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ABSTRACT: Achieving both energy efficiency and high triggering accuracy is a critical multi-objective optimization challenge 

in Structural Health Monitoring (SHM), particularly for power-constrained wireless edge devices deployed in dynamic 

environments. Traditional empirical and static-threshold-based methods often struggle to simultaneously have low miss trigger 

and false trigger rate and lack adaptability to varying environmental and operational conditions. This study proposes a multi-stage 

adaptive triggering strategy built upon a Feedback Control (FC) framework, driven by Bayesian Optimization (BO) as the 

optimization engine, and accelerated by Digital Twin (DT) for data augmentation and Neural Networks (NN) for real-time 

contextual understanding and robust inference. The strategy dynamically refines triggering thresholds based on simulated insights 

and partial observations, enabling rapid adaptation and generalization across scenarios. Experimental validation through 

simulations and onboard deployments demonstrates that the proposed method improves F-beta performance by over 30% 

compared to conventional empirical methods. This approach provides a promising pathway toward intelligent, energy-efficient, 

and sustainable SHM sensing through fast feedback, reduced deployment cost, and minimized missed critical events. 

KEY WORDS: Trigger Sensing, Energy-efficiency, Adaptive Sensing, Feedback Control, Bayesian Optimization, Structural 

Health Monitoring

1 INTRODUCTION 

In Structural Health Monitoring (SHM) systems, triggering 

mechanisms are essential for determining when edge sensor 

nodes should initiate data acquisition to capture transient 

structural responses during events of interest [1]. In real-world 

deployments with limited energy resources, triggering directly 

affects both responsiveness and long-term system sustainability. 

A mechanism that is both energy-efficient and accurate allows 

the system to capture meaningful data while minimizing power 

consumption [2]. When continuous high-rate sampling is 

infeasible, intelligent triggering becomes critical for reliable 

and autonomous monitoring. 

Conventional methods typically rely on fixed thresholds or 

handcrafted rules based on prior knowledge [3]. While easy to 

implement and low in computational cost, they lack 

adaptability. Triggering parameters (e.g., threshold and 

duration) set during deployment often remain static, making it 

difficult to respond to changes in structural behavior or 

environmental conditions. In practical deployments, these 

parameters are often conservatively configured to minimize the 

risk of missing events of interest. This conservative strategy 

prioritizes recall at the expense of precision, which, although 

effective in reducing missed detections, often leads to an 

increased rate of false triggers [1]. 

Practical SHM deployments present several challenges that 

complicate the design of effective triggering mechanisms. 

Structural events are typically rare, limiting the amount of 

available data and making it difficult to establish reliable 

patterns for triggering. The occurrence of events is also highly 

imbalanced, with most data corresponding to normal or inactive 

states, which biases learning-based methods and complicates 

threshold design. In addition, due to energy constraints, sensors 

operate in low-power sentinel modes and only acquire data 

when a triggering condition is met. As a result, only responses 

associated with triggered events are recorded, leading to partial 

observability, where only a subset of structural behaviors is 

accessible for analysis [4]. These factors collectively call for a 

triggering mechanism that is adaptive, context-aware, and 

lightweight, while also possessing the capability to predict and 

infer unobserved structural responses. 

To address these challenges, this study proposes a multi-

stage adaptive triggering strategy primarily built upon a 

Feedback Control (FC) framework [5], which integrates a 

digital twin (DT) [6], onboard neural networks (NN) [7] [8], 

and Bayesian optimization (BO) [9]. FC enables the continuous 

refinement of triggering behavior through performance-driven 

feedback; BO operates as an optimization engine that seeks the 

global optimum and guides trigger parameters toward rapid 

convergence; DT facilitates data augmentation by simulating 

real deployment environments; NN provides real-time 

contextual awareness and accurate prediction, even under 

partial observability. This integration empowers the triggering 

system to adaptively and efficiently search for the optimal 

trigger parameters under uncertain event conditions. 

The proposed strategy is validated upon a setup mimicking 

real-world deployment, showing clear advantages over 

empirical baselines. Specifically, it achieves over 30% 

improvement in 𝐹𝛽  score, enhancing event detection without 

increasing unnecessary energy use. These findings demonstrate 

the effectiveness of the proposed strategy in simultaneously 

optimizing detection accuracy and energy efficiency, and 

further underscore the potential of integrating closed-loop 

control, Bayesian optimization, and digital twin to enable 
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adaptive and intelligent triggering in real-world SHM 

deployments. 

