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ABSTRACT: Monitoring the structural integrity of civil infrastructures, such as bridges and viaducts is crucial, as non-visible 

damage like post-tensioned wire breaks can lead to catastrophic failures, endangering public safety. In this study, we simulate 

post-tensioned wire breaks by generating controlled mechanical impacts using a sclerometer. These impacts are applied at varying 

distances from optical fibers cables attached to the tendons of two different structures. A novel detection framework is developed 

using distributed acoustic sensing (DAS) technology to identify post-tensioned wire breaks in a suspension and a concrete bridge 

while effectively distinguishing between vehicular noise, environmental noise, and actual wire break events. For suspension 

bridges, a spectrogram-based template matching approach is implemented, leveraging sub-band selection and image-based 

analysis to enhance sensitivity to break events while suppressing false positives from environmental noise. In concrete bridges, a 

deep learning-based convolutional neural network (CNN) model achieves 96% classification accuracy, outperforming traditional 

methods in detecting wire breaks with high precision. These approaches provide a real-time, reliable solution for structural health 

monitoring, offering significant advancements in distinguishing critical break events from background interference, improving 

bridge safety and maintenance strategies. 
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1 INTRODUCTION 

Bridge maintenance is crucial for infrastructure management, 

directly impacting public safety and economic stability. Among 

the key components of bridge structures, post-tensioned cables 

are essential for enhancing load-bearing capacity and ensuring 

structural integrity [1]. These high-strength steel tendons, 

tensioned after concrete curing, play a pivotal role in 

suspension and concrete bridges. However, wire breaks in post-

tensioned systems present a serious risk to structural stability, 

potentially causing catastrophic failures [2]. Such failures have 

led to costly repairs and tragic accidents, emphasizing the need 

for advanced monitoring and detection methods. 

Traditional detection methods for wire breaks include 

techniques such as visual inspections, electromagnetic testing, 

and strain gauges. While these approaches have served as the 

foundation for bridge maintenance, they have limitations. 

Visual inspections are subjective and often miss hidden defects, 

while electromagnetic testing is hindered by accessibility 

challenges and the need for specialized equipment [3]. Strain 

gauges, although effective in measuring tension, lack 

comprehensive coverage, particularly in inaccessible areas [4]. 

These limitations highlight the need for real-time, reliable 

systems for continuous monitoring of bridge infrastructure. 

The detection of post-tensioned wire breaks has been 

investigated using Fiber Bragg Grating (FBG) sensors and 

acoustic emission (AE) techniques, both crucial for ensuring 

the structural integrity of bridges and wind turbines. FBG 

sensors, which are point-based, detect wire breaks by 

monitoring changes in natural frequency [5], while AE 

methods, utilizing piezoelectric transducers, capture signals 

associated with wire fractures [6]. Despite their effectiveness, 

these approaches face challenges in distinguishing wire break 

signals from background noise. In contrast, Distributed 

Acoustic Sensing (DAS) technology presents a promising 

alternative by converting optical fibers into dense arrays of 

vibration sensors. DAS sensors offer continuous spatial 

coverage and capture spatiotemporal patterns, significantly 

enhancing the detection of wire breaks within noisy 

environments, particularly in large-scale structures. 

Additionally, DAS systems enable the tracking of event 

propagation along the entire length of the optical fiber, a 

capability absent in point sensors, which are limited to 

detecting localized signals and cannot monitor the full 

progression of an event. 

 DAS technology has emerged as an innovative technology 

that utilizes fiber optic cables to detect vibrations, enabling 

real-time data collection and analysis [7]. DAS technology, 

leveraging optical fibers, is currently used in various 

applications such as infrastructure monitoring [8], seismic data 

acquisition[9], security[10], and environmental research[11]. 

While DAS is typically employed for monitoring natural 

frequencies in Structural Health Monitoring (SHM)[12], this 

paper explores its use for detecting potential wire breaks in 

infrastructure. This technology addresses the shortcomings of 

traditional methods by providing reliable, continuous 

monitoring of the entire bridge, allowing for early detection and 

timely intervention to prevent minor issues from escalating into 

major problems. 

Simulating wire breakages under controlled conditions is 

essential for thoroughly testing and calibrating the DAS system 

for detecting such failures. Field testing with actual wire breaks 

in post-tensioned tendons is inherently challenging and 

impractical, as it requires the intentional damage of structural 

elements, which is not a feasible approach for testing. 
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Controlled impact testing has been widely used in structural 

health monitoring to simulate damage events in prestressed 

concrete [13], as well as for detecting wire breakages in post-

tensioned structures [14]. These methodologies substantiate the 

use of impact-induced stress waves as a reliable proxy for wire 

break simulations, enabling repeatable testing without causing 

irreversible structural damage. To generate these controlled 

impacts, a sclerometer was utilized, as it is a well-established 

industry method for producing stress waves that replicate those 

associated with actual wire failures. 

