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ABSTRACT: Tropical cyclones (TCs) stand as one of the most destructive extreme weather events, posing significant threats to 

human safety and urban infrastructure. One critical phenomenon associated with TCs is the occurrence of strong winds; thus, 

accurate prediction of urban wind speed during TCs can provide essential information for decision-making, which is vital for 

enhancing urban resilience. This study proposes a deep learning-based model that accounts for the spatial and temporal 

dependencies of wind speed data collected from sensors of meteorological stations while addressing the impacts of climate change. 

The model integrates temporal and spatial encodings with measured time series data, enabling the capturing of long-term temporal 

dependencies that reflect periodic weather patterns and climate change through the attention mechanism of a Transformer 

architecture. The outputs derived from this computation are further utilized to identify dynamic patterns of wind speed during 

TCs. Additionally, a graph neural network (GNN) is integrated to capture spatial dependencies, considering the non-Euclidean 

distribution of meteorological stations. To evaluate the performance of the proposed model, wind speed measurements from Hong 

Kong between 2000 and 2023 are used for training and testing. Comparative analyses with sequence-to-sequence models and 

GNN-recurrent neural network or GNN-Transformer hybrid models demonstrate that the proposed model enhances prediction 

performance. 
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1 INTRODUCTION 

Urban wind speed is a critical factor influencing human 

comfort, safety, and urban resilience [1] [2]. Its dynamics 

directly affect energy management systems [3], infrastructure 

durability, and ecological balance [4], while extreme wind 

events, such as tropical cyclones (TCs), pose significant threats 

to life and property. Rapid urbanization and climate change 

exacerbates these challenges by intensifying urban heat island 

effects and creating complex wind environments [5][7], further 

complicating prediction efforts. Accurate forecasting of urban 

wind speed, particularly during TCs, is thus essential for 

effective disaster mitigation, early-warning systems, and urban 

planning [8]. 

There are three primary methods for analyzing and predicting 

urban wind speed: physical models, statistical models, and 

hybrid models [9]. Physical models rely on geographic 

information and meteorological fields to solve complex 

physical equations. For instance, the Weather Research and 

Forecasting (WRF) model is often combined with complex 

urban canopy models to predict urban wind speed profiles 

during TCs [10] [11]. Additionally, WRF can be integrated 

with computational fluid dynamics (CFD) to investigate time-

series wind speed data [12]-[14]. However, these models are 

typically time-consuming and computationally intensive, 

which may introduce time lags, and they are sensitive to 

parameter settings, particularly during extreme TCs. 

In contrast, statistical models utilize historical data to 

develop statistical regressions for predicting future wind speeds. 

For example, autoregressive moving average (ARMA) models 

and generalized autoregressive conditional heteroskedasticity 

(GARCH) models have been employed to forecast seasonal [15] 

or hourly [16] wind speed. Moreover, model decomposition 

methods are often integrated with ARMA to enhance wind 

speed predictions [17]. While statistical models offer rapid 

inference, they may sacrifice accuracy, especially when wind 

speed exhibits strong nonstationary behavior [18]. Hybrid 

models, which combine physical and statistical approaches, 

aim to leverage the strengths of both methodologies, though 

they also inherit the limitations of each model type. 

Recent advancements in deep learning have attracted 

considerable attention across diverse fields, such as medicine, 

transportation, civil engineering, and aerospace, and the 

application of deep learning for predicting wind speed has also 

been explored. One approach treats wind speed prediction as a 

sequence-to-sequence task, employing recurrent neural 

networks (RNN)-based or convolutional neural networks 

(CNN)-based models. For instance, long short-term memory 

(LSTM), gated recurrent unit (GRU), CNN, and CNN-LSTM 

architectures have been assessed for their performance in long-

term wind speed predictions, with forecast horizons ranging 

from 6 months to 5 years [19]. In addition to long-term 

predictions, LSTM models have been utilized to forecast 10-

minute wind speeds using data from only two measurement 

sites [9]. Furthermore, ConvLSTM has been employed to 

predict 10-minute wind speeds based on weather-related 

images, considering six measurement sites [3]. Beyond RNN- 

and CNN-based models, Transformer has emerged as a popular 

alternative for sequence-to-sequence predictions. Various 

Transformer-based models have been compared for predicting 

10-minute wind speeds at three meteorological stations [20]. 

