
13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-109 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 700 

ABSTRACT: Advancements in road infrastructure health monitoring through sensor networks offer a transformative solution to 

the limitations of traditional inspection methods by enabling more accurate, real-time assessments of structural conditions. 

However, once appropriate sensors are selected and deployed, a key challenge remains: converting raw sensor data into meaningful 

health indicators (HIs) that effectively capture structural changes indicative of potential damage. A health indicator (HI) is a crucial 

metric derived from structural health monitoring (SHM) data, designed to reflect the current condition and damage state of a 

monitored structure. This study presents a machine learning-based approach leveraging principal component analysis (PCA) to 

develop a sensitive and damage-specific HI by extracting and ranking the most relevant current features. The proposed method is 

first validated through experimental fatigue testing using a four-point bending machine under random thermal conditions. To 

further evaluate its effectiveness and reliability in real-world applications, the approach is applied to field data collected from a 

network of fiber Bragg grating (FBG) sensors embedded in asphalt pavement. By analyzing strain measurements, the study 

demonstrates that the PCA-based HI successfully detects structural changes, providing a robust and data-driven solution for real-

time infrastructure monitoring. 

KEYWORDS: Health indicator, Structural health monitoring, FBG sensor networks, Principal component analysis, Fatigue 

damage detection.

1 INTRODUCTION 

A significant amount of money is spent on maintaining 

infrastructure such as roads, bridges, and other critical 

structures. To reduce maintenance costs, various non-

destructive testing (NDT) methods have been employed to 

enable predictive maintenance strategies. However, these 

methods have certain limitations. For instance, most NDT 

techniques operate offline, making continuous structural 

evaluation impossible [1]. 

To address this challenges, extensive research has been 

conducted to integrate advanced sensor technologies for 

continuous and real-time Structural Health Monitoring (SHM). 

Sensors such as accelerometers [2-4], piezoelectric sensors [5-

7], and acoustic emission sensors [8-10] have been explored for 

their ability to collect SHM data continuously, providing 

valuable insights for early damage detection and improved 

maintenance planning. 

Recently, optical sensors have emerged as a promising 

technology for infrastructure monitoring due to their unique 

advantages, such as immunity to electromagnetic interference, 

lightweight design, and, most importantly, the capability for 

distributed or quasi-distributed measurements. These features 

make optical sensors highly suitable for real-time structural 

health monitoring, enabling continuous and precise data 

collection over long distances. Additionally, their durability 

and resistance to harsh environmental conditions enhance their 

reliability for long-term deployment in critical infrastructure 

such as bridges, tunnels, and pipelines [11-17].  

Although optical sensors offer these advantages, their 

application in large-span structures generates an enormous 

amount of data, requiring specialized strategies for processing, 

compression, and reduction. Efficient data management 

techniques are essential to handle this influx of information 

while preserving critical insights for future interpretation and 

analysis. Developing advanced algorithms and intelligent data 

filtering methods can help optimize storage and computational 

efficiency without compromising the accuracy and reliability 

of structural health monitoring [18].  

Various techniques can be integrated to accomplish this 

objective, including data reduction methods [19-20] and multi-

sensor data fusion [21-22] at different processing levels. A 

structured approach involves organizing these steps to derive a 

health indicator (HI) that enables straightforward monitoring of 

a system’s health status. HI is regarded as the most informative 

feature in SHM data [23] that can be obtained using different 

frameworks including statistical, signal processing, and 

machine learning . In the literature, different criteria have been 

proposed to define an optimal HI. First viewpoint (1VP) 

suggests that an ideal HI should exhibit monotonicity, which 

represents a consistent increasing or decreasing trend over time, 

prognosability, which reflects the distribution of a variable’s 

final values, and trendability, which measures the similarity 

between different variable trajectories [24]. 

Alternatively, second viewpoint (2VP) emphasizes that an 

optimal HI should possess detectability, referring to its 

sensitivity in identifying the presence of faults, particularly the 

smallest detectable fault signatures at a given false-positive 

rate. It should also ensure separability, which is its ability to 

effectively distinguish between faulty and healthy states. 

Additionally, trendability is crucial, as the degradation trend of 
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the HI should maintain a positive correlation with operational 

time following an initial fault. However, identifying an optimal 

HI that satisfies all three properties is not a straightforward task. 