The evolution of detection algorithms for post-tensioned wire 

breaks using DAS has been driven by the need for efficient and 

accurate monitoring. Traditional, labor-intensive methods have 

been replaced by automated systems that employ artificial 

intelligence, machine learning, and advanced signal processing 

for real-time detection, even in challenging environments. 

Although DAS has proven effective in controlled settings, it 

faces challenges such as external noise and unpredictable 

conditions [15]. As an example, in railway systems, DAS 

techniques like gradient analysis and convolution have been 

used for rail break detection but can struggle with varying track 

conditions or interference [16]. 

Machine learning algorithms, such as support vector 

machines and neural networks, have improved detection 

accuracy but rely on large, labeled datasets, limiting their 

effectiveness in dynamic environments [17]. DAS systems 

have been explored as a promising solution to overcome these 

limitations in detecting wire breaks in prestressed concrete 

pipes. For instance, one study introduced a DAS system 

combined with a pre-trained support vector machine model, 

achieving 99.62% accuracy in classifying vibrational signals, 

thus automating the detection process and improving pipeline 

safety [18]. Another research applied DAS to detect wire 

breaks by analyzing key parameters, such as zero-crossing rate 

and short-time energy, which allowed for precise identification 

and location of acoustic signals generated by wire breaks in 

large experimental pipelines [19]. While both studies 

demonstrate the effectiveness of DAS in wire break detection, 

they do not address other potential causes of structural failure 

or the influence of environmental factors and external noise, 

which may limit the accuracy of these systems in practical, real-

world settings. 

This study proposes a novel approach for detecting post-

tensioned wire breaks in bridges using DAS technology. By 

strategically installing fiber optic cables along post-tensioned 

tendons, it enables continuous real-time monitoring and 

advanced signal processing to identify acoustic anomalies 

indicative of cable failures. This innovative methodology 

enhances bridge safety, reliability, and maintenance by 

addressing the limitations of current detection methods. The 

findings from this research demonstrate the potential of DAS 

to revolutionize structural health monitoring, offering a more 

efficient and cost-effective solution for premature failure 

detection and long-term infrastructure resilience. 

2  INSTALLATION AND SETUP 

An UTS-AS1000 DAS interrogator from Uptech Sensing 

was employed at two locations: a suspension bridge in Bear 

Mountain and a viaduct in Florida, both in the United States. A 

single-sensing optical fiber was used, and measurements were 

recorded with different fiber installations. The two sites were 

chosen to evaluate the DAS system’s performance in different 

structural environments.  

 Installation at Suspension Bridge 

First, in the Bear Mountain suspension bridge installation, the 

optical fiber was structurally bonded to one of the suspension 

cables using epoxy resin, enabling distributed acoustic sensing 

along the cable. A schematic representation of the installation 

is provided in Figure 1, where the monitored cable is 

highlighted in red. 

 

 

Figure 1: Schematic of the optical fiber (red line) installed at 

Bear Mountain bridge. 

   

 
(a) 

 
(b) 

Figure 2: (a) Suspension bridge with fiber optics from Type 1 

(red) and Type 2 (yellow) , placed within 1 cm of each other.                                                                                        

(b) Fiber arrangement in Type 1(red) and Type 2(yellow) 

cables with color-coded segments indicating their function. 

Two fiber optic cables from different manufacturers were 

installed in the structure: one from Prysmian (Type 1) and one 

from Solifos (Type 2), both of them containing several fibers 

for strain sensing (tight fibers in the cable) and for temperature 

sensing (loose fibers). The fiber was glued to a suspension 

cable of the Bear Mountain metal bridge by means of an epoxy 
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resin. These two fibers, strain and temperature, are widely used 

in industry when measuring with distributed strain and 

temperature sensors (DTSS), being the first tight bonded, thus 

sensitive to temperature and mechanical deformations, while 

the latter loosely bonded, therefore only much less affected by 

strain variations. However, for DAS sensing, both fibers will 

detect the acoustic events, since the sensitivity is highly 

increased with respect to a DTSS, but it is expected to have 

higher attenuation levels in loose fibers (temperature) rather 

than in tight fibers (strain). 

  The schematic representation of the cable installed in the 

structure is shown in Figure 2(a). Type 1 is highlighted in red, 

while Type 2 is highlighted in yellow. The Type 1 cable 

contains three fibers—two temperature-sensitive and one 

strain-sensitive. The Type 2 cable contains six fibers—four 

temperature-sensitive and two strain-sensitive. Together, they 

form a total of nine segments, each of the 60-m-long. The figure 

drawn is scaled for a better representation of the scenario. 