Another approach incorporates spatiotemporal correlations, 

rather than treating the problem purely as a sequence-to-
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sequence task. A notable example of this is the development of 

a temporal graph convolutional network (TGCN), which 

combines graph neural networks (GNN) and GRU to predict 

hourly wind speeds based on data from six measurement 

stations [21]. However, it is evident that the studies mentioned 

primarily focus on a limited number of measurement sites, with 

temporal resolutions typically set at 10 minutes or longer. The 

prediction of urban wind speed during TCs remains an area 

requiring further exploration, particularly regarding the 

application of Transformer-based models that account for 

spatiotemporal dependencies. 

The contributions of this study are three-fold: Firstly, a dense 

meteorological station network that covers most urban areas is 

selected, enabling 1-minute resolution wind speed predictions 

during TCs—an improvement over existing sparse, low-

frequency datasets. Secondly, the study develops a novel 

Transformer-GNN hybrid model that explicitly captures spatial 

topology through GNN while leveraging Transformer for 

temporal dependencies, thus advancing beyond conventional 

sequence-to-sequence approaches. Lastly, a comparison is 

conducted against current mainstream models, including pure 

sequence-to-sequence models, GNN-RNN, and GNN-

transformer hybrids, demonstrating superior accuracy in 

extreme wind scenarios and providing valuable insights into 

spatiotemporal feature engineering for urban meteorology. 

The remainder of this paper is structured as follows: Section 

2 details the problem formulation, data source and processing, 

and model architecture. Section 3 presents experimental results 

with comparative analysis and ablation study, while Section 4 

concludes the main findings of this study. 

2 METHODOLOGY 

 Problem statement 

The prediction of urban wind speed during TCs can be framed 

as a task where, given a series of wind speed measurements 

from the past P time steps 𝑋𝑃 ∈ ℝ𝑃×𝐶 , the wind speed for the 

future F time steps 𝑋𝐹 ∈ ℝ𝐹×𝐶  can be predicted by, 

 𝑋𝐹 = 𝑓(𝑋𝑃) (1) 

where C represents the number of meteorological stations, 

and 𝑓(∙)  denotes the deep learning-based models trained. 

Additionally, the meteorological station network can be 

described as a graph structure 𝐺 = (𝑉, 𝐸, 𝐴) , where V 

represents the nodes (the stations), E indicates the edges, and A 

denotes the adjacency matrix. The adjacency matrix is 

established based on the geographic distances between the 

stations. 

 Data source and processing 

Hong Kong is located in the southeast of the Pearl River 

Estuary in southern China, facing the vast South China Sea to 

the south. It features a long coastline, with most of its low-lying 

areas concentrated along the coast. Additionally, Hong Kong 

has a high urbanization rate and is characterized by high-rise 

buildings, such as the International Finance Centre [22]. These 

urban and geographical characteristics make Hong Kong 

vulnerable to TCs [23]. In this study, urban wind speed data 

collected by 28 meteorological stations from the Hong Kong 

Observatory (HKO) is used to train and test model performance. 

It is important to note that the map and locations of the stations 

shown in Figure 1 are for illustration purposes only; for official 

information, please refer to the HKO website. The 28 stations 

cover the main areas of Hong Kong and have maintained 

continuous data collection over a long period. 

 

Figure 1. Schematic of distribution of meteorological stations.  

The data is recorded at a 1-minute interval. A TC is 

considered to have an effect on Hong Kong if a TC signal has 

been issued by the HKO. Consequently, data from the entire 

lifecycle of each TC is extracted. The extracted data for the 

years 2000-2019 is used as the training set, for 2020-2021 as 

the validation set, and for 2022-2023 as the test set, as 

summarized in Table 1. Linear interpolation is employed to 

address missing data, while the mean and standard deviation 

are used for normalization and de-normalization. 

Table 1. Summary of three data sets. 

Data sets No. of TCs No. of samples Rate 

Training set 98 920,258 82% 

Validation set 11 88,391 8% 

Test set 10 115,210 10% 

 Model architecture 

The model architecture is shown in Figure 2, and it is similar to 

the logic referenced in [21] [24]-[26]. However, urban wind 

speed is significantly influenced by TC intensity, which varies 

with climate change [27], as well as the distance between the 

TC location and the city. Therefore, this study incorporates 

long-term dependency, short-term dependency, and spatial 

dependency to effectively predict future 3-h urban wind speed 

during TCs using historical 3-h measurements from the 

meteorological station network. Specifically, both the input 

length and output horizon are set to 180. 

