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ABSTRACT: The demand for renewable energy sources is increasing, making it essential to develop effective maintenance 

plans for existing infrastructure. This study represents the initial step in a process designed to estimate the settlement of onshore 

wind turbine foundations, as well as its associated uncertainties. The method relies on high-resolution dual-orbit satellite data, 

which help to reduce cost and time required for instrument installation and on-site inspections. The turbine is modeled as a 1D 

rigid body and is assumed to be firmly constrained to the foundation slab. The proposed formulations allow for the estimation of 

the turbine motion components – translations in the W-E and vertical directions and rotation along the S-N axis –, which can be 

generally linked to foundation settlement. The components are determined by solving a linear system which accounts for the mean 

annual velocities of the Permanent Scatterers on the wind turbine surface, turbine height and incidence angles of satellite orbits. 

At the present stage, analytical formulations for the a posteriori estimation of the motion component uncertainties are proposed, 

with a particular focus on the positioning error in elevation of Permanent Scatterers. To assess the accuracy of these expressions, 

Monte Carlo numerical simulations are conducted. The strong agreement between numerical and analytical results demonstrates 

that the turbine motion components can be estimated with high accuracy. 

 

KEY WORDS: Structural Health Monitoring; Foundation settlement; Wind turbines; Monte Carlo simulations; Uncertainty 

evaluation. 

 

1 INTRODUCTION 

As stated by the Global World Energy Council [1], the 

necessity to install new renewable energy sources grows 

stronger every year. In fact, to pursue the Paris Agreement goal 

– reducing greenhouse gas emissions by 43% by 2030 to limit 

global warming to 1.5°C – it was estimated that by 2030, 2 TW 

of wind energy will be installed. As for now, 78 GW of wind 

power capacity, of which 68.8 GW provided by onshore 

installations, were added globally in 2022. 

In order to sustain the existing wind power structures, a solid 

maintenance plan is needed. Structural Health Monitoring 

(SHM) systems  can contribute significantly to enhance wind 

turbines reliability and ensure their optimal performance, 

through different management approaches [2]. Various parts of 

the wind turbine, in fact, can be affected by structural issues, 

such as corrosion and cracks on the tower, or surface damage 

to the rotor blades [3]. Furthermore, particularly in the case of 

onshore installations, foundation settlement may occur: 

differential settlement, which manifests as tower rotation, can 

lead to a reduction in turbine efficiency, potentially resulting in 

economic losses. This phenomenon can take several months, or 

even years, to develop.  

In [4], large vertical movements were observed in some 

onshore wind turbines, particularly in the case of concrete 

foundations in which embedded rings were used as connection 

systems, potentially leading to the sudden and catastrophic 

collapse of the turbine. Beyond the risk of structure failure, 

foundation settlement needs to be closely monitored for 

preserving the verticality of the tower and ensure an overall 

good health of the entire system. In particular, remote sensing 

techniques enable the investigation of foundation settlement 

while ensuring an off-site and non-invasive monitoring of the 

turbines.  

Satellite data based monitoring was largely applied to 

investigate landslides and ground deformation in non-urban 

areas [5, 6], but, in the past few years, it also gained popularity 

in the structural field [7, 8]. In fact, multi-temporal Differential 

Interferometric Synthetic Aperture Radar (DInSAR) 

techniques allow obtaining the displacement information of 

several points, called Permanent Scatterers (PSs) [9], both on 

the ground and on reflective elements with millimetric 

precision [10] – also thanks to the developments of X band 

SAR systems [11]. 

Combining displacement information from both satellite 

orbits – ascending (ASC) and descending (DES) – of PSs 

belonging to structure surfaces, it is possible to obtain 

displacement information about the structure itself [12, 13]. For 

instance, through the use of high-resolution dual-orbit satellite 

data, it is possible to estimate the 3D rigid motion components 

of buildings, which can be generally linked to their foundation 

settlement [14]. Specifically, rigid translations can be an 

indicator of total settlement, while rigid rotations may indicate 

a differential settlement. 

Besides the potential to investigate displacements over large 

areas with high accuracy, advantages of satellite data use in 

SHM include the possibility of portraying off-site and non-

invasive monitoring, thus reducing both time and costs of 

instrument installation. Moreover, traditional monitoring 

equipment does not allow for obtaining results in a reasonable 

time if the foundation settlement phenomenon is slow; on the 
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contrary, satellite techniques enable the analysis of past data - 

even 10 years before the time of analysis - proving to be 

effective when there is a need to obtain information from the 

past. 

As part of a broader effort to detect potential foundation 

settlements in wind turbines, this paper introduces the initial 

stage of a procedure to estimate the 3D motion components of 

wind turbines using high-resolution dual-orbit satellite data. 

