judge the presence or absence of cracks, achieving patch-

wise crack identification [7-9]. Another important direction in 

this type of research is using DL-based object detection 

algorithms to find crack locations in crack images 

automatically, enabling box-wise crack identification [10-13]. 

However, the accuracy of patch-wise and box-wise crack 

identification may not meet the requirements for assessing the 

apparent condition of structures. As a result, DL-based pixel-

wise crack identification (i.e., crack segmentation), has 

emerged to address this limitation. 

DL-based crack segmentation methods can be categorized 

into two main groups: convolutional neural network (CNN)-

based and transformer-based. CNN-based crack segmentation 

mainly employs "encoder-decoder" architecture, including 

fully convolutional network (FCN) and its variants, as well as 

generative adversarial network (GAN). For FCN, Li et al. [14] 

proposed using FCN for pixel-to-pixel segmentation of various 

damages in civil structures. Chen and Jahanshahi [15] 

developed a rotation-invariant FCN to explicitly consider the 

rotational invariance of crack images. Hoskere et al. [16,17] 

introduced a FCN-based multi-class semantic segmentation 

approach using multi-task learning, which achieved better 

results than training multiple tasks independently for multi-

type structural materials and defects. To address the high noise 

and background interference in pavement crack images, Huyan 

et al. [18] established the CrackU-net framework with a 

modification on U-net, which also addressed the false-positive 

crack detection issue. Jiang et al. [19] applied attention 

mechanisms to U-net for detecting corrosion defects in steel 

box girders. Liu et al. [20] introduced a framework for concrete 

crack segmentation and quantitative calculation that considers 

the weight of crack boundaries. Xiang et al. [21] proposed a 

crack image augmentation method using active learning to 

enhance the accuracy of crack segmentation methods. Nguyen 

et al. [22] discussed the influence of different training loss 

functions using U-net on different crack datasets. Xu et al. [23] 

proposed a limited-supervised deep learning framework for 

damage segmentation (including cracks) using meta learning 

based on U-net. 

For GAN, Zhang et al. [24] aimed to address the severe 

imbalance between cracks and backgrounds with a crack-patch-

only GAN framework. Kim et al. [25] tackled the issue of data 

Lightweight vision fundamental model-based structural surface crack segmentation 

using model distillation 

Yapeng Guo1, Shunlong Li2 

1School of Transportation Science and Engineering, Harbin Institute of Technology, 150090 Harbin, China  

email: guoyapeng@hit.edu.cn, lishunlong@hit.edu.cn 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-125 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 804 

scarcity in detecting cracks in steel structures using laser 

thermography for data augmentation by employing GAN. 

Similarly, to overcome the issue of limited training data, Ma et 

al. [26], Jin et al. [27], Li and Zhao [28], as well as Zhang et al. 

[29], utilized various variants of GAN to generate various crack 

images. 

Transformer models have demonstrated significant progress 

in vision-based crack segmentation. Shamsabadi et al. [30] 

introduced Vision Transformer (ViT) into this area and attained 

higher detection accuracy in asphalt and concrete surface crack 

segmentation than CNNs. Wang and Su [31] developed a multi-

level structure Transformer as an encoder to output multi-level 

features and fuse different levels of features. Ding et al. [32] 

analyzed the characteristics of crack recognition and proposed 

a boundary refinement Transformer for automatic 

segmentation of crack images obtained by drones. Guo et al. 

[33] used Swin Transformer to encode road crack images and 

employed UperNet to generate segmentation results. Tong et 

al. [34] combined Dempster-Shafer theory and Transformer 

network to construct a crack segmentation framework 

considering uncertainty and proposed a corresponding training 

strategy. Zhang et al. [35] proposed a segmentation 

Transformer framework called ShuttleNet v2, which can detect 

not only cracks but also multiple other diseases simultaneously. 

Furthermore, the amalgamation of CNNs' local modeling 

capability and Transformers' global modeling capability to 

build more powerful crack segmentation models is also an 

important research direction. Zhou et al. [36] fused Swin 

Transformer blocks and inverse residual blocks based on 

Deeplab v3 plus framework and combined channel attention 

mechanism to improve crack segmentation accuracy. 

With the emergence of vision fundamental models, the 

inherent paradigm of object segmentation has been disrupted. 