Patch embedding and positional encoding: To improve 

computational efficiency, this study employs patch embedding 

to partition the input. Given the input 𝑋𝑃 ∈ ℝ𝑃×𝑁, patch length 

L is used for patch embedding to obtain the patched sequence 

𝑋𝑃 ∈ ℝ𝐿×𝑁×𝐶 , where N is the number of patched blocks. 

Positional encoding PE(∙) is added to the patched blocks using 

the commonly employed sinusoidal method in Transformer 

architectures [28], resulting in, 

 𝑋𝑒𝑛𝑐 = 𝑋𝑃 + PE(𝑋𝑃) (2) 
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Figure 2. Overview of model architecture. 

Temporal encoding and spatial encoding: Climate change 

[27] and the distance between the TC location and the city 

significantly influence TC intensity, which in turn affects urban 

wind speed. However, these factors are not explicitly 

incorporated into the training process. Regardless of climate 

change or distance, both are directly related to temporal 

evolution, which spans from days (for distance) to years (for 

climate change). Therefore, temporal encoding is necessary to 

account for both temporal scales. 

In this study, temporal encoding is derived by considering 

various time components: the minute of the hour 𝐸𝑠, the hour 

of the day 𝐸ℎ, the day of the month 𝐸𝑑, the month of the year 

𝐸𝑚, and the year 𝐸𝑦. This encoding embeds more time-related 

information using linear layers. The components of the 

temporal encoding are concatenated as follows, 

 𝐸𝑇 = concat[𝐸𝑠, 𝐸ℎ , 𝐸𝑑 , 𝐸𝑚, 𝐸𝑦] (3) 

where each 𝐸𝑠, 𝐸ℎ, 𝐸𝑑, 𝐸𝑚, and 𝐸𝑦 has a shape of 𝐿 × 𝑑/5 

(with d being the embedding dimension), resulting in a final 

temporal embedding 𝐸𝑇 with shape 𝐿 × 𝑑. 

Given that meteorological stations are located in various 

regions with different latitudes, longitudes, and altitudes, it is 

important to consider the spatial characteristics that may 

influence urban wind speed. In this study, spatial encoding is 

employed. Specifically, the normalized Laplacian matrix is 

calculated as, 

 Δ = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 (4) 

where I and D are the identity and degree matrices, 

respectively, and the adjacency matrix is calculated using the 

latitude, longitude, and altitude of each station. Following this, 

eigenvalue decomposition is performed as, 

 Δ = 𝑈𝑇Λ𝑈 (5) 

where U and Λ are the eigenvector and eigenvalue matrices. 

The k smallest non-trivial eigenvectors are then used to 

generate the spatial encoding 𝐸𝑆 ∈ ℝ𝐶×𝑑  through linear 

transformation. 

Long-term dependency: Based on the temporal and spatial 

encodings, temporal dependencies can be more effectively 

captured by the attention mechanisms of the Transformer 

architecture. It is important to note that the terms "long-term" 

and "short-term" differ from those used in the weather 

prediction field; they are merely used to distinguish between 

the different horizons considered in this study. 

In addition to the long-term effects of climate change on 

urban wind speed, wind speed exhibits different characteristics 

across seasons, demonstrating periodic behavior [29]. Thus, 

long-term dependencies can be implicitly considered, as 

temporal information is encoded from minutely to yearly. 

Specifically, long-term dependency is addressed according to 

the temporal encoding as follows, 

 𝑄𝑙
ℎ = 𝑤𝑞𝑙

ℎ (𝐸ℎ𝑖𝑠
𝑇 + 𝐸𝑆) (6) 

 𝐾𝑙
ℎ = 𝑤𝑘𝑙

ℎ (𝐸𝑓𝑢𝑡
𝑇 + 𝐸𝑆) (7) 

 𝑉𝑙
ℎ = 𝑤𝑣𝑙

ℎ 𝑋𝑒𝑛𝑐  (8) 

where 𝐸ℎ𝑖𝑠
𝑇  is the temporal encoding derived from known 

historical temporal information, while 𝐸𝑓𝑢𝑡
𝑇  is the temporal 

encoding derived from future temporal information. The 

attention mechanism, along with aggregation using the 

computed attention matrix, can be used to capture the long-term 

dependency as follows, 

 𝑋𝑙
ℎ = softmax (

𝑄𝑙
ℎ𝐾𝑙

ℎ𝑇

√𝑑ℎ
)𝑉𝑙

ℎ (9) 

where 𝑤𝑞𝑙
ℎ , 𝑤𝑘𝑙

ℎ , and 𝑤𝑣
ℎ are learnable parameters for heads h, 

and 𝑑ℎ is the scaling factor. 