Formulations provided by Bassoli et al. [14] were adapted to 

the wind turbine case, which is modeled as a 1D rigid body. 

Also, analytical formulations for evaluating uncertainties 

regarding each motion component are presented. The main 

sources of error are related to measurement and positioning. 

Specifically, the measurement error includes the unavoidable 

uncertainties associated with measuring the displacements of 

PSs along the lines of sight. The positioning error refers to the 

uncertainties involved in placing the scatterers along the height 

of the turbine. At the present stage, a posteriori estimates of the 

uncertainties are presented and validated based on simulated 

data. Monte Carlo simulations were conducted to generate 

synthetic satellite data and obtain results under various 

conditions – detailed in section 3 – accounting for both primary 

sources of error. This allowed for a thorough assessment of the 

reliability of the proposed analytical expressions and supports 

their applicability to real-world scenarios. In future research, 

the procedure will be further developed by proposing a priori 

estimates based on simplified hypotheses and by applying them 

to real wind farms. 

The paper is organized as follows. In section 777, analytical 

expressions relating 3D motion components of the turbine with 

displacement read along the line of sight are shown, as well as 

the procedure used to derive the uncertainties, with a specific 

emphasis on the positioning uncertainties. In section 3, the 

numerical simulations performed to verify the analytical 

expressions are outlined, while numerical and analytical results 

are presented and compared in section 4. Finally, conclusions 

are drawn. 

2 IDENTIFICATION OF RIGID MOTION 

COMPONENTS FROM SATELLITE DATA 

 Geometry and satellite data definition 

The wind turbine is modeled as a 1D rigid body firmly 

constrained to the foundation slab. Supposing that the slab-

turbine connection happens at the exact center of gravity of the 

foundation, a reference system can be built as described: origin 

in the center of gravity (G), and x, y and z axes along the W-E, 

S-N and vertical directions respectively. In Figure 1, satellite 

geometry as well as an example of the PSs placement along the 

turbine height are reported. Note that all PSs are assumed to be 

aligned along the turbine z-axis; therefore, the planar 

positioning error is not considered.  

In this study, all satellite geometry parameters — such as 

heading angles, measurement accuracy, and ground resolution 

— were assumed to match those of the COSMO-SkyMed 

constellation operating in StripMap mode over Italian regions. 

Specifically, the heading angles β𝐴 and β𝐷, representing the 

satellite orbit inclination with respect to the S-N direction, were 

set to β𝐴 = 350° and β𝐷 = 190°. The measurement accuracy 

was assumed to range from 1 to 2 mm/yr, and the ground 

resolution was taken as 3m×3m. 

 

Figure 1. Satellite geometry: incidence angles and PSs 

positioning (a) and heading angles (b). 

The same parameters were also used in the methodology to 

estimate rigid motion components and their associated 

uncertainties in [14]. The high resolution provided by this 

constellation makes COSMO-SkyMed data particularly well-

suited for structural monitoring applications. 

 3D motion component estimation 

In this study, the 3D rigid motion of wind turbines is estimated 

using the approach proposed by some of the authors in [14]. 

This method was originally developed to assess the motion of 

buildings modeled as 3D rigid bodies. Based on the structural 

geometry and satellite parameters, it allows for the evaluation 

of translations along the W-E and vertical directions, as well as 

rotations around the W-E, S-N, and vertical directions. The 

expressions proposed in [14] are adapted here to the case of 

wind turbines. Specifically, since the wind turbine is modeled 

as a 1D body, the rotation component along the z-axis was 

neglected. As with buildings, the translation along the S-N axis 

cannot be accurately assessed due to the limited sensitivity of 

SAR measurements in detecting displacements in the S-N 

direction [10, 15, 16].  

It is important to emphasize that, to evaluate the full 3D rigid 

motion of the turbine, displacements of PSs measured in both 

orbits are required [15].  

To avoid temporal misalignment of PSs displacements, the 

formulations are applied to the mean annual velocities of PSs 

(mm/yr), rather than to specific time instants. Additionally, due 

to the rigid motion assumption, spatial resampling to align PSs 

measured in ascending and descending orbits is unnecessary 

[17]: all permanent scatterers associated with the turbine 

contribute to the motion estimation. 

Considering clockwise rotations as positive, the 

displacement of the generic point P with respect to G can be 

written as: 

{

𝑣𝑥,P = 𝑣𝑥,G + Φ𝑦,G𝐷𝑧,P

𝑣𝑦,P = 𝑣𝑦,G − Φ𝑥,G𝐷z,P

𝑣𝑧,P = 𝑣𝑧,G

 (1) 

where 𝑣𝑥,G, 𝑣𝑦,G, 𝑣𝑧,G, represent the translations along the three 

directions while Φ𝑥,G and Φ𝑦,G are the rotations around the x- 

and y- axes. Finally, 𝐷𝑧,P indicates the elevation of point P 

relative to G. 