2 SMART ADAPTIVE TRIGGERING 

 Basic triggering mechanism and baseline strategy 

An example of a typical trigger sensing mechanism is the one 

implemented in Xnode [2], which combines a low-power, low-

resolution sensor with a high-power, high-resolution sensor, as 

illustrated in Figure 1 and Table 1. The low-power sensor, such 

as the ADXL362 [10], is responsible for continuously 

monitoring motion and detecting events of interest based on 

predefined thresholds and durations. When the signal 

amplitude exceeds the configured threshold for a specified 

duration, an event of interest is deemed to have occurred, as 

shown in Figure 1. At this point, the low-power sensor activates 

the high-power sensor, transitioning the system from sentinel 

mode to working mode to capture detailed event data. This 

fundamental triggering mechanism forms the basis of the smart 

adaptive triggering strategy proposed in this study. 

Table 1. Xnode sensor energy consumption. 

Mode \ Sensor ADXL362 (12 bit) LIS344 (24 bit) 

Sentinel Mode Working 270nA Sleeping 1uA 

Working Mode Sleeping 10nA Working 680uA 

 

Figure 1. Xnode trigger sensing mechanism. 

In SHM practice, the application of basic triggering 

mechanisms is typically accompanied by parameter 

configuration using empirical approaches. Engineers often 

perform preliminary sensing to gain insights into the target 

structure or environment, and subsequently configure the 

triggering parameters (i.e., threshold and duration) manually in 

a conservative manner to ensure low miss trigger rate [2]. This 

empirically tuned method also serves as the baseline for 

comparison in subsequent sections. 

 Feedback control powered by Bayesian optimization 

As stated in the introduction, the goal of the triggering 

mechanism is to minimize missed triggers while keeping the 

false trigger rate at an acceptably low level, which constitutes 

a multi-objective optimization problem in its mathematical 

nature. To facilitate the analysis, the 𝐹𝛽 score is introduced to 

quantitatively and comprehensively evaluate the performance 

of the triggering mechanism, as defined in Equation (1).  Note 

that with the use of 𝐹𝛽, the original multi-objective problem is 

transformed into a single-objective optimization problem, 

where the parameter 𝛽 controls the relative weighting between 

missed and false triggers. In SHM context, usually more weight 

should be put on recall, which means 𝛽 should be configured 

greater than 1. For situations where precision is more important 

than recall, e.g., false triggering can be quite costly, 𝛽 should 

be smaller than 1. 

 𝐹𝛽 = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (1) 

Based on the analysis presented in the introduction, smart 

adaptive triggering centers on two key questions: what are the 

optimal triggering parameters, and how they can be efficiently 

approached during system operation. The first question 

represents an optimization problem, while the second 

constitutes a control problem. A major limitation of most 

existing triggering mechanisms lies in their lack of adaptivity, 

which can be effectively addressed through a feedback loop. As 

illustrated in Figure 2(a), the triggering mechanism outputs a 

performance metric to the optimizer, which in turn determines 

the next parameter configuration to explore based on historical 

observations. To comply with modern control theory [5], the 

closed loop can be expressed as Figure 2(b). Figure 2(b) depicts 

the formal structure of feedback control, comprising four main 

components: the environment, the system, the estimator, and 

the controller. In the context of trigger-based SHM, the 

environment refers to the structural responses that sensors aim 

to observe. The system corresponds to the triggering 

mechanism itself, as shown in Figure 1. The estimator is 

responsible for monitoring or estimating the performance of the 

triggering mechanism, specifically, the 𝐹𝛽 score in this study. 

The controller, in turn, utilizes iterative feedback to search for 

the optimal parameter configuration and to devise strategies for 

efficiently approaching the optimal values. In short, feedback 

control serves as a backbone to integrate necessary tools to 

provide adaptivity for triggering parameter fine-tuning. 
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Figure 2. Feedback control framework for triggering 

parameter optimization: (a) optimization loop; (b) feedback 

control form. 

