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ABSTRACT: Structural health monitoring is essential for ensuring the safety, reliability, and longevity of infrastructural assets. 

However, conventional monitoring measurements face significant challenges, such as being labor-intensive, costly, and time-

consuming. In recent years, the rise of machine learning and deep learning has data analysis frameworks, offering a promising 

solution to these challenges. Despite this, developing reliable and robust approaches that generalize well to unseen scenarios often 

requires large amounts of training data. This presents a challenge, mainly with regulatory constraints and difficulties in collecting 

data, particularly for rare events. To address the issue of data scarcity, this study proposes a generative data augmentation approach 

using a Wasserstein Generative Adversarial Network (WGAN). This approach generates high-quality short-time Fourier transform 

(STFT) spectrograms, which are transformed into image-like data, from in-situ acceleration signals for model training. The 

collected signals, recorded from real-world bridges during various events such as hammering, drilling, environmental noise, and, 

most importantly, the rare event of wire breakage in prestressed concrete bridges, are processed and fed into the WGAN model to 

synthesize additional data. This improves the diversity and robustness of training datasets. Evaluation of the generated 

spectrograms using various performance metrics, such as Structural Similarity Index Measure, Peak Signal-to-Noise Ratio, and 

Fréchet Inception Distance, demonstrates that the proposed method offers a scalable and cost-effective solution for enhancing the 

training dataset, particularly in scenarios where event data is sparse, such as prestressing wire breakage. 

 

1 INTRODUCTION 

Bridges are critical infrastructures for transportation and 

economic development, but are increasingly vulnerable to 

deterioration caused by aging, traffic loads, and environmental 

impacts [1]. Structural Health Monitoring (SHM) is essential 

for the early detection of damage, as highlighted by failures 

such as the Reale Viaduct and Fossano Bridge collapses in Italy 

[2, 3]. However, conventional SHM methods, such as visual 

inspections, are often costly, labor-intensive, and ineffective at 

detecting subtle or internal damage. Although sensor-based 

methods offer improvements, they generate complex and noisy 

data, making manual analysis difficult [4]. As a result, recent 

advances in Machine Learning (ML) and Deep Learning (DL) 

have emerged as promising approaches, demonstrating strong 

performance across various domains, including structural 

damage detection [5, 6]. Nevertheless, real-world 

implementation of these methods still faces challenges, 

particularly data scarcity and class imbalance, which are 

especially essential for rare events like wire breakage, an 

internal form of structural damage that is difficult to capture. 

Data augmentation (DA) techniques have been proposed to 

address these issues, but conventional methods like Mixup and 

time-shifting are insufficient for replicating the complexity of 

real-world events. In this study, Generative Adversarial 

Networks (GANs) are proposed as a powerful solution for 

generating realistic synthetic data. Prior work, mainly in speech 

and audio generation, has demonstrated the effectiveness of 

spectral-domain representations, such as STFT spectrograms, 

for improving generative models. However, applications of 

GANs in SHM, particularly for STFT-based augmentation, 

remain limited. 

To address this gap, this study utilized Wasserstein GAN 

using gradient penalty (WGAN-GP), a GAN model designed 

to generate single-channel STFT spectrograms specifically for 

SHM applications. Unlike traditional three-channel 

approaches, the single-channel input maintains the spectral 

information of structural vibration signals. This study also 

provides a unique real-world dataset from two operational 

bridges in Italy, offering realistic and challenging data for 

model training and validation. By enhancing dataset diversity 

and improving model robustness, the proposed approach aims 

to tackle key SHM challenges, advancing scalable, adaptive, 

and reliable monitoring frameworks. The methodology, 

experimental setup, evaluation strategies, and detailed analysis 

are presented to support future developments and replication 

steps. 

2 METHODS 

 Generative Adversarial Networks  

GANs are a type of generative model that learns patterns in 

data and generates new samples that resemble the original 

dataset [7]. GANs consist of two neural networks, competing 

in a zero-sum game: the generators, which create the synthetic 

data, and the discriminator, which distinguishes between the 

real and generated data (Figure 1). The generator aims to 

minimize the discriminator’s ability to differentiate between 

real and fake samples, while the discriminator tries to maximize 

its ability to classify data correctly. 