A 540 m composite fiber was formed by fusion-splicing the 

nine 60 m fiber segments in series. The purpose of creating this 

composite fiber was to investigate the impact of different fiber 

couplings on the measurements obtained by the DAS sensor, 

with the goal of determining whether significant differences in 

the results could be observed. The splicing at the different ends 

of fibers A and B is shown in Figure 2(b), with each fiber 

represented by a distinct color for clarity. In Type 1, the 

temperature-sensitive fibers are shown in blue and orange, 

while the strain-sensitive fiber is in green. In Type 2, the 

temperature-sensitive fibers are represented in purple, gray, 

red, and blue. The strain-sensitive fibers in Type 2 are shown 

in pink and black. The figure drawn is scaled for a better 

representation of the scenario. 

After creating the 540 m composite fiber, two distinct cables, 

each incorporating two different fiber types, were employed to 

evaluate the performance of both the cables and the optical 

fibers. The fiber-cable combinations were assessed to evaluate 

their impact on the system's ability to minimize false positives, 

improving the reliability of event detection. 

 Installation at Concrete Bridge 

Next, the interrogator was deployed at the Roosevelt Viaduct 

in Stuart, Florida, a major highway, where measurements were 

taken at the second location. It has a twin parallel drawbridge, 

one for northbound traffic and the other for southbound traffic. 

The interrogator was connected to a previously installed fiber 

for DTSS measurements in a road bridge in Florida. The 

sensing optical fiber is affixed to one of the tendons using an 

industrial-grade adhesive, ensuring strong coupling for 

effective vibration and acoustic sensing. This configuration 

enables the detection of structural responses to environmental 

and vehicular loads, facilitating distributed acoustic sensing 

along the bridge.  

The optical fiber was installed inside the structure of the 

Roosevelt Viaduct, with its placement highlighted in red in 

both images in Figure 3:. In Figure 3:(a), the exterior of the 

viaduct is shown for reference, providing context for the 

installation. In Figure 3:(b), the fiber was visibly integrated 

within the interior, demonstrating its positioning for structural 

monitoring. This setup was designed to optimize the detection, 

ensuring effective internal assessment of the viaduct's 

condition. Additionally, the impacts were generated at different 

distances from the fiber to evaluate the influence of the distance 

of the impact from the fiber on the detection performance. 

 

 
(a) 

 
(b) 

Figure 3: Optical fiber installation at Roosevelt Viaduct: (a) 

Exterior perspective from the structure, (b) Interior placement 

within the structure. Installed fiber is highlighted in red. 

Suspension bridges like the Bear Mountain metal bridge rely 

on cable-supported flexibility, allowing vibrations to dissipate 

through tensioned cables and the deck, resulting in distributed 

and oscillatory wave propagation. In contrast, concrete bridges 

such as the Roosevelt in Florida, with their rigid structural 

elements, transmit vibrations more directly through the solid 

slab and supporting components, leading to localized wave 

reflections and attenuation. This fundamental difference affects 

how vibrations propagate through each type of bridge[20]. This 

distinction in vibration behavior underscores the need for 

tailored monitoring approaches for each bridge type. With this 

understanding in mind, the impacts on both structures are 

approached differently. 

3 WIRE BREAK DETECTION 

 Experimental Design 

As introduced before, a controlled approach was employed, 

utilizing a sclerometer to generate impact events, simulating the 

sound and vibrations generated by a post-tensioned cable break, 

at varying distances from an optical fiber sensing cable affixed 

to the tendons of two distinct structures. The study analyzed the 

DAS system’s response to controlled impacts to assess its 

ability to detect, characterize, and locate potential tendon 

failures in real-world conditions, while minimizing the possible 

false cases generated due to other events that might produce 

similar sound patterns. 
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 On one hand, the DAS sensor is configured with a spatial 

resolution of 2m, a gauge length of 2m, and an acquisition 

frequency of 2 kHz, monitoring a 540-meter-long optical fiber 

cable on the suspension bridge installation. On the other hand, 

for the concrete bridge tests, the system used spatial resolution 

and gauge length of 3m, with the same acquisition frequency of 

2 kHz, to monitor a 3.5-kilometer-long optical fiber.   