At the core of the feedback control architecture is the 

controller, which governs the adaptation process through 

parameter adjustment. While various tools can be used to 

implement the controller, the choice must be carefully tailored 

to the characteristics of the target problem. In the case of 

trigger-based SHM, the controller takes the 𝐹𝛽 score as input 

and outputs the triggering threshold and duration. However, 

there is no explicit analytical expression linking the input to the 

output, making it a black-box optimization problem. Moreover, 

each feedback iteration requires calculating the 𝐹𝛽 score based 

on many events, resulting in considerable computational cost, 

in addition to the overhead of observation and estimation. 

Given these considerations, Bayesian optimization [9] is 

adopted as the controller due to its demonstrated effectiveness 

in solving black-box problems and its ability to efficiently 

converge toward the global optimum.  

The algorithmic framework of BO is presented in Algorithm 

1. As illustrated, the optimization process is driven by the 

observation dataset 𝓓 , which comprises input–output pairs, 

where the inputs are the triggering parameters, and the outputs 

are the corresponding 𝐹𝛽  scores. The process begins with an 

initial sampling phase to obtain a preliminary understanding of 

the input–output relationship. Subsequently, the optimization 

proceeds iteratively, with each iteration updating the surrogate 

model 𝓜  and expanding the dataset with new evaluations. 

Typically based on Gaussian Process Regression (GPR), the 

surrogate model provides a non-parametric, probabilistic 

estimate of the objective function, offering both the predicted 

mean and associated uncertainty for any given input. This 

probabilistic nature enables GPR to model complex, non-linear 

relationships with relatively few samples, while maintaining 

analytical tractability and useful mathematical properties such 

as differentiability. To balance exploration of uncertain regions 

and exploitation of promising areas, an acquisition function 𝓢 

is employed to determine the most informative point 𝑥𝑖 . 

Common acquisition functions include Expected Improvement 

(EI), Probability of Improvement (PI), and Upper Confidence 

Bound (UCB), each offering a different strategy for leveraging 

the predictive mean and variance to guide sampling. Herein, 

UCB is used for simplicity. After evaluating the objective 

function to obtain the corresponding output 𝑦𝑖  , the dataset 𝓓 

is updated. Finally, the input 𝑥̂  associated with the best 

observed output in 𝓓 is selected as the optimum.  

 

Algorithm 1 Bayesian Optimization Algorithm Framework 

Input: Search space 𝓧 , objective function 𝑓 , surrogate 

model  𝓜, acquisition function  𝓢 

Output: Dataset 𝓓  (set of sampled points and their 

evaluations) 

Initialize dataset: 𝓓 ← InitSamples(𝑓, 𝓧) 

for 𝑖 = |𝓓| to 𝑇 do 

    Fit the model: 𝑝(𝑦|𝒙, 𝓓) ← FitModel(𝓜, 𝓓)  

    Select next point:  𝑥𝑖 ← arg 𝑚𝑎𝑥𝑥∈𝓧 𝓢(𝒙, 𝑝(𝑦|𝒙, 𝓓)) 

    Evaluate objective function: 𝑦𝑖  ← 𝑓(𝑥𝑖) 

    Update dataset: 𝓓 ← 𝓓 ∪  {(𝑥𝑖 , 𝑦𝑖)}  

end for 

Pick the best from 𝓓 as optimum: 𝑥̂ ← arg 𝑚𝑎𝑥(𝒙,𝑦)∈𝓓 𝑦 

 

After introducing the algorithmic details, it becomes evident 

that the surrogate model 𝓜 plays a central role in addressing 

the black-box nature of the problem by providing a reliable 

approximation of the true input–output relationship along with 

favorable mathematical properties. Meanwhile, the acquisition 

function 𝓢 serves as the foundation for efficient convergence 

toward the global optimum, as it guides the search process in a 

principled manner rather than relying on random exploration. 

As can be inferenced by Algo. 1, the computational efforts 

required for BO for the following edge deployment is mainly 

determined by the size of observation dataset 𝓓 , and each 

sample in this dataset is only a pair of triggering parameters and 

performance metric, meaning it can be easily operated on edge 

devices.  

 Digital twin for data augmentation 

Feedback control is a powerful tool to address the lack of 

adaptivity; however, it falls short in tackling another critical 

challenge—data scarcity, imbalance, and uncertainty. Digital 

twin technology offers a promising solution to augment data for 

a variety of purposes, such as simulation, optimization, and 

neural network training. To effectively construct a digital twin 

for trigger-based sensing for SHM, it is essential to accurately 

simulate both the structural response and the triggering 

mechanism. Specifically, this involves modeling the 

excitation–structure–response chain as well as the threshold–

duration-based triggering logic, as shown in Figure 3. 