The displacement of point P is then projected along the 

ascending and descending lines of sight (LOSs) of the satellite 

constellation. Incidence angles α𝐴 and α𝐷 indicate the 

inclination of the satellite LOSs with respect to the vertical 
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direction, while β𝐴 and β𝐷 are the heading angles. Adopting the 

values reported in section 2.1, sin β𝐴 and sin β𝐷 can be  

approximated as 0 while cos β𝐴 and cos β𝐷  can be 

approximated as +1 and –1, respectively. Based on these 

considerations, and since that the translation component along 

the y-axis cannot be estimated due the limited sensitivity of 

SAR data in S-N direction, the displacement of point P 

projected onto the ascending and descending LOSs can be 

expressed as: 

{
𝑑𝐴,P = 𝑣𝑧,G cos α𝐴 − 𝑣𝑥,G sin α𝐴 − Φ𝑦,G𝐷𝑧,P sin α𝐴

𝑑𝐷,P = 𝑣𝑧,G cos α𝐷 + 𝑣𝑥,G sin α𝐷 + Φ𝑦,G𝐷𝑧,P sin α𝐷
 (2) 

A system of two equations in three unknowns – that are the 

translations in W-E and vertical directions and the rotation 

along the S-N direction – is obtained. To determine 𝑣𝑥,G, 𝑣𝑧,G 

and Φ𝑦,G, at least three PSs from the two orbits are required. 

Assuming n PSs are available for the ascending orbit and m for 

the descending one, the system can be expressed as: 

[
 
 
 
 
 
𝑑𝐴,1

⋮
𝑑𝐴,𝑛

𝑑𝐷,1

⋮
𝑑𝐷,𝑚]

 
 
 
 
 

=

[
 
 
 
 
 
−sin 𝛼𝐴 cos 𝛼𝐴 (−𝐷𝑧,1sin 𝛼𝐴)

⋮ ⋮ ⋮
−sin 𝛼𝐴 cos 𝛼𝐴 (−𝐷𝑧,𝑛sin 𝛼𝐴)

sin 𝛼𝐷 cos 𝛼𝐷 (𝐷𝑧,1sin 𝛼𝐷)

⋮ ⋮ ⋮
sin 𝛼𝐷 cos 𝛼𝐷 (𝐷𝑧,𝑚sin 𝛼𝐷) ]

 
 
 
 
 

[

𝑣𝑥,G

𝑣𝑧,G

Φ𝑦,G

]  (3) 

and can be synthesized as: 

𝐌 =  𝐒 𝛝  (4) 

where M is a Ns×1 vector, being Ns=n+m, containing PSs 

displacements along the LOSs, ϑ is a 3×1 vector containing 

rigid motion components of the turbine, and S is a Ns×3 matrix 

containing satellite geometries and the height of PSs. 

Note that, due to measurement uncertainties thoroughly 

described in section 2.3, the theoretical displacement 

measurements in M are never exactly equal to the ones directly 

obtained from the satellite M*. Thus, to obtain the best ϑ 

estimate, the least square operation must be applied: 

𝛝̂  =  (𝐒𝐓𝐒)−𝟏 𝐒𝐓𝐌∗  (5) 

To assess the turbine motion relative to the ground, the terrain 

motion components must also be estimated and subtracted from 

the turbine motion. However, for the sake of simplicity, this 

study assumes the ground motion components to be zero. 

 Uncertainties estimation of rigid motion components 

This section outlines the evaluation of the uncertainties 

associated to the above estimated motion components 

according to the procedure proposed in [14]. As previously 

stated, there are two main sources of error working with PS 

displacement data: measurement and positioning errors. 

Measurement error concerns the inevitable uncertainty 

committed when detecting the PS displacements along the 

LOSs, while positioning error regards the placement of the PS 

inside the resolution cell [14]. In this case, since PSs are 

supposed perfectly aligned to G, positioning uncertainties only 

regard the PS placement along the vertical direction. Using the 

product rule for derivatives, the variation of the ϑ vector can be 

expressed as: 

Δ𝛝 = ΔBM + BΔM = ∑ (
∂B

∂𝐷𝑧,𝑘

)

k

MΔ𝐷𝑧,𝑘 + BΔM  (6) 

where 𝐁 =  (𝐒T𝐒)−1𝐒T represents the pseudo-inverse of 

matrix S, M contains the PSs displacements along the LOSs, 

and 𝐷𝑧,𝑘 is the elevation of the k-th PS. Lastly, k=1,..., n or 

k=1,..., m for the ascending or the descending PSs, respectively. 