These vision fundamental models, characterized by a massive 

number of network parameters and extensive training data, 

exhibit unprecedented robust generalization capabilities, 

allowing for precise segmentation of most common objects in 

zero-shot and few-shot forms [37]. However, when applied to 

crack segmentation tasks, vision fundamental models face two 

primary issues: (1) the need for specific prompts during 

application or a lack of semantic information for automatic 

segmentation; (2) the excessive number of network parameters 

in vision fundamental models leads to slow segmentation 

speeds and deployment difficulties in hardware-constrained 

environments. 

This paper’s primary goal is to significantly lighten the vision 

fundamental model while preserving its strong generalization 

ability, to achieve precise and efficient segmentation of cracks. 

To achieve this objective, this paper proposes the following two 

innovative approaches: (1) modifying SAM structure by adding 

a crack segmentation head to incorporate semantic information 

for automatic segmentation, and (2) utilizing model distillation 

techniques to substantially reduce the parameters of SAM and 

significantly improve its running speed, with only acceptable 

loss in segmentation accuracy. 

This paper's primary contributions are twofold: (1) it 

represents an early attempt to apply vision fundamental models 

to automatic crack segmentation, providing a feasible approach 

for the application of such models in civil engineering, thereby 

offering valuable reference results for future research; (2) it 

verifies the feasibility of lightweighting crack segmentation 

networks based on vision fundamental models, enabling 

effective transfer of the powerful generalization ability of these 

models under hardware-constrained conditions. 

The remaining content of this paper are structured as follows. 

Section 2 provides an overview of the advancements in DL-

based crack segmentation. Section 3 delves into the intricate 

framework of the proposed lightweight vision fundamental 

model-based crack segmentation approach. Section 4 outlines 

the implementation specifics. Section 5 offers the testing results 

under both full supervision and limited supervision, as well as 

the results evaluated on hardware-constrained platforms. 

Lastly, Section 6 concludes the paper. 

2 METHODOLOGY 

The proposed lightweight vision fundamental model-based 

crack segmentation method comprises a lightweight crack 

encoder and a crack segmentation head (shown in Figure 1). 

The former extracts the robust features of the crack image to 

generate crack image embeddings, while the latter uses high-

quality embedding to complete pixel-level crack segmentation. 

The lightweight crack encoder's initialization weight originates 

from the SAM original heavy-parametric vision fundamental 

model through the utilization of model distillation technology 

(using common object segmentation dataset), the distillation 

objective is set to minimize the embedding difference of the 

image after the encoder. Finally, the crack segmentation model 

proposed here undergoes fine-tuning using the crack dataset. 

 

 

Figure 1. Overall architecture of the lightweight vision 

fundamental model-based crack segmentation method. 

 Lightweight crack encoder using model distillation 

The heavy parameter encoder in SAM adopts the ViT model. 

To ensure the uniformity of the architecture, this study uses the 

lightweight TinyViT [38] as the crack encoder. TinyViT adopts 

a hierarchical vision transformer, serving as the foundational 

architecture, which can better integrate multiscale features for 

downstream tasks. TinyViT comprises four stages, leading to a 

gradual reduction in the resolution of the feature map. Each 
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stage includes a feature extraction (FE) layer and a down-

sampling (DS) layer. The FE layer of stage 1 adopts MB_Conv, 

and stages 2-4 adopt transformer. The DS layer of all stages 

adopts the MB_Conv. TinyViT has been efficiently designed 

from three aspects: the sliding window mechanism 

corresponding to the FE layer (limiting the transformer 

attention mechanism to the window to reduce the 

computational complexity), the hierarchical design mechanism 

corresponding to the DS layer (taking advantage of the CNN to 

save the amount of calculation while extending the window 

attention to the global) and the model size control mechanism 

(customizing models of different sizes by adjusting the model 

control parameters). 

To make full use of the effective information in the vision 

fundamental model SAM, this paper proposes to transfer the 

features in the heavy-parametric encoder of SAM to the 

proposed lightweight crack encoder by means of model 

distillation. That is, SAM is used as the teacher model, and the 

student model is employed as the proposed model. By setting 

the optimization goal, the knowledge in the teacher model is 

transmitted to the student model as lossless as possible. 