 

 

Figure 3. Digital twin for excitation-structure-response flow 

and triggering mechanism. 

Excitation simulation is the first step in structural response 

modeling. To support the study, several common types of 

events are considered, including ambient vibrations, 

earthquakes, impacts, and strong winds. Each event type can be 
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generated using either external databases or simulation 

techniques. Ambient vibrations are typically modeled using 

Gaussian white noise, while earthquakes can be synthesized by 

superimposing harmonic waves based on a given spectrum. 

Impacts are represented as impulsive loads, and strong winds 

can be simulated using autoregressive models combined with 

time modulation. 

Structure modeling is another crucial step in response 

simulation, achieved by formulating the equation of motion, as 

shown in Equation (2). In this equation, 𝑀, 𝐶, 𝐾 represent the 

mass, damping, and stiffness matrices, respectively.  𝐺 denotes 

the force allocation matrix, and 𝑃(𝑡) represents the external 

force vector at time t. Equation (2) thus serves as a digital twin 

of the target structure to be monitored. Following structural 

modeling is the simulation of structural responses, which 

involves calculating the displacement, velocity, and 

acceleration of each degree of freedom in the constructed 

digital twin. A widely used and reliable numerical method for 

this purpose is the Newmark-beta method [11], which provides 

accurate structural response simulation.  

 𝑀𝑥̈ + 𝐶𝑥̇ + 𝐾𝑥 = 𝐺𝑃(𝑡) (2) 

In addition to structural responses, the basic triggering 

mechanism must also be simulated to complete the digital twin, 

with implementation details provided in Algorithm 2. With a 

comprehensive digital twin that includes both the structural 

model and the triggering logic, data can be flexibly 

manipulated for various purposes, such as simulation, 

optimization, neural network training, and more. 

 

Algorithm 2 Triggering Mechanism 

Input: signal value 𝑠, threshold 𝜏, duration 𝑑 

Output: trigger flag 𝑇 (binary: 1 for trigger, 0 for no trigger; 

initialized as 0) 

Internal Variable: counter 𝑐 (initialized as 0, used to track 

consecutive time steps) 

For each time step 𝑡: 

if  |𝑠| ≥ 𝜏 then 

    Increment counter: 𝑐 ← 𝑐 + 1 

if 𝑐 ≥ 𝑑 then 

     Set trigger flag: 𝑇 ← 1 

         Reset counter: 𝑐 ← 0 

end if 

else 

    Reset counter: 𝑐 ← 0 

    Set trigger flag: 𝑇 ← 0 

end if 

 

 Lightweight neural networks for onboard inference 

Feedback from the triggering mechanism is essential for 

achieving adaptivity; however, its effectiveness is often 

hindered by challenges in real-world deployment. As shown in 

Equation (1), the computation of the 𝐹𝛽  score relies on both 

precision and recall, each of which faces practical difficulties. 

Specifically, precision depends on the identification of true 

positives and false positives. In the absence of human 

intervention, ground truth labels for captured signals are 

typically unavailable, making it impossible to determine 

whether a triggered signal corresponds to an actual event of 

interest. This uncertainty undermines the ability to accurately 

evaluate performance metrics such as precision and, 

consequently, the 𝐹𝛽  score. The situation is even more 

challenging for recall, which relies on identifying both true 

positives and false negatives as shown in Equation (4). 

Estimating false negatives necessitates knowledge of missed 

events of interest—information that is inherently inaccessible 

in trigger-based sensing systems. These limitations present 

fundamental barriers to autonomous online adjustment of 

triggering parameters, underscoring the importance of 

developing effective solutions.  

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

Edge intelligence, which integrates lightweight onboard 

computation with AI, offers a promising pathway for achieving 

online fine-tuning on edge devices, particularly for problems 

beyond the reach of traditional approaches. To address the issue 

of precision, the absence of ground truth can be mitigated by 

deploying an onboard AI classifier to infer signal labels. 

Similarly, for recall, an AI-based estimator can be employed to 

directly approximate the recall value, thereby facilitating more 

accurate performance evaluation. Most importantly, the 

onboard AI enables autonomous feedback generation without 

the need for human intervention, thereby streamlining 

operations and advancing full system automation. To meet the 

requirements of edge deployment, these neural networks 

should prioritize lightweight architecture and high 

computational efficiency. 