GANs' training can be challenging due to issues like mode 

collapse and gradient instability. To address this challenge, 

Wasserstein GAN (WGAN) was introduced [8]. In this 

approach, the Wasserstein distance (Earth Mover’s distance) 

was utilized to measure the difference between the real and 

generated data. The WGAN replaces the discriminator with a 

critic network, which provides more stable gradients, avoiding 

the problem of vanishing gradients in traditional GANs.  

To further improve training stability, WGAN with gradient 

penalty (WGAN-GP) was introduced [9], which added a 

gradient penalty in the loss function. This term makes the 

critic’s gradient more stable and smooth and improves 

convergence. The WGAN-GP loss functions are:  

 

𝐿𝐷 =
1

𝑁
∑[𝑑(𝑔(𝑧𝑛)) − 𝑑(𝑥𝑛)] + 𝜆. 𝐸[(|∇d(𝑥̂)|2 − 1)2]

𝑁

𝑛=1
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In this equation 𝑑(𝑥𝑛) and 𝑑(𝑔(𝑧𝑛)) are the critic’s outputs 

for real and generated images, respectively. 𝑁 is the batch size 

and 𝜆 is controlling the strength of the gradient penalty.   

 

 

 

Figure 1. Overview of Generative Adversarial Networks. 

 

 Evaluation Metrics 

2.2.1 Structural Similarity Index Measure (SSIM) 

SSIM evaluates the similarity between two images by 

considering structural information, such as luminance, contrast, 

and structure. The SSIM score ranges from 0 to 1, with 1 being 

perfect similarity [10].  
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In this equation, x and y are image patches. 𝜇𝑥and 𝜇𝑦 are the 

mean intensities of the image x and y. 𝜎𝑥  and 𝜎𝑦 are the 

standard deviations and 𝜎𝑥𝑦 is the covariance, and c is the 

constant value to prevent division by zero.  

2.2.2 Peak Signal-to-Noise Ratio (PSNR)  

PSNR measures the similarity between two images by 

comparing the maximum pixel value to the noise in the image. 

Higher PSNR value indicates better quality [11].  

 

𝑃𝑆𝑁𝑅(𝑅, 𝐺) = 10𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) 

R and G refer to the real and generated images, respectively. 

MAXI is the maximum possible pixel value (set to +1 in this 

study due to normalization), and MSE is the mean squared error 

between the real and generated images.  

2.2.3 Fréchet Inception Score (FID) 

FID measures the distance between the feature distributions of 

real and generated images [12]. A lower FID score indicates 

better image quality.  

 

𝐹𝐼𝐷 = ‖𝜇𝑟 − 𝜇𝑔‖
2

+ 𝑇𝑟(Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)
1
2) 

 𝜇𝑟and 𝜇𝑔 are the mean feature vectors of the real and 

generated images, respectively. Σ𝑟 and Σ𝑔 are the covariance 

matrices of the real and generated images. Tr refers to the trace 

of the matrix, which is the sum of its diagonal elements. 

 Acquisition Setup and Data Collection  

The experimental framework was conducted on two post-

tensioned concrete bridges in Italy, Le Pastena and Cerqueta. 

The data collection phase was performed during the 

deconstruction and maintenance phase with a collaboration 

between Politecnico di Torino and Strada dei Parchi S.p.A. Due 

to the bridges’ height and limited access, a Mobile Elevated 

Work Platform (MEWP) was used for instrumentation setup. 

The wire cutting process, performed on twisted tendons, was 

carried out using an electric trimmer in a controlled setup after 

the prestressing tendons were exposed.  

The primary dataset was acquired using two accelerometers 

(Model 805M1, DSPM Industria srl), placed 4.5 meters from 

the cutting point on the sides of the beams. This setup was 

chosen to ensure the signal could be reliably recorded, 

considering the effects of signal attenuation and dispersion 

along the propagation path. These propagation effects can 

influence the measured acceleration signals and, consequently, 

the generated spectrograms. These accelerometers recorded 

structural vibrations during wire cutting, with a high sampling 

rate of 96 kHz and a frequency response of 0.4 to 12 kHz. In 

addition to the rare event of wire breakage signals, other 

vibrational events such as hammering, electric trimmer, and 

traffic were captured. This comprehensive dataset ensures the 

development of a robust model for generating sound events and 

further development of more generalized automated systems 

(Figure 2). 