It is assumed that the output image of the ith image Ii after 

entering the SAM’s heavy-parametric encoder is embedded as 

, and the output image of the proposed lightweight encoder 

is embedded as . The crack segmentation head of the 

proposed framework directly uses image embedding as input, 

so it is not necessary to minimize the segmentation error after 

adding the crack segmentation head to SAM, but only to 

minimize the difference between the two embeddings [39] 

(illustrated in Equation (1)), where N represents the total count 

of training crack images required for model distillation, MSE 

is the least square error function, and  is the trainable weight 

parameters of the proposed lightweight encoder. 

  (1) 

 

Figure 2. Processing procedure of model distillation. 

Specifically, as shown in Figure 2, there are two stages 

during model distillation, the encoder parameters in the original 

SAM are frozen (untrainable), while the proposed lightweight 

encoder parameters are trainable. In stage 1 (embedding 

preparation), the image to be trained is input into the original 

SAM in advance to obtain the corresponding image embedding 

 and then stored locally. In stage 2 (lightweight encoder 

training), the image is fed into the proposed lightweight 

encoder to obtain the image embedding ,  can be 

queried from the local storage. The optimization goal of 

training can be directly calculated. Taking such a training 

strategy will greatly reduce the time and cost of training while 

ensuring the distillation effect. 

 Crack segmentation head 

To assist object segmentation, SAM employs prompts through 

the integration of incorporating prompt encoder and mask 

decoder into image embedding process. This encompasses the 

handling of image and prompt embedding, and output tokens 

subsequent to the image encoder. However, since the crack 

segmentation task in this study is automatic and does not 

require prompt input, the latter part of SAM needs to be 

modified. To address this, this paper introduces a crack 

segmentation head to fulfill the necessary functions. 

The crack segmentation head is composed of several key 

components, including two transposed convolution layers, a 

multiscale convolution layer, a convolution layer with the size 

of 1×1, and two interpolation layers (shown in Figure 1). The 

transposed convolution layer is designed to increase the 

resolution of the encoded crack image embedding by a factor 

of 2, thereby restoring spatial information. The multiscale 

convolution layer is utilized to leverage feature fusion at 

different scales, enabling the model to learn information in 

various ranges around crucial pixels through backpropagation 

gradient. Figure 3 illustrates the detailed architecture of the 

multiscale convolution. According to the channel dimension, 

features from n channels of the transpose convolutional layer 

are partitioned into k groups. To retain features at the current 

scale, a 1×1 convolution is applied to the first group. For the 

remaining k-1 groups, 3×3 convolutions with varying dilation 

rates are utilized to capture features at different scales, where 

the dilation rate is determined by the number of groups minus 

1 [40]. The 1×1 convolutional layer is responsible for 

integrating information from different channels and adjusting 

the output dimension accordingly. Finally, the interpolation 

layer further upsamples the output to fine-tune the output 

dimension. 

 

Figure 3. Architecture of the multiscale convolution. 

A combined loss ( ) comprising binary entropy ( ) 

and Dice ( ) is set as the objective of fine-tuning the 

proposed method, as illustrated in Equations (2)-(4). Here, N 
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denote the annotated label and predicted value for the ith pixel. 

Additionally, Y and  represent the crack mask annotations 

and predictions, respectively. 

                 (2) 

            (3)  

              (4) 

3 IMPLEMENTATION DETAILS 

 Dataset 

Distillation on common object dataset SAM’s powerful 

segmentation generalization ability comes from the large-scale 

segmentation dataset SA-1B. The dataset is generated by 

SAM’s data engine and is divided into three stages: preliminary 

manual, semi-automated, and fully automated. During the 

initial stage, SAM aids the annotator to annotate the mask, akin 

to the traditional interactive object segmentation scenario. 

During the second stage, SAM is capable of autonomously 

producing the mask for certain objects by proposing their 

potential locations, and the annotator annotates the remaining 

objects, which helps to increase the diversity of the mask. In 

the last stage, the regular grid prompt SAM of the foreground 

point is employed to produce approximately one hundred high-

quality masks for each image. Ultimately, SA-1B generates 

over 1 billion object masks across 11 million images. Since the 

proposed crack segmentation framework uses a lightweight 

encoder, the parameters are much smaller than the original 

SAM encoder. Therefore, 0.1% of the SA-1B dataset (11,000) 

is randomly sampled according to the literature results as the 

training dataset of the model distillation [39]. 