In the suspension bridge configuration, impact events were 

generated using a sclerometer to replicate the characteristic 

waveforms of wire breakage. These impacts were delivered at 

varying angles relative to the suspension cable axis, enabling 

the investigation of strike orientation on the propagation of 

acoustic signals through the structure. As depicted in Figure 4, 

the monitoring optical fiber, highlighted in red, was positioned 

along the cable to capture the resulting waveforms. A series of 

tests was conducted under controlled conditions, with the 

impact responses systematically recorded for each test. The 

waveform of the sclerometer hits were obtained for angles of 

0º, 45º and 90º with respect to the position of the monitoring 

fiber. The resulting data were organized into a comprehensive 

dataset, facilitating further analysis of signal variations as a 

function of impact direction and intensity. 

 

Figure 4: Fiber optic scheme (red line) in suspension cable 

and sclerometer strike angle diagram relative to the position of 

the monitoring optical fiber. 

For the concrete bridge, impact events were generated at two 

carefully selected locations to assess the system's sensitivity to 

structural vibrations. As shown in Figure 5, the sensing fiber 

highlighted in red was positioned in the concrete slab to capture 

the resulting waveforms. The first set of impacts was applied at 

the midpoint of the 19th span, directly on the ground, to 

simulate the propagation of vibrations through the bridge deck. 

The second set of impacts was introduced on the ceiling, 

generating acoustic waves that traversed the upper structural 

elements. The impact events were generated at varying 

distances from fiber (0.7112m, 1.4224m, 2.032m, 3.3528m) in 

both cases. The resulting data were organized into a 

comprehensive dataset, facilitating further analysis of signal 

variations as a function of impact direction and intensity. 

 

 

Figure 5: Fiber optic scheme (red line) in concrete slab and 

sclerometer strike diagram relative to the position of the 

monitoring optical fiber in the bridge. 

 Data Analysis   

3.2.1 Data Analysis on Suspension Bridge 

Data analysis plays a crucial role in monitoring suspension 

bridges, enabling the assessment of structural integrity and the 

identification of potential issues. Nine fiber segments were 

used to monitor the same region, arranged one after the other in 

parallel. This configuration results in repeated measurements, 

with the hit observed across all nine segments. The fiber runs 

from A to B, as shown in the Figure 2(a) and Figure 2(b).  

In this study, the sclerometer hits were obtained for angles of 

0º, 45º, and 90º with respect to the position of the monitoring 

fiber. The waveform of the sclerometer hits was recorded at an 

angle of 0º relative to the position of the monitoring fiber. 

Figure 6 presents the first two segments, where the x-axis range 

from 20 to 80 meters corresponds to the first fiber segment, and 

the range from 80 to 140 meters represents the second fiber 

segment. Signal amplitudes are represented by the color scale 

previously shown, where negative values (down to -2.0 a.u) are 

indicated by blue hues and positive values (up to 2.0 a.u) are 

depicted in red, with near-zero values shown in white. All the 

waterfall plots were generated using this fixed amplitude limit 

to ensure consistent visual comparison across different events. 

Distinct diagonal and vertical patterns can be observed in the 

data distribution.  

Two segments monitor the same zone of the suspension 

cable, and the sclerometer hit was clearly visible in both, 

characterized by the diagonal pattern. This pattern was 

attributed to the propagation of the hit made at 0º angle respect 

to the structure, captured as the disturbance moves through the 

fiber. Notably, the second segment exhibits a reversed version 

of the pattern seen in the first segment, which results from the 

light in the second segment traveling in the opposite direction 

compared to the first, producing a mirror image of the hit’s 

propagation.  

 

Figure 6: Waterfall data from two segments with the hits from 

the sclerometer. 

Additionally, a fainter hit was observed closer to time 100ms, 

which was produced by the rebound of the sclerometer hit. It is 

important to note that whenever a hit is produced, it is usually 

followed by several rebounds, resulting in the consistent 

visibility of the secondary, fainter hit. Noise was also observed 

around the 80-meter mark as a vertical pattern, at the end of 

cable B, shown in Figure 2(a), is highly susceptible to wind 

exposure. This noise was not observed at end A, as this portion 

of the bridge was less affected by winds compared to the other 

end. 

A waterfall diagram containing a sclerometer stroke for the 

entire length of the fiber is shown in Figure 7. Diagonals with 

opposite slopes were observed, which were repeated along the 
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spatial axis (x-axis) and were found to correspond to the 

acoustic signals acquired by the nine optical fiber segments 

connected in series. Additionally, multiple diagonals over time 

(y-axis) were identified, representing replicas of the blow that 

had been generated by the sclerometer.  