Table 2. NN parameters summary. 

Parameter Type CNN DNN 

Total Parameters 142(572.00 B) 209 (836.00 B) 

Trainable Parameters 44 (176.00 B) 209 (836.00 B) 

Non-trainable Param. 8 (32.000 B) 0 (0.00 B) 

Optimizer Parameter 90 (364.00 B) 0 (0.00 B) 

 

To effectively classify time series data, a 1D Convolutional 

Neural Network (CNN) combined with feature engineering is 

employed. Given an input signal of 6000 samples, the data is 

first transformed from the time domain to the frequency domain 

using the Fast Fourier Transform (FFT). Both time- and 

frequency-domain signals are then downsampled to 64 samples 

each. The resulting vectors are concatenated into a 128-

dimensional feature vector, which serves as the input to a 

lightweight CNN classifier. Details of the network size and 

architecture are provided in Table 2 and Table 3, respectively. 

The training curves and classification results are presented in 

Figure 4. 

Table 3. CNN classifier architecture. 

Layer Output Shape Para. Number 

Input Layer 128 0 

Conv1D 128 16 

BatchNorm 128 16 

ReLU 128 0 

GlobalAvgPooling 4 0 

Dense 4 20 
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Table 4. DNN Recall estimator architecture. 

Layer Output Shape Para. Number 

Dense 16 64 

Dense 8 136 

Dense 1 9 

 

Since false negatives cannot be directly observed in trigger-

based sensing, a Dense Neural Network (DNN) is introduced 

to estimate recall based on noise level, trigger threshold, and 

duration. Utilizing the dataset generated from the digital twin, 

the DNN is trained to predict recall under various noise 

conditions and triggering configurations. The network size is 

detailed in Table 2, the architecture is provided in Table 4, and 

the training curves are shown in Figure 4. With both the CNN 

classifier and the DNN recall estimator trained, the feedback 

loop is fully established, completing the final component of the 

closed-loop control system. 

 

Figure 4. NN training curves: (a) CNN classifier (b) DNN 

estimator. 

3 STAGED DEPLOYMENT  

Despite the many advantages of edge intelligence, its most 

prominent inherent limitation lies in the constrained onboard 

resources, which restrict the efficiency of triggering parameter 

optimization. In the previous section, a feedback control 

approach was introduced for iterative optimization of triggering 

parameters. To further accelerate this process, a staged 

deployment strategy is proposed, comprising a pre-deployment 

optimization stage and an onboard fine-tuning stage. The 

second stage inherits insights obtained during the first, allowing 

only lightweight fine-tuning on the device and thus minimizing 

computational overhead. 

Figure 5 illustrates the concept of this staged optimization 

strategy. Both stages are built upon the same feedback control 

framework. The key differences lie in two components: the 

environment component, which refers to the excitation-

structure-response flow, and the estimator component, which is 

responsible for providing performance metrics. In Stage I, the 

environment is simulated using a digital twin. Although the 

structural responses are not real, this fully controlled setting 

provides complete knowledge of all events, enabling accurate 

performance evaluation. In Stage II, the environment becomes 

real and uncertain. Since ground truth labels are unavailable, 

recall cannot be directly computed. To overcome this limitation, 

onboard neural networks including the CNN classifier and the 

DNN-based recall estimator are employed to complete the 

closed-loop feedback control. It is important to note that in the 

trigger sensing setup, the DT model is not required to be of high 

fidelity, as its primary role is to generate synthetic data for 

training the classification model. 

 

 

Figure 5. Staged deployment strategy: (a) pre-deployment 

optimization (b) onboard fine-tuning. 
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4 VALIDATION AND RESULTS 

 Dataset generation 

 

Figure 6. Dataset generation. 

As previously discussed, the uncertainty of data distribution in 

real-world deployment makes it unsuitable for reliable 

evaluation of triggering mechanism performance. To enable 

consistent and controlled assessment, a synthetic dataset with a 

predefined distribution was constructed, as illustrated in Figure 

6. Let n denote the total number of event samples, and m 

represent the number of event types considered as events of 

interest. Events of no interest, represented by ambient vibration 

in this context, account for half of the dataset (n/2 samples), 

while the remaining half is evenly divided among the m types 

of events of interest. In this study, n is set as 1200 for validation. 