  

 
 

 
 

Figure 2. Sensor positions on La Patenda Bridge. 
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 Experiments  

2.4.1 Feature Extraction  

The dataset used in this study comprises four signal classes: 

wire breakage (202 samples), hammering (264 samples), 

electric trimmer (459 samples), and traffic (415 samples). As it 

is evident, there is a class imbalance, with critical events like 

wire breakage being underrepresented, which may affect model 

performance. The signals were captured at a sampling 

frequency of 96 kHz, with each signal having 1000 samples 

over 0.0104 seconds (Figure 2). To ensure consistency and 

reduce bias from varying amplitudes, all signals were 

normalized before further processing. 

 

 

Figure 3. Time-domain representation of the wire breakage 

acceleration signal (units: m/s²). 

 

This study uses Short-Time Fourier Transform (STFT) for 

feature extraction from in-situ acceleration signals to analyze 

event patterns. STFT transforms signals from the time domain 

to the two-dimensional time-frequency domain, keeping both 

temporal and spectral information. One important parameter in 

STFT analysis is the window size selection, which can affect 

the trade-off between time and frequency resolution.  Smaller 

window sizes (e.g., 64) offer high time resolution but low 

frequency resolution, while larger windows (e.g., 512) provide 

better frequency resolution but less temporal precision. In this 

study, the optimal balance was achieved using window sizes of 

128 and 256 (Figure 3). The extracted STFT spectrograms were 

used as single-channel images for model training, optimizing 

feature extraction and computational efficiency for event 

detection and structural health monitoring applications. 

 

 

Figure 4. STFT spectrogram of a wire breakage signal. The 

x-axis represents time (seconds), the y-axis represents 

frequency (Hz).  

 

2.4.2 Model Developments  

The WGAN-GP was implemented as one of the most 

successful models for image generation. It improves on the 

standard GAN and WGAN models by using the Wasserstein 

loss function and adding a gradient penalty. The generator 

starts with a latent noise vector of size 100, a typical setting in 

GAN studies. This vector is reshaped into small feature maps 

and upsampled through transposed convolutional layers to 

generate spectrogram-like images. In this study, the generator 

consists of four transposed convolutional layers with kernel 

sizes of 5×5 and strides of 2, progressively reducing the feature 

map depth from 512 to 256, 128, and 64 before producing the 

final spectrogram. To ensure stable training and avoid 

vanishing or exploding gradients, batch normalization is 

applied after each layer. Leaky ReLU activation is used 

throughout the layers to add non-linearity, except in the final 

layer, where a tanh activation function normalizes the output 

values to the range [-1, 1].  

The critic, unlike the discriminator, does not classify samples 

as real or fake; instead, it assigns real-valued scores to samples, 

helping to approximate the Wasserstein distance between real 

and generated data. The critic consists of several 2D 

convolutional layers, which progressively reduce the spatial 

dimensions of the input, followed by batch normalization and 

Leaky ReLU activations to improve learning stability. To 

enforce the Lipschitz constraint, a gradient penalty term with a 

coefficient of 𝜆=12 is added to the loss function. The selection 

of hyperparameters search space was based on a combination 

of recommendations from GAN literature and preliminary 

tuning experiments on dataset to achieve stable and high-

quality spectrogram generation. The summary of 

hyperparameter selection for this model is in Table 1. 

Table 1. Hyperparameter Selection for WGAN-GP Model 
Parameter Value Search Space 

Learning Rate (Generator) 2 x 10-5 2 x 10-5 to 2 x 10-5 

Learning Rate (Critic) 2 x 10-6 2 x 10-5 to 2 x 10-5 
Batch Size  16 16 to 64 

Epochs  1500 1000 to 5000 

Optimizer  Nadam Nadam, Adam, 
RMSProp 

Gradient Penalty Coefficient  12 1 to 25 

Activation Function 
(Generator) 

Leaky ReLU, Tanh Leaky ReLU, 
ReLU, ELU, Tanh 

Activation Function (Critic) Leaky ReLU Leaky ReLU, 

ReLU, ELU, Tanh 

Generator Layers 4 Transposed 

Convolutions  

3 to 8 

Critic Layers  5 Convolutions 3 to 8 
Kernel Size  5x5 3x3 to 5x5  

 

To assess the performance of WGAN-GP and the quality of 

generated images, the model was evaluated using multiple 

metrics, including SSIM, PSNR, and FID. The results are 

shown in Table 2 for both window sizes of 128 and 256, which 

enable the determination of the effect of window sizes in 

generating STFT-based images.  