When comparing the signals acquired from the center of each 

optical fiber region, it was evident that the strain fibers labeled 

as "c," "h," and "i" demonstrated the highest sensitivity. This 

was observed through both temporal and spatial replications, as 

each of these fibers consistently detected three replicates of the 

same event at different time intervals and locations. The 

repeated detection at multiple spatial points and across various 

times indicates that these fibers were particularly responsive to 

the transient events, highlighting their effectiveness in 

capturing the signal. In contrast, the temperature fibers had 

demonstrated variable sensitivity; fiber "d" had been able to 

detect the third replication slightly, whereas fibers "a," "b," "e," 

and "f" had not exhibited such detection capabilities. The 

consistency of the replicated patterns was observed to indicate 

a high degree of repeatability in the impact response of the 

sclerometer. This observation was found to highlight the 

reliability of strain-sensitive fibers in capturing high-frequency 

acoustic signals. Moreover, the periodic nature of the detected 

hits was noted, further reinforcing the consistency of the 

acquired signals. The temporal waveform at the center of each 

optical fiber region is presented in Figure 8. 

 

Figure 7: Waterfall diagram showing a sclerometer stroke hits 

obtained for angles of 0º acquired by the DAS sensor. 

 

Figure 8:  Waveforms at different spatial positions of the 

monitoring fiber. The spatial positions correspond to those 

indicated in Figure 7. 

The comparison of the performance across the nine segments 

highlighted distinct differences between fiber types, but no 

significant differences between cable types. As seen in Figure 

8, the strain fibers exhibited a pronounced detection pattern, 

while the temperature fibers showed a more subtle response. 

This difference is due to the tight bonding of strain fibers, 

which makes them highly sensitive to vibrations but also more 

prone to noise. In contrast, temperature fibers, with their loose 

bonding, produced less noise but were less effective at 

detecting vibrations. Therefore, the choice of fiber should 

depend on the specific application, with strain fibers ideal for 

high-sensitivity detection and temperature fibers better suited 

for scenarios where noise reduction is a priority. Additionally, 

as shown in Figure 7, the detection patterns were consistent 

across different cables when the same fiber type was used, 

indicating that cable type had a negligible impact on the overall 

detection performance. 

A similar analysis was conducted for impact angles of 45º 

and 90º with respect to the cable, revealing variations in the 

acquired waveforms. At 90º, as shown in Figure 9. The 

amplitude of the diagonals was observed to be lower than at 0º, 

and the temporal replicas of the signal could no longer be 

detected. The corresponding temporal waveform at the center 

of each optical fiber region, depicted in Figure 10, indicated 

that the amplitude of the impacts was comparable to 

background noise, making detection challenging without 

spatial information. 

 

Figure 9: Waterfall diagram showing a sclerometer stroke hits 

obtained for angles of 90º acquired by the DAS sensor. 

 

Figure 10: Waveforms at different spatial positions of the 

monitoring fiber. The spatial positions correspond to those 

indicated in Figure 9. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-095 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 623 

For the 45º impact, the amplitude of the diagonals, which 

represents the signal strength along the diagonal axis of the 

data, as shown in Figure 11, was found to be similar to that of 

the 0º impact but greater than that of the 90º impact. While 

temporal replicas were still visible, they appeared significantly 

attenuated. The temporal waveform at the center of each optical 

fiber region, presented in Figure 12, demonstrates that the 

amplitude of the initial impact was distinguishable from noise, 

whereas the replicas became indistinguishable. These findings 

indicate that while monitoring fiber effectively captured 

acoustic events at different impact angles, the detectability of 

replicated signals was highly dependent on impact orientation, 

with attenuation effects becoming more pronounced at higher 

angles. 

 

Figure 11: Waterfall diagram showing a sclerometer stroke 

hits obtained for angles of 45º acquired by the DAS sensor. 

 

Figure 12: Waveforms at different spatial positions of the 

monitoring fiber. The spatial positions correspond to those 

indicated in Figure 11. 

The monitoring composite fiber effectively captured acoustic 

events from different impact angles, although performance 

depended heavily on the impact orientation. Attenuation effects 

increased at higher angles, a phenomenon that field experts link 

to air gaps between the structure and cables at certain 

orientations, likely caused by installation flaws. Orientations 

where fibers were closer together experienced less gap 

interference, resulting in better event detection. This sensitivity 

profile indicates that high-energy events like tendon ruptures, 

especially in well-coupled areas, would produce strong, easily 

detectable signals similar to sclerometer impacts recorded 

outside poor coupling zones. These findings strengthen the 

system's potential for reliably detecting critical structural 

events, boosting confidence in its monitoring ability for vital 

infrastructure. 