In practice, once an HI demonstrates both detectability and 

separability, it can already be considered optimal [25].  In this 

study, the second point of view is adopted as the criteria for 

defining an optimal HI. The first perspective requires extensive 

run-to-failure data, which is often challenging to obtain in real-

world scenarios due to limited data availability. Ultimately, the 

developed HI can serve as an input for a prognosis model to 

estimate the remaining useful life (RUL), which will be 

explored in future studies. 

2 OBJECTIVE AND OVERALL METHODOLOGY  

The primary objective of this study is to propose a framework 

that integrates both data reduction and fusion techniques to 

construct health indicators that effectively represent the 

damage levels of infrastructures, such as roads, monitored 

using high-density FBG sensor networks. This method can be 

applied to individual FBG sensors or groups of sensors within 

a fiber, where data fusion can be performed at the data level. 

In this approach (see Figure 1), following data acquisition via 

an embedded FBG sensor network and the management of 

large-scale collected data, a series of signal processing steps is 

applied to the raw data to prepare them for further analysis [26]. 

Subsequently, time-domain FBG signal features—including 

peak width, peak duration, and energy—are extracted from 

each segment of the pre-processed data. 

After conducting long-term monitoring over a predefined 

period, these features are ranked based on their monotonicity 

metric to retain only the most significant ones. When new data 

arrive, the extracted features are normalized relative to the 

training dataset. Following normalization, a feature fusion 

technique based on principal component analysis (PCA) is 

implemented to project these features into a reduced-

dimensional space. Since the first principal component captures 

the direction with the highest gradient in the feature space, it 

serves as a suitable indicator for representing the health status 

of the structure. 

 
Figure 1. The overall framework of the study. 

As no data is available on damage conditions from the 

embedded FBG sensor network, two approaches are used to 

evaluate the proposed framework. The first involves 

conducting an experimental fatigue test, while the second 

utilizes available FBG data to generate synthetic damage 

scenarios to validate its applicability. The following sections 

discuss these two approaches in detail. 

3 METHODS 

 Data Acquisition  

3.1.1 Experimental Fatigue Test  

An experimental test was conducted to validate the proposed 

framework for large-scale, real-world damage detection 

applications. To achieve this, a stress-control fatigue 

experiment was performed using a four-point bending machine 

(see Figure 2) on a standard asphalt beam with dimensions of 

60×60×400 mm, made from the APO-A mixture. The loading 

frequency was 10 Hz, and the temperature was varied randomly 

to simulate real-world conditions. 

For the experiment, strain gauge (SG) sensors (3×10 and 

3×20 mm) were installed to monitor strain at the bottom of the 

beam throughout the fatigue test, in order to further investigate 

the effect of strain gauge length on strain readings in asphalt 

materials. However, a detailed analysis of this effect is 

considered outside the scope of the present study. These SGs 

glued using CC-33A×5 adhesive, provided by KYOWA, 

between two internal supports. Strain data were collected using 

a compact recording system (EDX-10) at a sampling frequency 

of 500 Hz and subsequently processed using DCS-100A 

software. 

 

Figure 2. Four-point bending setup for fatigue test. 

After the test ended, the sample was damaged at the SG2 

location, as shown in Figure 3a. The temperature recorded 

during the test is also presented in Figure 3b. Temperature data 

were collected using a thermocouple placed near the beam 

during testing. 
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(a) 

 
(b) 

Figure 3. Fatigue test: (a) Damaged sample, (b) Temperature 

variations. 

The strain data collected during the test using four strain 

gauges is presented in Figures 4a–4d. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. SG responses during fatigue test: (a) SG1, (b) SG2, 

(c) SG3, (d) SG4. 

As shown in Figure 4, all SG responses exhibit load-induced 

strain signals after filtering out low-frequency components 

caused by temperature-induced strain. However, fluctuations in 

temperature can still influence the amplitude of the load-

induced strain response due to temperature-dependent changes 

in material properties. As damage propagates, the responses of 

the strain gauges are affected depending on their location. If 

damage occurs at the sensor's location, an increasing trend will 

be observed due to strain concentration in that area. 

Conversely, if damage propagates near a sensor, its response 

will show a decreasing trend. However, this effect depends on 

the distance from the damaged region. 

3.1.2 Field Test using FBG Sensor Network  

In addition to the experimental fatigue test, strain and 

temperature data were collected using a FBG sensor network 

embedded in the asphalt layer at different locations on a 

constructed test track in the Port of Antwerp & Bruges. The 

sensor network configuration is shown in Figure 5, as can be 

seen this configuration includes 32 FBG in both lateral and 

longitudinal directions [27]. 