 

Table 2. Performance Metrics of WGAN-GP 
Metrics Class Window Size:128 Window Size:256 

SSIM 

Breakage 0.367 0.180 

Trimmer 0.342 0.403 

Hammer 0.208 0.232 

Traffic 0.170 0.186 

PSNR Breakage 13.409 11.972 
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Trimmer 13.424 13.621 

Hammer 10.520 11.289 

Traffic 11.374 12.020 

FID 

Breakage 0.219 0.331 

Trimmer 0.173 0.270 

Hammer 0.221 0.194 

Traffic 0.179 0.237 

 

For SSIM, WGAN-GP achieved the highest value for the 

Trimmer event at window size 256 (0.403), indicating better 

structural similarity compared to the other events. It is notable 

that for the breakage event at a window size of 128, the score 

dropped from 0.367 to 0.18, which suggests that the model is 

not able to preserve the pattern of more complex signals, such 

as wire breakage. For Hammer and Traffic events, the SSIM 

values were relatively lower, indicating that WGAN-GP had 

difficulty maintaining high structural similarity for these types 

of events across both window sizes. 

In terms of PSNR, which measures image clarity and noise 

levels, the best performance was obtained for the Trimmer 

event with a PSNR of 13.424 at window size 128 and 13.621 at 

window size 256, indicating that WGAN-GP generated 

spectrograms with minimal distortion for this event. However, 

the Breakage event exhibited lower PSNR scores, particularly 

at window size 256 (11.972), highlighting a reduction in image 

quality for events with more intricate features. Hammer and 

Traffic events also showed similar trends, with Traffic 

performing better at window size 256 (12.020). For reference, 

higher PSNR values indicate greater similarity, with values 

above 20 generally considered good for images; however, in 

the context of generated spectrograms, PSNR values are 

typically lower, and values above 10 are commonly reported as 

acceptable in the literature for synthetic data with complex 

structures. 

The FID metric, which evaluates the similarity between real 

and generated data distributions, showed that WGAN-GP 

performed well for the Trimmer event at window size 128 (FID 

of 0.173). However, it struggled with Breakage and Hammer, 

with higher FID scores indicating that the generated 

spectrograms deviated more from real data. Overall, Traffic 

also showed relatively low FID values at both window sizes, 

indicating good model performance for simpler events. 

 

  

Figure 5. STFT Spectrogram images (window size 128) of 

wire breakage signal (Left) Real Sample, (Right) Generated by 

WGAN-GP. The x-axis represents time (seconds), the y-axis 

represents frequency (Hz). 

 

In summary, WGAN-GP demonstrated strengths in 

generating synthetic spectrograms for certain events like 

Trimmer and Traffic, especially at window size 128. However, 

the model faced challenges in generating high-quality 

spectrograms for more complex events such as Breakage and 

Hammer, particularly at larger window sizes. These results 

highlight the need for further development and utilization of 

GAN models to better capture fine spectral features and 

improve consistency across different types of events. 

 Conclusion and Future Developments  

This study demonstrated the potential of GAN-based data 

augmentation in the context of structural health monitoring 

using STFT spectrograms from in-situ acceleration signals. The 

model showed promising performance, particularly for 

Trimmer and Traffic events. However, it is important to note 

that WGAN-GP showed some limitations in generating more 

complex STFT patterns, such as those associated with Wire 

Breakage events. 

To further improve the model, future work will focus on 

addressing these limitations by refining and customizing the 

architecture. Additionally, integrating more advanced models, 

such as sequential models and attention mechanisms, which are 

robust for time-series data, will be explored to enhance the 

model's ability to capture intricate temporal dependencies and 

improve the generation of complex event patterns. 

Furthermore, future studies will systematically evaluate the 

impact of GAN-generated data on downstream event 

classification and detection models to better quantify the 

practical benefits of data augmentation for structural health 

monitoring. 
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