For ambient vibration signals, data is generated using a 

Gaussian distribution with a mean of zero and a standard 

deviation derived from real-world ambient data. This approach 

aims to closely approximate actual deployment conditions.  

In this evaluation setup, three types of events are defined as 

events of interest: earthquake, impact, and strong wind, 

resulting in m = 3 and n/6 samples for each type. These signals 

are synthesized using a uniform distribution based on peak 

value ranges, allowing for diverse intensity levels within each 

event type. This structured and realistic data generation strategy 

ensures a balanced and reproducible dataset, enabling 

consistent evaluation of triggering mechanisms across a wide 

range of simulated scenarios. 

 Host Devices and Implementation Procedures 

According to the proposed staged deployment strategy, the first 

stage focuses on preliminary optimization of triggering 

parameters using the digital twin in a resource-rich 

environment, such as a personal computer or workstation. The 

second stage is dedicated to real-time fine-tuning in real-world 

conditions on resource-constrained edge devices. To emulate 

this setup in the evaluation, Stage I was carried out on a 

personal computer, while Stage II was implemented on 

LiftNode, a low-cost microcontroller-based AIoT sensor node 

developed by the Laboratory of Intelligent Infrastructure at 

Nanyang Technological University. More specifically, the 

implementation is based on a dedicated middleware named 

TinySHM, which is currently under active development and 

features a hierarchical structure of basic utilities (e.g., time 

management, communication), mathematical operations, 

signal processing, and AI support (accelerated by ESP-DL 

library [12]). The specifications of the host devices, including 

main frequency and RAM capacity, are summarized in Table 5.  

Table 5. Host devices specifications. 

Layer Main Freq. RAM 

PC 2.50 GHz 32 GB 

LiftNode-ESP32 480 MHz 8 MB 

 

 

Figure 7. The main control board of LiftNode-ESP32. 

ESP32 features the capability for Wi-Fi Connection designed 

for IoT applications. By combining onboard SD card module 

for large volume data storage and IoT capabilities, the proposed 

framework can achieve large dataset storage via Internet 

streaming and record-by-record onboard processing within 

limited onboard memory. In short, the implementation adopted 

a ‘more time for less space’ strategy, using longer time 

consumption to address the limits of restrained onboard 

resources. This is reasonable, as the appearance of interested 

events can be sparse during monitoring, leaving enough time 

for edge device to process. Besides, the event records are only 

used to provide classification label, the core part for adaptive 

optimization is BO, which only focuses on the observation 

dataset 𝓓, simply data pairs of trigger parameters (threshold 

and duration) and performance metric (𝐹𝛽). Usually, it requires 

hundreds or thousands interested events to update the 

observation dataset 𝓓  once, which means low demand for 

computational capability on edge devices. 

In this research, each record was formulated to 1 min long, 

assuming most events will not exceed this duration. 

Theoretically, even the time history data is longer than 1 min, 

the onboard NN can still easily provide the type of events using 

partial data, showing the robustness of the proposed framework 

design. For each triggered and recorded event, the host device 

determined its type, and update the counting variable. Only 

when there are enough number of events recorded, the host 

machine will conduct BO for triggering parameter updating. 

 Results 

The detailed configurations for the optimization process is 

listed in Table 6, and the optimization process is recorded and 

visualized in Figure 8 and Figure 9. As illustrated in Figure 8, 

red dots represent Stage I optimization results and blue dots 

represent Stage II results. To accelerate convergence, a bonus 

factor of 1.1 is applied to the final 𝐹𝛽 score for iterations where 

both precision and recall exceed 90%. The final results 

including the baseline approach and breakdown results of stage 

I and II are presented in Table 9.  

Table 6. Validation configurations.  

Parameter Description Value 

noise std ambient vibration 2.92~3.57x10-3 g 

EQ peak val. earthquake 0.1 ~ 3.0 g 

IP peak val. impact 0.1 ~ 3.0 g 

SW peak val. wind (x noise std) 1.5 ~ 2.5  

beta beta in Eq (1) 5 

IniNum # initial observation  15 
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IterNum1 # iteration in stage I 50 

IterNum2 # iteration in stage II 20 

bonus factor for p>0.9 & r>0.9 1.1 

𝜏𝑙𝑏  threshold lower bound 0 

𝜏𝑢𝑏 threshold upper bound 0.01706 

𝑑𝑙𝑏  duration lower bound 2 

𝑑𝑢𝑏 duration upper bound 10 

 

 

Figure 8. Optimization result overview. 