Assuming that measurement and positioning errors are not 

correlated [14], the total covariance matrix Σ(𝛝) can be 

expressed as the sum of the measurement covariance matrix 

and the positioning covariance matrix as follows: 

𝚺(𝛝)  =  𝚺𝐌(𝛝) +  𝚺𝐏(𝛝)  (7) 

where the terms 𝚺𝐌(𝛝) and 𝚺𝐏(𝛝) indicate, respectively, 

contributions of measurement and positioning errors to the 

covariance matrix. Particularly, on the main diagonals, 

variances associated with each motion component can be 

found. 

The covariance matrix associated to the measurement error 

𝚺𝐌(𝛝) can be obtained as:  

𝚺𝐌(𝛝) = B 𝚺(M) BT (8) 

Under the non-correlation hypothesis among the measures of 

PSs, 𝚺(M) can be assumed as a Ns×Ns diagonal matrix with 

terms equal to σ̅M
2  on the main diagonal, representing the 

measurement accuracy. Thus, eq. (8) can be written as follows: 

𝚺𝐌(𝛝) = σ̅M
2 BBT = σ̅M

2 (STS)−1ST((STS)−1ST)T =

= σ̅M
2 (STS)−1

 (9) 

According to section 2.1, typical values for σ̅M for COSMO-

SkyMed data range from 1 to 2 mm/yr. However, to assess the 

applicability of the procedure, numerical simulations presented 

in the next section were conducted using values of 1, 2 and 5 

mm/yr. 

The positioning covariance matrix can be expressed as 

follows:  

𝚺𝐏(𝛝) = (
∂B

∂D
M)𝚺(D) (

∂B

∂D
M)

T

= J𝚺(D)JT (10) 

where J is the 3×Ns Jacobian matrix whose components can be 

expressed as: 

J𝑘 =
∂𝛝

∂𝐷𝑧,𝑘

=

[
 
 
 
 
 
 
∂𝑣𝑥,G

∂𝐷𝑧,𝑘

∂𝑣𝑧,G

∂𝐷𝑧,𝑘

∂Φ𝑦,G

∂𝐷𝑧,𝑘 ]
 
 
 
 
 
 

 (11) 

J𝑘 can also be written as: 

J𝑘 =
∂𝛝

∂𝐷𝑧,𝑘

=
∂[(STS)−1ST]

∂𝐷𝑧,𝑘

M =

1

|(ST
S)|

[−
∂|(STS)|

∂𝐷𝑧,𝑘

I +
∂[adj(STS)]

∂𝐷𝑧,𝑘

STS +

+adj(STS)
∂ST

∂𝐷𝑧,𝑘

S] 𝛝

 (12) 
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with adj(STS) and |(STS)| indicating the adjoint matrix and the 

determinant of (STS), respectively. Finally, 𝚺(D) is a diagonal 

matrix with elements σ̅P𝑧
2 , representing the positioning 

accuracy along the vertical direction.  

Monte Carlo simulations were carried out for estimating σ̅P𝑧, 

considering the resolution cell size of the COSMO-SkyMed 

constellation, equal to 3m×3m. The turbine tower can be 

divided into resolution segments RSs, which represent the 

projection of the ground resolution cell along the vertical 

direction. Random PS positions inside the ascending and 

descending resolution segments were simulated. The value of 

σ̅P𝑧 was defined as the standard deviation of the distance of the 

PS from the segment centre. For this specific case, the 

formulations were applied to incidence angles of α𝐴 = 32.64° 
and α𝐷 = 37.10°. The obtained results are displayed in Table 

1, while the trends of resolution segment lengths and standard 

deviations with the incidence angle are displayed in Figure 2. 

It is interesting to note that, since the resolution segment 

dimension depends on the incidence angles α𝐴 and α𝐷, 

scatterers measured in the ascending orbit will display a 

different resolution than those measured in the descending 

orbit. In summary, the analytical formulation of the total 

uncertainty affecting each motion component can be derived by 

directly applying the error propagation law to both 

measurement and positioning errors:  

σT(ϑ𝑟) = √σP
2(ϑ𝑟) + σM

2 (ϑ𝑟)  (13) 

where σM(ϑ𝑟) and σP(ϑ𝑟) indicate, respectively, the measuring 

and positioning errors associated with the generic r-th motion 

component.  

3 PROCEDURE FOR DATA SIMULATION  

This section presents the numerical analyses designed to assess 

the performance of the procedure described in section 2. The 

analysis is based on: (i) applying rigid motion to an 

hypothetical turbine, (ii) simulating satellite measurements 

with incorporated measurement and positioning uncertainties, 

(iii) evaluating the rigid motion as outlined in section 2.2, (iv) 

comparing the imposed and estimated displacements, and (v) 

assessing the variability of the results.  