Short-term dependency: In addition to long-term 

dependency, urban wind speed during TCs may vary 

significantly within a short period as the TCs approach and 

make landfall in the city. Therefore, short-term dependency is 

also considered to capture these dynamics. The short-term 

dependency is addressed by the Transformer architecture based 

on the known sequence, enabling 𝑋𝑙
ℎ to be used to derive the 

query, key, and value through commonly used linear layers as 

follows, 

 𝑄𝑠
ℎ = 𝑤𝑞𝑠

ℎ 𝑋𝑙
ℎ (10) 

 𝐾𝑠
ℎ = 𝑤𝑘𝑠

ℎ 𝑋𝑙
ℎ (11) 

 𝑉𝑠
ℎ = 𝑤𝑣𝑠

ℎ 𝑋𝑙
ℎ (12) 

where 𝑤𝑞𝑠
ℎ , 𝑤𝑘𝑠

ℎ , and 𝑤𝑣𝑠
ℎ  are learnable parameters. The short-

term dependency can be computed as follows, 
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 𝑋𝑠
ℎ = softmax (

𝑄𝑠
ℎ𝐾𝑠

ℎ𝑇

√𝑑ℎ
)𝑉𝑠

ℎ (13) 

Spatial dependency: Spatial dependency is addressed using 

a graph convolutional neural network (GCN) as follows, 

 𝐺 = 𝛿[𝛼𝑋𝑠 + (1 − 𝛼)(𝑤𝑔𝐴̅𝑋𝑠)] (14) 

where 𝑤𝑔  are the learnable parameters and 𝐴̅  is the 

normalized adjacency matrix. After aggregating spatial 

information, 𝛼  balances the previous information with the 

aggregated information, and 𝛿  is a function used to reduce 

overfitting. 

Residual connections are then utilized as follows, 

 𝑂(𝑙) = SwiGLU[RMSN(𝐺(𝑙) + 𝑂(𝑙−1))] + 𝐺(𝑙) (15) 

where 𝑂(𝑙)  and 𝑂(𝑙−1)  represent the outputs of layer l and 

layer l-1 of the aforementioned spatiotemporal dependency 

computation layer, respectively. Here, SwiGLU denotes the 

activation function, and RMSN represents the RMSNorm [30]. 

 Experimental setup 

In this study, three types of models are selected to compare their 

performance with the proposed model, representing three 

typical categories: statistical model, pure sequence-to-sequence 

models, and hybrid models combining GNN-RNN or GNN-

Transformer architectures. The ARMA model is chosen as the 

baseline for statistical models, while LSTM, GRU, and vanilla 

Transformer models are selected as pure sequence-to-sequence 

models. For hybrid models, TGCN [26] is chosen for the GNN-

RNN approach, and PDFormer [25] is selected for the GNN-

Transformer approach. 

The model setup for ARMA is derived from [16], where 

sensitivity analysis is performed. The configurations for TGCN 

and PDFormer follow the original papers [25] [26]. For GRU 

and LSTM, the number of RNN layers and embedding 

dimensions match those of TGCN [26], while the number of 

blocks and embedding dimensions for the Transformer align 

with the proposed model in this study. The specific 

configurations include an embedded dimension of 250, a 

Laplacian dimension for generating spatial encoding of 8, five 

heads for computing temporal dependency, a depth of 3 for 

spatiotemporal dependency computation, a drop rate of 0.1 for 

attention computation, and a linear drop rate within the range 

of [0, 0.1] for each depth. 

 Evaluation metrics 

To evaluate the model's performance, three metrics are used: 

mean absolute error (MAE), root mean square error (RMSE), 

and the R2 score. 