 
(a) 
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(b) 

Figure 5. Monitoring system using FBG sensor network: (a) 

Test track, (b) FBG sensor configuration 

 

After the construction of the test track, a continuous 

monitoring campaign was initiated from April 28, 2024, to 

October 17, 2024 (28/04/2024 to 17/10/2024), powered by a 

solar system and wind turbine. During this campaign, strain and 

temperature data were collected at a 100 Hz sampling 

frequency using an eight-channel, 2000 Hz FBG-Scan 708D 

interrogator. The collected data were then processed using 

ILLumiSense v2.3.5.5 software. Figure 6 shows the 

temperature variation in the asphalt during the monitoring 

campaign. 

Figure 6 Temperature during the monitoring campaign 

collected by FBG sensor 

 Data Management and Pre-processing 

During the monitoring campaign, 20 GB of data were generated 

daily, requiring efficient management to handle this large 

volume for future analysis. To address this, an automated 

system was developed to classify, merge, and prepare the data 

for subsequent steps, as outlined in Ref. [26]. 

Then, the data needs to be pre-processed using signal 

processing techniques to prepare it for the next steps. These 

steps include filtering, thresholding, concatenation, and 

windowing. Each technique is applied for a specific purpose: 

filtering removes strain caused by temperature variations, 

thresholding eliminates noise while preserving events, 

concatenation combines short-term monitored data into long-

term datasets, and windowing ensures the data contains the 

same number of events for better comparison, as discussed in 

Ref. [26]. Figure 7 shows an example of the daily collected data 

alongside the long-term pre-processed FBG data. 

 
(a) 

 
(b) 

Figure 7 Collected FBG data during monitoring campaign: (a) 

daily data (17/05/2024), (b) long-term preprocessed data 

 Feature Extraction  

Feature extraction plays a critical role in transforming raw data 

into meaningful, compact representations that can be efficiently 

used for analysis, classification, or prediction. As raw time-

series or signal data is often too complex to interpret directly, 

extracting relevant features helps reduce dimensionality and 

focus on the most informative aspects of the data. This process 

not only improves model performance by providing more 

relevant input but also enhances the results, making it easier to 

identify underlying patterns or anomalies. In this study, several 

signal features in the time domain are calculated for each 

window of data [23], as listed in Table 1, along with peak 

width, peak duration, and energy. These features are essential 

for capturing the temporal characteristics of the signal and 

provide valuable insights into its behavior over time. Peak 

width and peak duration help describe the shape and spread of 

the signal's key events, while energy quantifies the overall 

magnitude of the signal, contributing to a more comprehensive 

understanding of its dynamics. 

Table 1. Common statistical features in time-domain [23] 

No Equation No Equation 

1 𝑋𝑚 =
∑ 𝑥(𝑛)𝑁

𝑛=1

𝑁
 9 𝑋𝑐𝑟𝑒𝑠𝑡 =

𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑚𝑠
 

2 𝑋𝑠𝑑 = √
∑ (𝑥(𝑛) − 𝑋𝑚)2𝑁

𝑛=1

𝑁 − 1
 10 𝑋𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 =

𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑜𝑜𝑡
 

3 𝑋𝑟𝑜𝑜𝑡 = (
∑ √|𝑥(𝑛)|𝑁

𝑛=1

𝑁
)

2

 11 𝑋𝑠ℎ𝑎𝑝𝑒 =
𝑋𝑟𝑚𝑠

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1

 

4 𝑋𝑟𝑚𝑠 = (√
∑ (𝑥(𝑛))2𝑁

𝑛=1

𝑁
) 12 𝑋𝑖𝑚𝑝𝑢𝑙𝑠𝑒 =

𝑋𝑝𝑒𝑎𝑘

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1
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5 𝑋𝑟𝑠𝑠 = (√∑ |𝑥(𝑛)|2
𝑁

𝑛=1
) 13 

𝑋𝑝2𝑝

= max(𝑥(𝑛)) − min (𝑥(𝑛)) 

6 𝑋𝑝𝑒𝑎𝑘 = 𝑚𝑎𝑥|𝑥(𝑛)| 14-17 𝑋𝑘_𝑐𝑚 =
∑ (𝑥(𝑛) − 𝑋𝑚)𝑘𝑁

𝑛=1

𝑁
 

7 

𝑋𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠

=
∑ (𝑥(𝑛) − 𝑋𝑚)3𝑁

𝑛=1

(𝑁 − 1)𝑋𝑠𝑑
3  

18 𝑋𝐹𝑀4 =
𝑋4_𝑐𝑚

𝑋𝑠𝑡
4  

8 

𝑋𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠

=
∑ (𝑥(𝑛) − 𝑋𝑚)4𝑁

𝑛=1

(𝑁 − 1)𝑋𝑠𝑑
4  

19 𝑋𝑚𝑒𝑑 =
∑ 𝑡(𝑛)𝑁

𝑛=1

𝑁
 

𝑥(𝑛) indicates the signal sequence for 𝑛 = 1,2, … , 𝑁. 