The first step involved defining the geometric parameters of 

the wind turbine. A typical height of modern wind turbines is 

about 100 meters. For this reason, a maximum height D of 100 

m was assumed. Next, the satellite characteristics of the 

COSMO-SkyMed constellation are chosen according to section 

2.1. Incidence angles of the ascending and descending orbit are 

set equal to α𝐴 = 32.64° and α𝐷 = 37.10°, respectively.  

To simulate PS mean annual velocities and positions, motion 

component values needed to be imposed to the turbine, thus 

defining vector ϑ. Matrix S was reconstructed by incorporating 

 

Table 1. Positioning accuracy. 

Orbit Incidence 

angle α  

[°] 

Incidence 

angle α 

[rad] 

Resolution 

segment RS 

[m] 

Standard 

dev. σ̅P𝑧  

[m] 

ASC 32.64 0.57 4.684 1.351 

DES 37.10 0.65 3.967 1.144 

 

Figure 2. Trend of the standard deviation σ̅P𝑧 and of the 

resolution segment RS with the satellite incidence angle. 

the previously defined satellite geometries and a specific 

number of PSs, which was constrained by an upper limit based 

on the tower height and the resolution cells dimensions.  

To simulate the measurement errors, quantities extracted 

from a Gaussian distribution with zero mean and a standard 

deviation of σ̅M were added to the velocities in vector M. 

Measurement uncertainties were assessed in the cases of σ̅M=1 

mm/yr, σ̅M=2 mm/yr and σ̅M=5 mm/yr.  

To clearly evaluate the impact of measurement and 

positioning errors, three scenarios are analyzed: the 

contribution of measurement errors alone, the contribution of 

positioning errors alone, and the effect of both. To account for 

the contribution of only measurement errors, the PSs were 

positioned at the exact center of each resolution segment. The 

PSs velocities along the lines of sight were then computed 

applying eq. (4). Instead, to account for only positioning errors, 

the PS velocities were kept without any uncertainties, while 

random errors were introduced into the PS heights within 

matrix S. These errors shifted the PSs positions randomly 

within their resolution segments, displacing them from the 

center but ensuring they remained within the segment 

boundaries. Finally, the case where both measurement and 

positioning uncertainties are considered was evaluated. Total 

uncertainty for each motion component was numerically 

estimated by combining the two approaches: both the PS 

velocities in vector M and the PS elevations in matrix S were 

perturbed from their exact values by adding random quantities 

extracted as described above. For quantifying the analytical 

uncertainty, the measurement and positioning errors formulas 

were combined through the error propagation law (eq. (13)).  

For each of these three scenarios, the analytical error 

formulations were compared to the numerical ones across three 

different cases:  

1) The PS number was kept constant, while the motion 

components were varied in discrete steps, ranging from 

zero to their maximum values according to Table 2. 

2) The motion components were kept at a constant value – 

equal to the maximum one – while the PS number was 

varied from a minimum of two per orbit up to the 

maximum one; 
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Table 2. Ranges of variation of the imposed motion 

parameters. 

Motion component 
Min 

value 

Max 

value 
Step 

𝑣𝑥,G [mm/yr] 0 10 0.2 

𝑣𝑧,G [mm/yr] 0 100 2 

Φ𝑦,G [mrad/yr] 0 2 0.04 

 

3) The PS number was kept constant, while one motion 

component at a time was varied in discrete steps, as in 

case 1), with the others held at a constant zero value.  

For each step of the three cases, Monte Carlo simulations 

were performed to characterize the rigid motion component 

uncertainties, which are then compared with the analytical ones 

obtained from in eqs. (9), (10) and (13).  

4 RESULTS 

In this section, the results obtained for each of the cases 

outlined above will be discussed and presented in the form of 

graphs and tables. Note that, for simplicity, only the results 

related to the vertical translation and rotation of the turbine are 

shown, as they are considered the most representative of 

foundation settlement. However, the procedure can also be 

applied to W-E translation. 

 Measurement uncertainties 

The first scenario, which includes only measurement errors and 

excludes positioning errors, is presented in this subsection. The 

results are presented in terms of the uncertainty values of the 

rigid motion components as the value of the component itself 

and the number of PSs on the structure vary. 

4.1.1 Case 1: variation of the uncertainties with the motion 

amplitude 

The results are presented in graph form (Figures 3 and 4) for 

the cases of σ̅M=1, 2 and 5 mm/yr. Both the error and the 

coefficient of variation (CoV) associated with each motion 

component are shown as the corresponding motion component 

varies. For clarity, results for the maximum step are also 

provided in Table 3 for the case of σ̅M= 2 mm/yr, which is 

considered the most representative measurement precision for 

this specific case. 