3.2.2 Data Analysis on the Concrete Bridge 

In the context of monitoring concrete bridges, data analysis 

plays a crucial role in assessing integrity and detecting potential 

issues. For this analysis, data were recorded from hits generated 

by a sclerometer, simulating events such as wire breaks. Unlike 

suspension bridges, where the fiber installation allows for 

repetition across multiple segments, the configuration of fibers 

in concrete bridges is unique, meaning repetition of patterns 

across segments is not expected. A typical hit pattern detected 

by the interrogator is shown in Figure 13, The pattern clearly 

shows a hit detected across multiple spatial points, with surface 

waves propagating from the point of impact to adjacent 

locations. This wave distribution aids in detecting the event at 

various points, crucial for assessing the damage's extent. 

 

Figure 13: Waterfall diagram showing a sclerometer stroke 

acquired by the DAS sensor. 

 
Figure 14: Waveforms at different spatial positions of the 

monitoring fiber. The spatial positions correspond to those in 

Figure 13. 

A detailed analysis of the acquired signals was conducted, 

and the temporal waveform at points "a" to "d" was presented 

in Figure 14. The hits were distinctly observed, and the duration 

of each blow was measured at approximately the same time 

09:22:50. Furthermore, variations in amplitude across different 

spatial points were identified, suggesting differences in their 

sensitivity and signal attenuation. The time-domain 

characteristics of the acquired signals were analyzed, revealing 

that certain spatial points were more effective at detecting 

transient events due to their proximity to the point of impact 

and the propagation of surface waves. It was observed that 

signals from these locations exhibited stronger and clearer 

responses. Optimizing fiber selection and positioning could 

enhance detection accuracy by placing fibers at strategic 
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locations where the signal propagation is most pronounced, 

thereby capturing more relevant data.  

 

 

Figure 15: Waveforms at central positions of the fiber 

monitoring for different hitting lengths from the fiber. 

The impacts from the sclerometer at the different distances 

from the fiber were taken, and the mid spatial point is chosen 

from all the impacts, and their temporal evolution is shown in 

Figure 15. The decrease in hit amplitude with increasing depth 

from the sensor is primarily due to the fundamental principles 

of seismic wave propagation in concrete. As acoustic waves 

travel through the slab, their energy disperses, leading to 

geometric attenuation. Additionally, material absorption within 

the concrete causes further energy loss. Scattering effects due 

to variations in the concrete's composition and microstructural 

heterogeneities also contribute to signal attenuation. These 

combined factors naturally result in a reduction in amplitude as 

the distance from the source increases. 

 

Figure 16 Maximum detection range estimation for tendon 

break monitoring. 

To quantify the effective detection range for tendon break 

monitoring, the exponential attenuation relationship observed 

in Figure 15 was extrapolated using curve fitting analysis. The 

measured signal decay follows 𝑦 = 𝑎𝑒−𝑏𝑥 + 𝑐, with 

amplitudes decreasing from 27 dB at 1 m to 9 dB at 9 m due to 

geometric spreading, material absorption, and scattering effects 

in concrete. A minimum detection threshold of 5 dB was 

established to ensure reliable discrimination of tendon break 

signals from background noise. The fitted model, as shown in 

Figure 16 predicts a maximum effective detection range of 10.6 

meters, beyond which the combined effects of wave 

propagation losses render tendon break detection unreliable. 

This analysis provides essential parameters for determining 

sensor spacing in structural health monitoring systems, 

ensuring complete coverage for the early detection of 

prestressing tendon failures in concrete bridges. 

In conclusion, this analysis highlights the influence of the 

distance between the sclerometer hits and the fiber on the 

amplitude of the detected signals. The decrease in hit amplitude 

with increasing distance is attributed to seismic wave 

propagation, material absorption, and scattering effects within 

the concrete. To enhance the sensitivity and reliability of the 

monitoring system, it is recommended that the sensing fiber be 

placed closer to the structure, allowing for more accurate 

detection of breaks and better signal capture. 

 Detection Algorithm 

3.3.1 Detection Algorithm for Suspension Bridges 

The hits from the suspension and concrete bridge were 

clearly observed in the data, with the temporal traces from the 

relevant spatial points carefully explored to study the generated 

impacts. These impacts were analyzed in detail to understand 

their characteristics and temporal evolution. This was used 

effectively in designing the detection algorithm for the two 

structures.  

As for the suspension bridge, in this study, a spectrogram-

based method was proposed, utilizing only a single fiber 

segment. A spectrogram-based template matching approach 

was employed for the suspension bridge to detect transient 

events in time series data across multiple sensor channels. This 

method was chosen for its ability to detect transient events 

across multiple optical fiber segments by leveraging 

spectrogram-based template matching. The use of multiple 

optical fiber segments enhances the spatial robustness of the 

detection, reducing the likelihood of false positives and 

ensuring reliable identification of events. Additionally, the 

repetition of results across various fiber segments provides 

strong validation for detected events, reinforcing the reliability 

of the method. This approach is preferred over machine 

learning as it offers a clear, interpretable process that directly 

correlates spectral energy variations with event detection, 

without the complexity and data dependency often associated 

with machine learning models. 