𝑁 indicates the number of data points. 

𝑡(𝑛) indicates the moments of occurrence of 𝑥(𝑛) 

3.3.1 Feature Ranking  

To determine the most relevant feature and develop an 

appropriate indicator, researchers have employed a specific 

metric in various studies [28]. This metric, known as 

monotonicity, captures the dominant increasing or decreasing 

trend of a feature concerning the target variable. It assesses how 

consistently a feature progresses in a specific direction. The 

monotonicity of the 𝑖𝑡ℎ feature 𝑥𝑖 is computed using the 

following equation: 

𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑜𝑐𝑖𝑡𝑦 (𝑥𝑖) =

1

𝑚
∑

|𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓 (𝑥𝑖
𝑗

)−𝑛𝑢𝑚𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑒𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓(𝑥𝑖
𝑗

)|

𝑛−1

𝑚
𝑗=1                         

(1) 

 

Where 𝑛 represents the number of windows, and 𝑚 denotes 

the number of monitored systems or structures, which, in our 

case, is 1. In this study, the metric is computed using the 

training datasets to identify the most important features for 

subsequent steps. 

 Feature Fusion  

In this step, the most important selected features need to be 

fused to create a more informative and compact representation 

in lower dimensions while preserving as much relevant 

information as possible. Feature fusion helps reduce 

redundancy and enhances the efficiency of subsequent 

analyses. In this study, PCA is employed as a dimensionality 

reduction technique to fuse the selected features. PCA 

transforms the original feature set into a new set of uncorrelated 

principal components, ranked by their ability to capture 

variance in the data.  

Before applying PCA, it is crucial to standardize the data to 

ensure that all features contribute equally to the analysis. 

Standardization prevents features with larger magnitudes from 

dominating the principal components. As a best practice, 

features should be normalized to the same scale before 

performing PCA. The mean and standard deviation used for 

normalization using z-score function, along with the PCA 

coefficients, are derived from the training data and consistently 

applied to the entire dataset.  

4 IMPELLIMENTATION  ON EXPERIMENTAL DATA 

Four strain data sets are available from the SGs for the 

experimental test, based on the proposed methodology. As the 

data has already been managed and pre-processed using the 

DCS-100A software, the next step is feature extraction. In this 

step, the features mentioned in Section 3.3 are calculated for 

the SG signals by segmenting the signals into windows of 2,000 

data points. Figure 8 presents examples of the features 

calculated for the SG signals. 

 
(a) 

 
(b) 

Figure 8 Examples of calculated features for SG sensors  

 

After calculating these features, feature ranking is performed 

using Equation (1). However, the features are smoothed to 

enhance the performance of the monotonicity function. In this 

study, a threshold value of 0.3 is applied to select features for 

fusion. Figure 9 illustrates the feature importance for each SG. 

This feature ranking step is conducted using the training 

dataset, which represents 40% of the total lifetime. 

 
(a) 

 

(b) 
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(c) 

 

(d) 

Figure 9 Feature importance: (a) SG1, (b) SG2, (c) SG3, (d) 

SG4  

Based on Figure 9, it can be concluded which features exhibit 

greater importance and maintain a more monotonic trend 

during the fatigue test. For instance, the standard deviation 

demonstrates the highest importance across all SG sensors. 

Therefore, all selected features that meet the predefined 

threshold will be utilized for fusion. 

For each SG sensor, the selected features are transformed to 

a lower-dimensional space using PCA, with normalization 

applied relative to the training dataset. The first principal 

component (PC) is chosen as it captures the maximum gradient 

in the feature space. Figure 10 illustrates the first principal 

component for each SG sensor based on the selected features. 

 
Figure 10 First principal component for each SG sensor 

 

As shown in Figure 10, the first PC appears to be a promising 

HI derived from the fused features, offering greater robustness 

compared to any single feature. For better visualization of the 

first PC as a health indicator, an exponential function is fitted 

to each curve, with all curves shifted to zero at the starting 

point, as shown in Figure 11. 

 
Figure 11 Constructed HI using SG sensor data 

As shown in Figure 11, the HI for SG sensor 2 reaches level 

5, which is recognized as the failure threshold. Therefore, this 

threshold can be used as a criterion for any new sample. 