As expected, both numerical and analytical uncertainties 

decrease as measurement accuracy increases – namely, the 

value of σ̅M decreases. Additionally, it is important to note that 

the measurement uncertainty is independent on the motion 

component amplitude. This result is expected because eq. (8) 

states that the value of σM(𝛝) is independent on 𝛝. On the other 

hand, the coefficient of variation of the uncertainty decreases if 

the motion component increases. As observed from both the 

tables and graphs, the numerical uncertainty appears to be well 

approximated by the analytical formulations at each motion 

step, indicating that the motion entity does not affect the 

accuracy of the analytical models. 

4.1.2 Case 2: variation of the uncertainties with the number 

of PSs 

The results are presented in Figures 5 and 6. The first graph 

depicts the values of σM(𝑣𝑧,G) and the CoV of 𝑣𝑧,G as a function 

of the number of PS in the ascending and descending orbits for 

the cases of σ̅M=1, 2 and 5 mm/yr, while the second one shows 

the values of σM(Φ𝑦,G) and the CoV of Φ𝑦,G under the same 

conditions. For simplicity, the results are presented for the case 

where both orbits have the same number of PSs; in fact, the 

final step involves the use of 21 scatterers per orbit. Note that, 

as stated in section 2.2, 𝑛 and 𝑚 indicate, respectively, the 

number of PSs available for ascending and descending orbit.  

Table 3. Measurement uncertainties on the rigid motion 

components - σ̅M=2 mm/yr, last step. 

Component 𝑣𝑥,G 

[mm/yr] 

𝑣𝑧,G 

[mm/yr] 

Φ𝑦,𝐺 

[mrad/yr] 

Imposed 10.000 100.000 2.000 

Simulated 9.992 100.002 2.000 
    

σM(ϑ𝑟) 
Numerical  1.048 0.375 0.018 

Analytical  1.028 0.363 0.018 
     

CoV(ϑ𝑟) 
Numerical  10.48% 0.375% 0.917% 

Analytical  10.29% 0.363% 0.900% 

 

Figure 3. Influence of 𝑣𝑧,G on the measurement 

uncertainties: (a) σM(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 4. Influence of Φ𝑦,G on the measurement 

uncertainties: (a) σM(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 
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Figure 5. Influence of the PS number on the measurement 

uncertainties: (a) σM(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 6. Influence of the PS number on the measurement 

uncertainties: (a) σM(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 

To obtain uncertainties, at least two permanent scatterers are 

required per orbit. The results corresponding to the maximum 

number of permanent scatterers align with those shown in 

Table 3 for the σ̅M= 2 mm/yr case. As expected, the 

uncertainties in the rigid motion parameters decrease as the 

number of PSs increases. For instance, in the case of S-N 

rotation Φ𝑦,G, the coefficient of variation approaches nearly 

20% if only 4 PSs are given and it decreases to a value less than 

4% in the case of a number of PS greater than 18. Additionally, 

the numerical uncertainties appear to be well approximated by 

the analytical formulations, regardless of the PSs number. 

However, when only 2 scatterers per orbit are considered, the 

analytical formulations tend to underestimate the uncertainty, 

especially at lower measurement accuracy values. It can be 

observed that, to obtain significant results, at least five 

scatterers are needed in each orbit.  

 Positioning uncertainties 

In this subsection, the results including only the positioning 

error are presented as a function of the amplitude of the motion 

component as well as of the number of observed PSs. 

4.2.1 Case 1: variation of the uncertainties with the motion 

amplitude 

Results are displayed in Figures 7, 8, and Table 4. The variation 

of σP(𝑣𝑧,G) and CoV of 𝑣𝑧,G with the value of 𝑣𝑧,G are shown 

in Figure 7, while the variation of σP(Φ𝑦𝐺) and CoV of Φ𝑦G 

with the value of Φ𝑦G are shown in Figure 8. 

Numerical simulations were performed by introducing 

random perturbations to each PS position, as described in 

section 3. In contrast, analytical errors were computed using the 

method and parameters described in section 2.3.  

The good agreement between the numerical and analytical 

uncertainties, as well as the CoVs for each motion component, 

demonstrates that the proposed analytical models provide a 

reliable approximation of the numerical errors, even in the case 

of positioning errors. It is also observed that, as predicted by 

eq. (12), positioning errors increase with the magnitude of the 

considered motion component, indicating that the positioning 

uncertainties do depend on the motion entity.  

 

 

Figure 7. Influence of t 𝑣𝑧,G on the positioning uncertainties: 

(a) σP(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G.  

 

Figure 8. Influence of Φ𝑦,G on the positioning uncertainties: 

(a) σP(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 
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Table 4. Positioning uncertainties on the rigid motion 

components, last step. 