The methodology consisted of sequential steps, beginning 

with spectrogram computation. Given a time series 𝑥(𝑡), its 

time-frequency representation was obtained using the short-

time Fourier transform (STFT), producing a spectrogram 

𝑆(𝑓, 𝑡), where 𝑓 represented frequency and 𝑡 represented time. 

For the spectrogram computation, a window length of 256 

samples and an overlap of 248 samples were used. This 

transformation enabled the localization of spectral energy 

variations over time, forming the basis for subsequent feature 

extraction. 

To enhance sensitivity to specific frequency components, 

sub-band selection was performed by isolating predefined 

frequency ranges from the spectrogram. Two sub-bands were 

defined for analysis: Sub-band 1 ranged from 90 to 180 Hz, and 

Sub-band 2 ranged from 350 to 440 Hz. This process yielded 

refined sub-band spectrograms 𝑆′(𝑓, 𝑡), where only the relevant 

spectral components were retained. Each extracted sub-band 

spectrogram was then treated as an image 𝐼(𝑓, 𝑡) in which pixel 
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intensities corresponded to spectral power. This conversion 

facilitated the application of image-processing techniques for 

event characterization. 

The core of the detection methodology involved template 

matching, in which a predefined temporal template was 

convolved with 𝐼(𝑓, 𝑡) to identify characteristic signal patterns. 

The template was designed with three consecutive time slots, 

where the first and third slots were assigned a weight of -1, and 

the central slot was assigned a weight of 1. This structure 

enhanced contrast by emphasizing transient spectral changes 

while suppressing background variations. The template 

extended across the entire frequency sub-band, ensuring 

comprehensive coverage of the targeted spectral range. 

Through convolution, a response function was obtained that 

highlighted localized temporal variations indicative of hits. 

 

Figure 17: Detection of the hits in the suspension bridge. 

To ensure spatial robustness, the template matching 

procedure was applied independently across multiple fiber 

sensor locations, generating a three-dimensional response 

matrix 𝑀(𝑐, 𝑡) where 𝑐 represented the sensor channel and 𝑡  

denoted time. Each entry in 𝑀(𝑐, 𝑡) corresponded to the 

template matching response at a given location and time. A hit 

was considered when multiple sensor channels exhibited a 

significant response simultaneously, thereby reducing the 

likelihood of false positives caused by localized noise or 

isolated fluctuations. A thresholding operation was applied to 

𝑀(𝑐, 𝑡) to identify significant activations, ensuring that only 

strong and spatially correlated events were retained. The 

detection results are presented in Figure 17, where the 

significant activations identified through the thresholding 

operation are distinctly visualized across the sensor channels. 

The algorithm successfully identified the sclerometer impact 

points, which are highlighted in pale blue within the figure. 

Despite the use of a single segment, minimal false-positive 

rates were achieved. The analysis was conducted exclusively 

on this segment, demonstrating the effectiveness of the 

proposed approach in reducing false positives. These results 

highlight the spatial and temporal correlations of the detected 

hits, demonstrating the effectiveness of the method in 

identifying true events while minimizing false positives. The 

figure provides a comprehensive overview of the detected 

impacts within the given time frame and sensor locations. By 

integrating sub-band selection, image-based template 

matching, and distributed sensor analysis, the approach 

provided a scalable and robust solution for detecting transient 

events in DAS applications. High sensitivity to localized 

perturbations was achieved while mitigating false positives, 

making the methodology well-suited for health monitoring and 

real-time monitoring for the suspension bridge. 

3.3.2 Detection Algorithm for Concrete Bridges 

This study presents a deep learning-based approach for 

detecting wire breaks in concrete bridges utilizing 

Convolutional Neural Networks (CNNs). Unlike suspension 

bridges, which benefit from repetition across multiple 

segments, allowing for template matching, concrete bridges 

lack this repeatability in optical fiber segments, necessitating a 

different method. Machine learning is preferred over traditional 

techniques because it can automatically learn complex patterns, 

eliminating the need for manual feature extraction. CNNs are 

ideal for this task as they efficiently learn complex patterns and 

features from data, making them highly effective for detecting 

wire breaks in concrete bridges.  