 MAE =
1

𝑛
∑|𝑦 − 𝑦̂| (16) 

 RMSE = √
1

𝑛
∑(𝑦 − 𝑦̂)2 (17) 

 R2 = 1 −
∑(𝑦−𝑦̂)2

∑(𝑦−𝑦̅)2
 (18) 

where 𝑦 , 𝑦̂ , and 𝑦̅  represent the target values, predicted 

values, and mean value of urban wind speed, respectively, 

while n denotes the total number of urban wind speed values. 

A lower MAE and RMSE signify superior model performance. 

Additionally, a higher R2 score reflects improved model 

performance. 

 Optimization details 

For each model, training is conducted three times, with the best 

result selected for performance evaluation. Each training 

session is set for a large number of epochs, and an early 

stopping mechanism is implemented to avoid overfitting. The 

batch size is set to 256, the learning rate is 0.0003, and Adam is 

employed as the optimizer. Mean squared error is chosen as the 

loss function. The programming is carried out using Python and 

PyTorch, with models trained on an RTX-6000 Ada GPU card 

featuring 48GB VRAM and 512GiB of system memory. 

3 RESULTS AND DISCUSSIONS 

 Evaluation of model’s performance 

The model's performance is summarized in Table 2. It is 

evident that the conventional statistical model struggles to 

deliver reliable predictions in scenarios involving extreme wind 

speeds across the entire network of stations. The MAE of the 

ARMA model is approximately three times greater than that of 

the other deep learning models listed in Table 2, while the 

RMSE for ARMA is five times larger than that of the other 

models. Additionally, the R2 score indicates that the predicted 

results exhibit greater fluctuations compared to those generated 

by the deep learning models. 

Table 2. Summary of model’s performance. 

Models MAE RMSE R2 

ARMA 3.230 7.600 0.6539 

LSTM 1.103 1.593 0.8638 

GRU 0.990 1.464 0.8849 

Transformer 0.909 1.376 0.8985 

TGCN 0.919 1.372 0.8989 

PDFormer 0.914 1.360 0.9007 

Proposed 0.902 1.348 0.9026 

Regarding the sequence-to-sequence models, the results 

indicate that the Transformer outperforms the other two models 

(GRU and LSTM) across all metrics, including MAE, RMSE, 

and R2 score. This demonstrates the Transformer's superior 

ability to capture temporal dependencies. However, compared 

to the GNN-RNN and GNN-Transformer hybrid models, the 

pure sequence-to-sequence models tend to yield less reliable 

predictions. This suggests that spatial dependencies are not 

adequately addressed in these models, leading to decreased 

performance. Notably, both LSTM and GRU exhibit larger 

errors compared to TGCN and PDFormer. While the 

Transformer has a smaller MAE, it also shows a larger RMSE 

and a lower R2 score compared to the two hybrid models. This 

indicates that, despite the Transformer's average performance 

being slightly better than that of TGCN and PDFormer, it may 

be less effective in predicting extreme values. 

Regarding the hybrid models, the proposed model 

demonstrates superior performance in predicting urban wind 

speed across all metrics. It exhibits smaller errors compared to 

the other two hybrid models that also incorporate spatial 

dependency computation, as well as the pure sequence-to-

sequence models. Notably, while TGCN and PDFormer have 

larger MAE values than the Transformer, the proposed model 

achieves smaller error rates than all other models listed in Table 
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2. This highlights the effectiveness of the proposed model in 

addressing both temporal and spatial dependencies in urban 

wind speed prediction. 

 Ablation study 

To illustrate the role of the modules in the proposed model, an 

ablation study is conducted. The first experiment (Delete-LTD) 

involved removing the long-term dependency module, the 

second experiment (Delete-STD) removed the short-term 

dependency module, and the third experiment (Delete-SD) 

eliminated the spatial dependency module. In these three 

additional experiments, all other components (except for the 

deleted modules) are maintained exactly as in the proposed 

model (Full). The MAE, RMSE, and R2 scores from these 

experiments are presented in Figure 3. 

 

Figure 3. Performance comparison of ablation study 

experiments. 

The results indicate that removing any component from the 

proposed model leads to a decrease in performance based on 

the evaluation metrics. This finding clarifies the contributions 

of each module to the overall effectiveness of the model, 

underscoring the significance of long-term, short-term, and 

spatial dependencies in achieving accurate predictions. Each 

module plays a crucial role in enhancing the model's ability to 

capture the complexities of urban wind speed dynamics. 