Table 7. Validation results. 

Item F-beta Precision Recall 

Baseline 0.8025 50% 100% 

Stage I 1.0808 96.33% 98.37% 

Stage II 1.0511 92.54% 95.72% 

 

As shown in Figure 9 and Table 7, the baseline method, 

marked in black, reflects a conservative conventional 

configuration. While it achieves high recall, this comes at the 

cost of significantly reduced precision, resulting in a high false 

trigger rate. In contrast, the proposed staged optimization 

framework effectively addresses this limitation. Several key 

observations can be drawn from the results. 

Superior Performance of SATM. The proposed SATM 

framework demonstrates clear advantages over the 

conventional approach, achieving 𝐹𝛽 scores of 1.0808 during 

pre-deployment optimization and 1.0511 during onboard 

optimization, significantly outperforming the baseline score of 

0.8025. These results highlight the effectiveness of SATM in 

optimizing triggering parameters for SHM applications. 

Strong Synthetic-to-Real Transferability. The similarity 

between data distributions in the pre-deployment phase (based 

on the digital twin) and the real-world onboard phase indicates 

strong transferability of the optimization strategy. Although 

some deviations are observed due to inherent differences 

between synthetic and real data, such discrepancies are 

expected to decrease as real-world data continues to 

accumulate over time. 

Highly optimized energy-efficiency ratio. For long-term, 

battery-powered monitoring, a trigger-based scheme is 

significantly more energy-efficient than always-on or duty-

cycled approaches. By adaptively optimizing the triggering 

parameters, the overall performance can be quantitatively 

evaluated using a dedicated performance metric. Depending on 

the initial parameter settings, energy consumption may 

decrease if the parameters are overly strict, or increase if they 

are too loose. However, one thing remains consistent: the 

energy-efficiency ratio improves, as reflected by the 

performance metric. 

 
 

Figure 9. Optimization results: (a) top view, (b) front view, (c) 

side view.  
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Efficiency of the Surrogate Model. The surrogate model, 

trained within the digital twin environment, significantly 

enhances the efficiency of onboard fine-tuning. It enables the 

optimization process to converge in fewer iterations compared 

to the initial stage, achieving rapid progression toward high-

quality configurations and yielding improved average 

performance during real-world deployment. 

Balanced Exploration and Exploitation. The two-stage 

deployment strategy effectively balances the trade-off between 

exploration and exploitation. The first stage emphasizes 

exploration, exhibiting greater variability in performance 

metrics to thoroughly investigate the parameter space. In 

contrast, the second stage focuses on refining configurations 

based on prior knowledge, resulting in stable and robust system 

performance. 

5 CONCLUSION 

This study introduces a smart adaptive triggering mechanism 

that seamlessly combines feedback control, digital twin 

modeling, and Bayesian optimization. It is specifically 

designed to tackle key challenges such as limited adaptivity, 

multi-objective optimization, unknown event distributions, 

lack of ground truth, partial observability, and high data 

acquisition costs. SATM is structured around four core 

components: the environment, the system, the estimator, and 

the controller. The mechanism functions through two 

sequential phases: an initial pre-optimization phase utilizing a 

digital twin to identify a strong baseline configuration, 

followed by an onboard fine-tuning phase that adapts 

parameters under real-world deployment conditions. 

Evaluations confirm that SATM achieves substantial 

improvements in triggering performance, delivering 

approximately a 30% increase in the 𝐹𝛽  score compared to 

traditional approaches. These results underscore the promise of 

SATM in enabling automatic, adaptive parameter tuning for 

trigger-based sensing systems across various application 

domains. In future, the proposed method will be used for long 

term monitoring uses and incorporate more types of events, e.g., 

structure failure. 

APPENDICES 

Excitation-Structure-Response Simulation: 

https://github.com/Shuaiwen-Cui/Research-

Excitation_Structure_Response.git 

 

Smart Adaptive Trigger Sensing: 

https://github.com/Shuaiwen-Cui/Research-

Smart_Adaptive_Trigger_Sensing.git 
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