Component 𝑣𝑥,G 

[mm/yr] 

𝑣𝑧,G 

[mm/yr] 

Φ𝑦,𝐺 

[mrad/yr] 

Imposed 10.000 100.000 2.000 

Simulated 10.166 99.999 1.997 
    

σP(ϑ𝑟) 
Numerical  0.718 0.259 0.013 

Analytical  0.723 0.258 0.013 
     

CoV(ϑ𝑟) 
Numerical  7.06% 0.259% 0.634% 

Analytical  7.11% 0.258% 0.631% 

 

 

Figure 9. Influence of the PS number on the positioning 

uncertainties: (a) σP(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 10. Influence of the PS number on the positioning 

uncertainties: (a) σP(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 

 

4.2.2 Case 2: variation of the uncertainties with the number 

of PSs 

Figures 9 and 10 show the results as a function of the PS 

number. Specifically, Figure 9 illustrates the variation in 

positioning uncertainty σP(𝑣𝑧,G) and in the CoV of 𝑣𝑧,G, while 

Figure 10 presents the variation in positioning uncertainty 

σP(Φ𝑦,G) and in the coefficient of variation of Φ𝑦,G.  

Note that, in line with the measurement error case, the values 

of σP(𝑣𝑧,G) and σP(Φ𝑦,G) tend to increase as the number of PSs 

decreases. Specifically, although the numerical uncertainty is 

generally well approximated by the analytical formulations, 

when only 2 PSs per orbit are considered, the analytical 

formulations underestimate both the uncertainties and the 

coefficients of variation. 

4.2.3 Case 1: variation of the uncertainties with the motion 

amplitude 

As observed in the previous case, positioning error is indeed 

influenced by the motion entity. Therefore, it is crucial to 

identify which motion components have the greatest impact on 

the error. Figure 11, Figure 12 and Figure 13 show the variation 

in positioning uncertainty with the magnitude of the motion 

components. As shown, positioning errors seem to be 

uncorrelated with variations in 𝑣𝑥,G and 𝑣𝑧,G. Specifically, their 

values are in the order of 10−10 mm/yr and rad/yr.  

On the other hand, positioning errors appear to be strongly 

correlated with rotation; therefore, only the turbine's rotation 

can induce errors in the positioning of the PS.  

Regardless of the variations in motion components, 

analytical formulations appear to provide a good approximation 

of numerical errors. 

 Total uncertainties 

4.3.1 Case 1: variation of the uncertainties with the value of 

the motion component 

Figures 14 and 15 display the results in the form of graphs: as 

previously stated, the considered positioning precision is 

detailed in   

, while for immediacy measurement precision is fixed at σ̅M= 

2 mm/yr. Particularly, Figure 14 details how the variation in 

𝑣𝑧,G influences the total error σT(𝑣𝑧,G) and CoV of 𝑣𝑧,G, while 

Figure 15 illustrates the total error σT(Φ𝑦,G) and CoV of Φ𝑦,G 

as a function of Φ𝑦,G. For the sake of clarity, results regarding 

the maximum 𝑣𝑧,G and  Φ𝑦,G values are also displayed in table 

form in Table 5. 

 

Figure 11. Influence of 𝑣𝑥,G on the positioning uncertainties: 

σP of 𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 
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Figure 12. Influence of 𝑣𝑧,G on the positioning uncertainties: 

σP of 𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 

 

Figure 13. Influence of Φ𝑦,G on the positioning 

uncertainties: σP of 𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 

Numerical simulations of uncertainties were performed as 

outlined in section 3. In contrast, analytical errors were 

computed using the method and parameters described in 

Section 2.3; in particular, adopting the formula described in 

equation (13). The good agreement between the numerical and 

analytical uncertainties, as well as the CoVs for each motion 

component, demonstrates that the proposed analytical models 

provide a reliable approximation of the numerical errors, even 

in the case of total errors. Note that measurement errors seem 

to be the largest contributor to the total uncertainty, while 

positioning error becomes a more significant factor as the 

motion component increases. 

4.3.2 Case 2: variation of the uncertainties with the number 

of PSs 

In Figure 16, the variations of the total error σT(𝑣𝑧,G) and of 

the total CoV of 𝑣𝑧,G as a function of PSs number are displayed. 

Moreover, Figure 17 depicts the variation of the total error 

σT(𝑣𝑧,G) and of the total CoV of 𝑣𝑧,G as a function of PSs 

number. Note that, as anticipated, errors increase as the number 

of PSs decreases. 

 

Figure 14. Influence of 𝑣𝑧,G on the total uncertainties: (a) 

σ(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 15. Influence of Φ𝑦,G on the total uncertainties: (a) 

σ(Φ𝑦,G) and (b)CoV of Φ𝑦,G. 

Table 5. Total uncertainties on the rigid motion components 

- σ̅M=2 mm/yr, last step. 