Fine-tuning on crack dataset Lately, crack recognition field 

have achieved significant progressions, and several crack 

segmentation datasets have been released to the research 

community. While many studies have trained and evaluated 

models on specific datasets, there is a lack of comprehensive 

testing across multiple datasets, which hinders our 

understanding of the generalization capabilities of crack 

segmentation models [41]. To address this limitation, this paper 

selected eight influential datasets for evaluating the proposed 

method. These datasets include CFD, Crack500, Cracktree200, 

DeepCrack, EugenMiller, GAPs, Rissbilder, and Volker 

(referred to as Datasets 1-8) [41]. These datasets exhibit 

significant variations in terms of structural materials, structural 

parts, image quality, and quantity, thereby enabling an effective 

evaluation of the generalization abilities of crack segmentation 

models. Figure 4 offers a summary of the quantity of training 

and testing images contained within each of the eight datasets. 

The entire set of training images, amounting to 7754, is 

partitioned into training subset (90%) and validation subset 

(10%). The testing images, collectively referred to as the testing 

subset, are employed to evaluate the segmentation methods 

proposed in this paper. 

 

Figure 4. Numbers of training and testing images of eight 

datasets. 

 Distillation and fine-tuning strategy 

During the model distillation, the image embedding vector of 

the training image through the SAM heavy-parametric encoder 

has been calculated in advance and saved to the local storage. 

The training image only needs to go through the lightweight 

encoder to obtain the new image embedding vector, and then 

read the previously saved SAM embedding vector and calculate 

mean squared error (MSE). During the training, a single GPU 

was used, the batch size was 2, and a total of 50,000 iterations 

were performed. The MSE value obtained by the final 

convergence was 0.977, indicating the effectiveness and 

accuracy of the model distillation. 

Throughout the proposed crack segmentation model fine-

tuning, the initial learning rate was established as 1e-5. The 

total training iteration count was determined as 24,000. A 

multi-step learning rate change approach was employed, where 

it was reduced to 0.1 times the previous value at the 16,000th 

and 20,000th iterations, respectively. The fine-tuning process 

implemented an early stopping strategy. The parameters at this 

iteration were taken as the final model weights. In addition, the 

batch size was 2. 

The configuration utilized for fine-tuning and evaluating the 

proposed method comprised an Intel Xeon(R) E5-2620 v4 

central processing unit (CPU), complemented by a robust 

Nvidia RTX 3090 graphics processing unit (GPU) offering 

24GB memory. Additionally, the system was equipped with an 

ample 128GB of memory. 

 

4 RESULTS AND DISCUSSIONS 

The quantitative and qualitative results of the proposed 

lightweight crack segmentation method under full supervision 

and limited supervision conditions are illustrated in this section, 

and the state-of-the-art CNN-based method Deeplab v3 plus 

(with MobileNet v3) [42] and transformer-based Segformer 

[43] are employed to be comparison. Additionally, the weight 

file space occupation, the running speed on different hardware 
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platforms and the possibility of mobile deployment of the 

proposed method are discussed. 

 Testing results under full supervision 

Full supervision refers to training on the entire training subset 

(6,978 pairs of crack images and masks) and testing on the 

entire test subset (955 crack images). This condition facilitates 

the transfer of feature parameters from vision fundamental 

models to the domain of crack segmentation, enabling 

exploration of the segmentation accuracy limits across different 

models.  

Table 1 elucidates the testing Dice scores (×100%) for eight 

datasets under full supervision, as well as the total parameter 

numbers of different algorithms and their GPU memory 

occupancy during training (with an input size of 1024×1024×3 

and a batch size of 2). In Table 1, SAM represents the crack 

segmentation method based on vision fundamental models that 

employs the heavy-parametric encoder from the original SAM. 

Compared to Deeplab v3 plus, the proposed method 

significantly improves the Dice score by 13.6, and although the 

parameter count increases to twice that amount, the required 

GPU memory during training decreases to 36%, which is the 

most direct assessment of algorithm training expenses. 

Compared to Segformer, the proposed method is on par in 

terms of accuracy, but with a 45% reduction in parameter count 

and a 37% reduction in required GPU memory. Compared to 

the original SAM-based method, the proposed approach 

experiences a 5.4 decrease in Dice score, but with a parameter 

count reduced to 7% and at least an 85% reduction in required 

GPU memory. In summary, the proposed method not only 

maintains segmentation accuracy in comparison to other 

cutting-edge methods but also significantly reduces training 

costs. 