The dataset consists of positive images showing a pattern 

from hits and negative images of patterns from vehicles and 

other patterns that are not hits. To generate a more robust 

dataset for training, a Generative Adversarial Network (GAN) 

was utilized for data augmentation, as it generated realistic 

synthetic data that enhanced the training dataset. GAN-based 

data augmentation techniques were employed here to create 

additional images, ensuring a larger and more diverse set of 

training data. The images were preprocessed and resized for 

uniformity, and the dataset was split into training and testing 

sets. Positive images were labeled as 1, and negative images as 

0. This ensured the model could effectively learn to distinguish 

between the two classes. 

The CNN architecture consists of five fully connected 

convolutional layers, each followed by a max pooling layer, 

which reduces the spatial dimensions while retaining key 

patterns. The number of filters increases progressively with the 

layers, to capture both low- and high-level features. The 

extracted feature maps are then flattened and passed through a 

fully connected layer, followed by a single neuron with a 

sigmoid activation to classify the images into two categories: 

breaks (1) or not possible breaks (0).  

The training process and the model’s learning progression are 

illustrated in Figure 18, which presents both training and 

validation loss trends throughout 15 epochs. Two side-by-side 

plots are shown: the left plot depicts a consistent decrease in 

loss values for both the training and validation datasets, while 

the right plot demonstrates an increase in accuracy metrics, 

which plateaued around 95%. The model was trained 

efficiently, and convergence was achieved with minimal 

overfitting, as indicated by the close alignment between 

validation and training performance throughout the training 

period. 

 

Figure 18 Training and validation loss curves over 16 epochs. 
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Post training, the model’s performance was evaluated on the 

test set, where predictions were converted into binary labels. 

Standard evaluation metrics, including accuracy, precision, 

recall, and F1-score, were calculated. Performance metrics and 

the confusion matrix are presented in Table 1 and the 

classification report is presented in Table 2, offering a detailed 

overview of the model’s effectiveness. Confidence scores and 

entropy were also calculated to measure the model’s certainty 

in its predictions. 

Table 1 Confusion Matrix 

 Predicted 

Negative 

Predicted 

Positive 

True Negative 673 19 

True Positive 18 313 

 

Table 2 Classification Metrics  

Type of  

Perturbation 

Precision Recall F-score 

Negative 0.97 0.97 0.97 

Positive 0.94 0.95 0.94 

 

 

The predicted labels were visually compared with true labels 

on a subset of test images to assess the model’s accuracy. Based 

on the results obtained, the proposed deep learning-based 

model demonstrates robust performance in detecting wire 

breaks in concrete bridges. The model achieved an overall 

accuracy of 96%, as evidenced by the confusion matrix and 

classification report. Visual comparisons of predicted and true 

labels for a subset of test images highlighted the model’s 

strengths in correctly identifying wire breaks, while also 

revealing some misclassifications that can be improved. These 

insights are crucial for refining the model and enhancing its 

performance. This method’s potential to advance structural 

health monitoring, particularly in the context of bridge 

inspections, underscores its importance in improving the safety 

and maintenance of infrastructure. 

4 CONCLUSION 

A comprehensive method was developed for detecting post-

tensioned wire breaks in both suspension and concrete bridges 

using DAS. By tailoring techniques to each bridge type, the 

approach enabled real-time monitoring and effective detection, 

classification, and localization of cable break events. These 

advancements offer valuable applications in improving the 

safety and maintenance of critical infrastructure. 

In the suspension bridge, the monitoring fiber captured 

acoustic events at various impact angles; however, signal 

detectability was strongly influenced by orientation. The 

comparison of performance across different segments revealed 

distinct differences between fiber types, though no significant 

differences were observed between cable types. The strain 

fibers exhibited a pronounced detection pattern, while 

temperature fibers showed a more subtle response. Based on 

these findings, a spectrogram-based template matching 

approach was developed, incorporating sub-band selection and 

image-based matching. This method enabled accurate detection 

while maintaining low false positive rates, even when relying 

on a single fiber segment. Therefore, the choice of fiber should 

depend on the specific application, with strain fibers ideal for 

high-sensitivity detection and temperature fibers more 

appropriate for environments requiring minimal noise. 

For the concrete bridge, a decrease in signal amplitude was 

observed as the distance from the fiber increased. This 

emphasized the need to place the fiber close to the structural 

surface. A CNN achieved 96% classification accuracy, 

outperforming traditional methods in both precision and false 

positive reduction. Data augmentation using a GAN further 

improved model generalization by creating a diverse training 

dataset. 

These tailored methodologies provide effective, real-time 

monitoring strategies for both bridge types. Future efforts 

should focus on integrating the proposed techniques to improve 

system accuracy and adaptability in complex environments, 

and on exploring additional data augmentation strategies to 

further enhance model robustness. 
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