Component 𝑣𝑥𝐺  

[mm/yr] 

𝑣𝑧𝐺  

[mm/yr] 

𝛷𝑦𝐺  

[mrad/yr] 

Imposed 10.000 100.000 2.000 

Simulated 10.143 99.996 1.997 
    

σT(ϑ𝑟) 
Numerical 1.273 0.447 0.022 

Analytical 1.248 0.444 0.022 
     

CoV(ϑ𝑟) Numerical 12.55% 0.447% 1.119% 

Analytical 12.31% 0.444% 1.092% 

 

Similarly to the cases of measurement and positioning 

uncertainties, the numerical uncertainty is generally well 

approximated by the analytical formulations. The only 

exception occurs when 2 scatterers per orbit are considered, 

where the analytical formulations underestimate the numerical 

errors. 
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Figure 16. Influence of the PS number on the total 

uncertainties: (a) σ(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 17. Influence of the PS number on the total 

uncertainties: (a) σ(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 

4.3.3 Case 1: variation of the uncertainties with the motion 

amplitude 

Results are presented in Figures 18, 19 and 20. In particular, the 

three graphs depict how the variations in 𝑣𝑥,G, 𝑣𝑧,G and Φ𝑦,G, 

respectively, influence the total errors σT(𝑣𝑥,G), σT(𝑣𝑧,G) and 

σT(Φ𝑦,G).  

As already observed in the positioning uncertainties case, the 

rotation appears to be the only motion component affecting the 

uncertainty, while the translations have no effect on the error. 

Specifically, an increase in Φ𝑦,G directly translates in an 

increase of the component total errors. In any case, the 

analytical formulations provide an effective approximation of 

the numerical errors: their quality is validated by their accurate 

approximation of numerical errors in each of the presented 

cases. 

CONCLUSIONS 

This paper proposes a method for estimating the 3D rigid 

motion components of wind turbines and the corresponding 

uncertainties using DInSAR satellite data.  

 

Figure 18. Influence of 𝑣𝑥,G on the total uncertainties: σT of 

𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 

 

Figure 19. Influence of 𝑣𝑧,G on the total uncertainties: σT of 

𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 

 

Figure 20. Influence of Φ𝑦,G on the total uncertainties: σT of 

𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 
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Rigid motion of wind turbines can be generally associated 

with foundation settlement, a gradual phenomenon that can 

potentially cause damage to both structural and non-structural 

elements. Traditional Structural Health Monitoring techniques 

typically require extended acquisition times, making them 

economically impractical, particularly in foundation settlement 

cases. In contrast, satellite-based monitoring allows for the 

direct analysis of historical displacement time series without 

the need for on-site instrumentation, while enabling the 

monitoring of displacements over large areas with high 

accuracy. The proposed approach utilizes the mean annual 

displacement of permanent scatterers along the lines of sight, 

thereby eliminating the need for temporal and spatial 

resampling of satellite data.  

The accuracy of the proposed approach was evaluated using 

Monte Carlo numerical simulations, in which satellite data 

were generated while accounting for uncertainties in both the 

displacement of the considered scatterers (measurement errors) 

and their vertical positioning along the wind turbine 

(positioning errors). The numerical results were then compared 

with those derived from the analytical expressions initially 

presented in [14] and adapted for application to wind turbines. 

The satellite data parameters were based on those of the 

COSMO-SkyMed constellation, which is particularly well-

suited for structural monitoring applications. Numerical errors 

and analytical uncertainties were evaluated across various 

scenarios, including variations in the 3D motion components 

and the number of available PSs on the turbine. As expected, 

an increased number of available PSs leads to reduced 

uncertainties, while larger turbine rotations result in greater 

errors. In contrast, the uncertainties remain uncorrelated with 

both vertical and horizontal translations. 

The method presents certain limitations, including the 

approximation of the turbine as a purely rigid body, which 

necessitates fitting the data to a rigid model without accounting 

for possible structural deformations. Additionally, the approach 

relies on Permanent Scatterers (PS), which – depending on the 

processing technique – can be affected by noise due to both 

decorrelation and atmospheric effects, potentially impacting 

the accuracy of the results. Nevertheless, the strong agreement 

observed between numerical simulations and analytical 

predictions confirms the robustness of the proposed procedure 

in estimating the rigid-body motion of wind turbines and the 

associated uncertainties. The method demonstrates high 

precision, with uncertainties on the order of tenths of 

millimeters and/or milliradians per year. 

The next steps of the research involve attempting to obtain a 

priori estimates of the uncertainty based solely on the 

knowledge of the potential number of PS present, to assess 

whether satellite data can already provide the required accuracy 

during the phase of selecting the monitoring methodology. For 

this purpose, simplifications regarding the distribution of PS 

will be made. Additionally, data from a wind farm will be 

analyzed to evaluate the possibility of applying the 

methodology to real cases. 
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