Table 1. Testing Dice scores (×100%) on eight datasets, total 

parameter numbers and GPU memory occupation under full 

supervision 

Method 
DL 

v3p 
Segformer SAM Proposed 

Dataset 

1 52.6 51.8 68.5 56.1 

2 54.9 68.4 71.1 65.6 

3 24.3 24.4 37.6 24.4 

4 69.6 72.8 79.9 68.8 

5 36.2 56.1 57.7 53 

6 25.8 28.9 45.4 44.77 

7 30.9 50.1 54.9 50.8 

8 60 67.5 75.5 68.7 

Average 44.4 58 63.4 58 

Params 3.2M 13.6M 89.8M 6.2M 

Mem 10.3G 10.1G >24G 3.8G 

Figure 5 displays representative results of crack 

segmentation using different methods, where each row 

corresponds to a representative crack image from each dataset, 

and each column represents the original image, ground truth, 

and the test results using Deeplab v3 plus, Segformer, the 

original SAM-based method, and the proposed method, 

respectively. Whether they are concrete or asphalt surface 

cracks, whether they are dot-like, strip-like, or mesh-like, the 

crack segmentation results of methods based on vision 

fundamental models are superior in terms of integrity and 

connectivity compared to CNN-based and transformer-based. 

While the proposed method's segmentation effect is slightly 

lacking in local detail handling compared to the original SAM-

based crack segmentation method, it exhibits evident 

advancement over other methods, demonstrating the proposed 

method’s efficacy in enhancing accuracy. 

 

Figure 5. Representative testing results: (a) raw image, (b) 

annotation, (c) DL v3p, (d) Segformer, (e) SAM, (f) the 

proposed method. 

 Testing results under limited supervision 

In contrast to prior CNN-based and transformer-based object 

segmentation approaches, the primary advantage of object 

segmentation methods grounded on vision fundamental models 

is their robust generalization capability. This means that they 

can achieve high segmentation accuracy with minimal domain-

specific supervision information. Hence, this part showcases 

the proposed method’s strong generalization ability by 

comparing the test accuracy of different methods under two 

limited supervision cases (1%-shot and one-shot). The 1%-shot 

case refers to training with 1% of the training subset of full 

supervision (77 crack image-mask pairs), while the one-shot 

case refers to training with only one crack image-mask pair per 

dataset (a total of 8). These two cases provide an extreme test 

of the generalization capabilities of different methods. 

The testing Dice scores of different algorithms under limited 

supervision are illustrated in Table 2. Consistent with 

(a) (b) (d) (e)(c) (f)
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theoretical analysis, the crack segmentation method based on 

vision fundamental models significantly outperforms those 

based on CNNs and transformers in terms of segmentation 

accuracy in both the 1%-shot and one-shot cases. 

Table 2. Testing Dice scores (×100%) on eight datasets under 

limited supervision 

Data size 1%-shot 

Method 
DL 

v3p 
Segformer SAM Proposed 

Dataset 

1 39.6 47.2 54.2 46.8 

2 53.7 60 65.8 57.4 

3 23 17.3 21.1 24 

4 66.4 65.6 70.5 63.2 

5 23.4 44.8 48.1 38.2 

6 9.7 23 32.9 19 

7 26.7 47 48.3 50.3 

8 54.5 64.2 66.8 66.1 

Average 40.4 52.5 56.3 52.8 

Data size one-shot 

Method 
DL 

v3p 
Segformer SAM Proposed 

Dataset 

1 35 47 44.8 49.2 

2 21.4 22.4 34.1 25 

3 20.1 22.2 16.5 20.3 

4 48 51.4 59.3 67.1 

5 46.1 48.7 54.2 53.9 

6 29.3 34.8 34.7 24.2 

7 24 36.1 39.3 42.8 

8 48.3 58.9 58 56.8 

Average 27.4 34.3 39.9 38 

Notably, in the one-shot case, the proposed method improved 

the Dice score by 3.7 compared to Segformer and only 

decreased by 1.9 compared to the original SAM-based method. 

Considering that the proposed method has fewer parameters 

and lower training costs, it is substantiated that the approach 

can reach high precision with maintaining operational 

efficiency. Former transformer models necessitated a 

substantial volume of supervised training data to attain elevated 

segmentation precision, although vision fundamental models 

are also based on transformer architectures. Preliminary 

judgments can also be made based on experimental results, the 

vision fundamental model-based crack segmentation method 

demonstrates good generalization capability even under 

extremely limited supervision conditions. 