However, due to the heterogeneous nature of asphalt, more 

experiments are required to establish a reliable threshold. Once 

validated, this HI can serve as an input to a prognosis model, 

such as an exponential degradation model, for estimating the 

remaining useful life. However, applying this approach in real 

field conditions remains challenging, as the exact failure point 

is still unknown. 

5 IMPLEMENTATION ON IN-SITU DATA 

Before implementing a method on in-situ data collected 

through an FBG sensor network embedded in the road, it is 

important to consider that, since the pavement sill is newly 

constructed, no damage is typically present, and the collected 

data can be labeled as "healthy." This dataset can then be used 

to generate synthetic data representing damaged conditions. 

Unlike experimental tests, where loading conditions are 

controlled, in this case, the loading is random, and no specific 

information about it is available. Based on experimental 

observations, damage affects sensor responses depending on its 

distance from the sensor. Therefore, two types of data can be 

generated: one where the damage occurs at the sensor location 

(G1) and another where the damage is not at the sensor location 

but within a detectable distance (G2). This can be achieved 

using an exponential function to generate synthetic data, as 

illustrated in Figure 12. 

 
(a) 
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(b) 

Figure 12 Generated synthetic data using available healthy 

data: (a) G1, (b) G2 

Now, these data can be used to implement the proposed 

method, beginning with feature extraction. For example, Figure 

13 shows the calculated features for both signals after 

segmentation into windows of 2,000 data points. 

 
(a) 

 

(b) 

Figure 13 Examples of calculated features for G1 and G2  

 

A threshold value of 0.3 is applied again to select features for 

fusion. Figure 14 illustrates the feature importance for G1 and 

G2. This feature ranking step is performed using the training 

dataset, which accounts for 40% of the total lifetime. 

 
(a) 

 

(b) 

Figure 14 Feature importance: (a) G1, (b) G2  

As shown in Figure 14, the important features vary in each 

case. For example, in the first case, central moment 3 is the top 

feature, whereas in the second case, it is not even among the 

selected features. This highlights the importance of feature 

ranking before fusion. Figure 15 illustrates the first principal 

component for each generated data based on the selected 

features. 

 
Figure 15 Feature importance: (a) G1, (b) G2  

For clearer visualization of the PC as a health indicator, an 

exponential function is fitted to each curve, with all curves 

adjusted to start at zero, as shown in Figure 16. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-109 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 707 

 
Figure 16 Constructed HI using generated data 

As shown in Figure 16, the Health Indicator (HI) for G1 

exhibits an increasing trend, while for G2, it shows a decreasing 

trend. This suggests that the HI can be used for health 

monitoring, even with real data. Although a specific threshold 

cannot be defined, an adaptive threshold could be a potential 

solution, requiring further investigation. 

6 CONCLUSIONS 

This study presents a framework to compress, reduce, and fuse 

raw data collected from a sensor network into a HI for 

monitoring road infrastructure using FBG sensor network that 

produces a sheer volume of data. The integration of sensor data 

processing, feature extraction, and machine learning methods 

enables the detection of damage in infrastructure, ensuring 

timely maintenance interventions. Key findings of this study 

are as follows: 

• Based on experimental tests, it has been confirmed 

that the sensor response is dependent on its distance 

from the damage. 

• The monotonicity metric is effective in identifying 

features sensitive to damage propagation and refining 

features before fusion. 

• The use of the first principal component as a health 

indicator demonstrates its effectiveness in tracking 

damage progression. In experimental tests, the health 

indicator’s trend helped identify damage once it 

exceeded a threshold, though further validation is 

needed to establish a universal failure threshold for 

real-world applications. 

• The proposed HI meets the key criteria for an optimal 

HI, including detectability and separability, making it 

acceptable based 2VP. Additionally, trendability can 

be achieved by taking the absolute value of the HI if 

needed.  

• The constructed HI can be used for RUL estimation 

using a prognosis model, provided the threshold is 

known. However, determining a reliable threshold 

remains a challenge for real-world applications. 

• The proposed framework is sensor-independent, 

except for some specific pre-processing steps that vary 

for each sensor. This framework can be implemented 

for infrastructure monitoring using large-scale sensor 

networks for efficient SHM. 

In conclusion, the methodology introduced in this study 

holds great promise for the future of infrastructure health 

monitoring. With further refinement and validation, it has the 

potential to make road maintenance more efficient and cost-

effective. 
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