When the GNN module is removed, the model resembles the 

vanilla Transformer, resulting in the outcome of experiment 

Delete-SD being closer to that of the vanilla Transformer listed 

in Table 2. However, the result of experiment Delete-SD is 

slightly better than the vanilla Transformer. This can be 

explained by the fact that the vanilla Transformer primarily 

focuses on correlations within the known sequence (the short-

term dependencies in this study). When both short-term and 

long-term dependencies are incorporated, the performance 

improves slightly. On the other hand, the experiment Delete-

SD does not perform as well as the proposed model due to the 

absence of the GNN module. This highlights the importance of 

the GNN in enhancing the performance of urban wind speed 

prediction. The presence of the GNN significantly contributes 

to capturing the spatial dependencies, resulting in more 

accurate predictions. 

In the experiments Delete-LTD and Delete-STD, the results 

are similar, but neither provides better predictions than the 

proposed model. This indicates that both long-term and short-

term dependencies are crucial for achieving accurate 

predictions. Furthermore, the results of these two experiments 

are better than those of the Delete-SD experiment, which 

further underscores the importance of spatial dependency in 

enhancing model performance. This highlights the necessity of 

integrating all three types of dependencies for optimal 

prediction accuracy in urban wind speed prediction. 

 Case study 

 

Figure 4. Wind speed prediction of four stations during 

Typhoon Saola. 
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To illustrate predicted urban wind speeds, two case studies are 

conducted: Typhoon Saola and Typhoon Koinu. Saola, the 

third TC in Hong Kong in 2023, prompted signal No. 10, the 

first since Super Typhoon Mangkhut in 2018. Koinu triggered 

signal No. 9 and brought heavy rain, with 369.7 millimeters 

recorded—over three times the normal monthly total and the 

highest daily rainfall for October. 

 

Figure 5. Wind speed prediction of four stations during 

Typhoon Koinu. 

For Typhoon Saola, four stations—Hong Kong International 

Airport (HKA), HKO, Sai Kung, and Shek Kong—are selected 

to illustrate the predicted wind speed, as shown in Figure 4. The 

selection of these stations is based on two key principles: first, 

HKA and HKO were chosen for their strategic locations; 

second, the remaining stations were selected due to their 

relatively higher measured wind speed during the cyclone, with 

an emphasis on decentralization. Similarly, for Typhoon Koinu, 

HKA, HKO, Lau Fau Shan, and Tseung Kwan O were selected 

to represent the predicted wind speed, as depicted in Figure 5. 

The proposed model demonstrates strong predictive 

capabilities for the two selected cases. The trends in the 

predictions align closely with the target measurements, even as 

wind speeds increase when the TCs approach Hong Kong. 

However, it is evident that the model tends to underestimate the 

peak values, which may be attributed to the inherent tendency 

of neural networks to produce smoother outputs—a 

phenomenon commonly observed in many deep learning 

models. Additionally, the results for Typhoon Saola are more 

consistent with the measurements than those for Typhoon 

Koinu. This discrepancy may be partially due to the fewer local 

peaks observed during Typhoon Saola, as well as the model's 

limitations in effectively capturing peak wind speeds. 

4 CONCLUSIONS 

In this study, a novel deep learning-based spatiotemporal model 

is proposed for predicting urban wind speed during TCs. The 

following key conclusions can be drawn: 

• The proposed model achieves better prediction 

accuracy compared to the statistical model and pure 

sequence-to-sequence models, with a MAE of 0.902. 

This represents a 0.78% improvement over the vanilla 

Transformer, a 9.76% improvement over GRU, and a 

22.28% improvement over LSTM. Additionally, it 

outperforms GNN-RNN and GNN-Transformer 

hybrid models by more than 1%. 

• The vanilla Transformer demonstrates potential in 

predicting urban wind speed during TCs. The 

proposed model's integration of long-term, short-term, 

and spatial dependencies significantly enhances its 

performance compared to the vanilla Transformer. 

This improvement underscores the importance of 

considering various types of dependencies in 

achieving more accurate predictions in complex 

environments like urban areas during TCs. 

• The proposed model effectively captures the trends in 

urban wind speed during TCs. Specific case studies 

reveal strong performance in predicting peak values 

for Typhoon Saola; however, some smoother 

predictions were observed for Typhoon Koinu. 
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