 Deployment of the proposed method 

Although the vision fundamental model has strong 

segmentation generalization ability, its deployment difficulty 

and cost are high, which aligns with the primary research 

concentration of this paper. Therefore, this subsection deploys 

the original SAM-based and the proposed lightweight vision 

fundamental model-based crack segmentation models on 

different hardware platforms to illustrate the advantages of the 

latter. 

The weight file space occupancy serves as a metric for gauging 

the complexity of the model, encompassing all parameters and 

configurations stored on the disk. Table 3 demonstrates that the 

space occupancy of SAM-based models based on backbones of 

different sizes is 404MB, 1230MB, and 2665MB, respectively, 

while the proposed model is only 70MB (17% of the minimum 

SAM-based). 

Table 3. Weight file space occupancy and running speed of 

the proposed method 

Method 
Space 

occupancy 
Running speed 

SAM 

ViT-B 404MB 

GPU 0.107s 

x86 5.498s 

arm / 

ViT-L 1230MB / / 

ViT-H 2665MB / / 

Proposed 70MB 

GPU 0.016s 

x86 0.637s 

arm 2.245s 

The running speed is the most direct indicator to measure the 

complexity of a model. Although it is affected by factors such 

as code implementation, the relative speed of different models 

can still be compared after controlling variables. This paper 

tests on three common hardware platforms (GPU, x86 CPU and 

arm CPU), and the results are shown in Table 3. With 1024 × 

1024 images as input, the SAM-based model takes 0.107 s and 

5.498 s on GPU and x86 CPU respectively. Because the model 

is too complex to be deployed on the arm CPU used in this 

experiment. Meanwhile, the proposed model consumes 0.016 s 

and 0.637 s on GPU and x86 CPU (15% and 12% of SAM-

based, respectively), and 2.245s on arm CPU (twice as fast as 

SAM-based on x86 CPU). 

It is worth noting that the arm CPU used in this experiment 

is Kirin 970, a consumer and low-cost chip released six years 

ago. Compared with the current mobile phone CPUs, the 

performance difference is huge. Employing the most cutting-

edge chip would significantly enhance the performance of the 

proposed method. Figure 6 illustrates the exemplary testing 

outcomes of the deployed proposed method on a mobile phone. 

 

Figure 6. Representative testing results on mobile phones 
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5 CONCLUSIONS 

A novel crack segmentation method using lightweight vision 

fundamental model is developed in this paper. The approach 

incorporates model distillation techniques to substantially 

decrease the model parameters and enhance operational speed 

while maintaining the robust generalization capabilities of the 

vision fundamental model to the greatest extent possible. In 

light of the findings, the following conclusions can be inferred: 

(1) By substituting the ViT encoder in the original SAM with 

the lightweight encoder TinyViT and using model distillation 

techniques with image embedding consistency as the 

optimization goal, effective transfer of the vision fundamental 

model's generalization ability is achieved. (2) Under full 

supervision, the proposed method surpasses current cutting-

edge methods based on non-vision fundamental models, 

achieving a segmentation Dice score of 58.0. Moreover, 

relative to the original SAM, the model's parameter count is 

reduced to 7%, and the required GPU memory is decreased to 

15%, with only a 5.4 decrease in Dice score. (3) Under limited 

supervision, the proposed method comprehensively surpasses 

methods based on non-vision fundamental models in terms of 

segmentation accuracy and algorithmic efficiency, with Dice 

scores reaching 52.8 (1%-shot) and 38.0 (one-shot). 

Furthermore, as the degree of available supervision information 

decreases, the proposed method demonstrates a heightened 

advantage, resulting in a diminished disparity with respect to 

the original SAM. (4) The proposed method achieves a sixfold 

and eightfold acceleration on GPU and x86 CPU, respectively, 

compared to the original SAM, and has been successfully 

deployed on cost-effective ARM CPUs. 

The crack segmentation method developed from lightweight 

vision fundamental model serves as a reference for the efficient 

application of vision fundamental models in the field of 

automatic identification of civil engineering damages. 

Nevertheless, there remains potential for enhancing the detailed 

recovery of crack identification outcomes in this study. Future 

work will concentrate on incorporating crack boundary 

constraints into the loss function and bolstering the post-

processing methodologies within the crack segmentation 

framework to enhance the precision of crack detail 

identification. To facilitate practical applications, follow-up 

research should further develop a quantitative measurement 

and evaluation module for crack dimensions. 
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