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ABSTRACT: Structural health monitoring (SHM) plays a crucial role in ensuring the safety and longevity of critical infrastructure, 

such as bridges. SHM refers to continuous, sensor-based, and automated monitoring that complements traditional inspection 

methods by providing real-time data on structural performance. This paper proposes an unsupervised machine learning approach 

to SHM using vibration data, aiming to address the challenges of data scarcity and the difficulty of collecting labelled damage 

examples. The methodology combines statistical and spectral feature extraction with an Isolation Forest anomaly detection model, 

trained solely on healthy data to identify potential damage. The feature extraction process includes key metrics such as root mean 

square, entropy, and spectral centroid, which capture both time-domain and frequency-domain characteristics of the vibration 

signals. The Isolation Forest model is trained on these features to distinguish between normal and anomalous patterns, making it 

well-suited for applications where labelled damage data is unavailable. Results from FE simulation show high accuracy (95.5%), 

precision (91.75%), and recall (100%), demonstrating the effectiveness of the method in distinguishing damage from healthy 

states. The proposed approach provides a scalable and data-efficient solution for real-time damage detection in civil infrastructure, 

with significant potential for deployment in large-scale monitoring systems. Future work will focus on experimental validation 

and improving the model’s robustness in real-world conditions. 

KEY WORDS: Structural Health Monitoring; Unsupervised Learning; Anomaly Detection; Vibration Data; Isolation Forest; 

Damage Detection; Bridges; Machine Learning; Feature Extraction; Real-Time Monitoring 

1 INTRODUCTION 

Structural health monitoring (SHM) is an essential aspect of 

maintaining the safety and integrity of civil infrastructure, 

particularly for critical structures like bridges. With the ageing 

of infrastructure, globally and increasing demands on 

transportation networks, the need for efficient, real-time 

monitoring systems has never been more pressing. SHM refers 

to continuous, sensor-based, automated monitoring that 

complements traditional inspection methods by providing real-

time data on structural performance. This allows engineers to 

prioritise inspections and, in some cases, reduce their 

frequency, especially for hard-to-access structures such as 

long-span bridges or offshore platforms. 

Machine learning-based approaches represent a more 

contemporary method for processing SHM data and developing 

models that enhance damage detection. These methods can 

improve both the speed and accuracy of detection and 

complement established techniques like system identification 

that are commonly used for real-time monitoring. Structural 

responses, such as acceleration, displacement and strain, 

provide quantitative measures of how a structure reacts to 

applied loads. Among machine learning approaches, 

unsupervised anomaly detection has gained interest for its 

ability to function without requiring labelled damage data. This 

is especially useful in civil infrastructure applications, where 

collecting labelled examples of damage is costly, time-

consuming, and often impractical. 

Unsupervised learning approaches are particularly 

advantageous in SHM applications where only healthy baseline 

data are available, as they do not require labelled damage 

examples for training. While unsupervised methods broadly 

include clustering and dimensionality reduction techniques, 

this study specifically adopts an anomaly detection approach 

trained solely on healthy data. This is especially relevant in 

large-scale infrastructure where controlled damage scenarios 

are infeasible [1]. Accelerometers, widely used for collecting 

vibration-based data in SHM, are valued for their simplicity, 

cost-effectiveness, and ability to capture overall structural 

response. Despite limitations such as temperature sensitivity 

and noise, they remain a preferred choice for large-scale 

deployment. While other sensors, such as Fibre Bragg Grating 

(FBG), can detect localised damage with higher precision, they 

require complex installation and costly equipment [2]. 

Soltani et al, provided a comprehensive review of machine 

learning techniques for SHM, highlighting the increasing use 

of unsupervised methods such as Principal Component 

Analysis (PCA), Isolation Forest, and autoencoders [3]. Their 

study emphasised the importance of real-time, data-driven 

monitoring frameworks in situations where model-based or 

supervised methods are limited by the lack of labelled damage 

data. Fernandez-Navamuel and Magalhães proposed an 

ensemble method that combines PCA and autoencoders for 

feature extraction and damage detection in bridge vibration 

data [4]. Their hybrid approach improved sensitivity to 

structural changes while maintaining robustness in noisy 

environments, making it suitable for long-term monitoring 
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applications. Boccagna, Bottini, Petracca, and Amelio also 

supported hybrid techniques by combining convolutional 

autoencoders with PCA and Isolation Forest to detect 

anomalies in railway bridge vibration data [5]. Their results 

demonstrated the potential of integrating deep learning and 

traditional unsupervised methods to detect complex structural 

changes in simulated datasets. This work further reinforces the 

value of hybrid models, particularly where conventional 

techniques may struggle to capture subtle anomalies. Recent 

work by Toufigh and Ranjbar explored a deep autoencoder–

Isolation Forest framework for detecting damage in concrete 

structures using ultrasonic vibration responses [6]. Their 

method integrated automatic feature extraction with 

unsupervised anomaly detection, offering an efficient and 

scalable solution without the need for labelled damage data. 

Similarly, Bayane, Leander, and Karoumi developed an 

unsupervised SHM pipeline using vibration-based features and 

anomaly detection techniques to monitor bridges [7]. Their 

results illustrated the practicality of using data-driven methods 

for real-time monitoring, especially in preventing costly 

maintenance or failure events. 

In contrast to these studies, the model developed in this paper 

focuses on vibration data from bridge structures, particularly 

using statistical and spectral feature extraction methods (e.g., 

RMS, entropy), combined with the Isolation Forest algorithm 

trained exclusively on healthy data. The novelty of this 

approach lies in its use of a sliding window technique to 

segment the signal, enabling localised anomaly detection over 

time. This is especially valuable for identifying slowly 

progressing damage, such as cracking or fatigue, which may 

not be visible in global features. Additionally, the 

implementation of a consecutive anomaly rule ensures that 

damage is only flagged when anomalies persist across 

multiple windows, which increases robustness against 

transient noise and false positives. Together, these design 

choices make the system well-suited for large-scale, real-time 

SHM applications where computational efficiency and 

scalability are essential. 

In this study, a finite element (FE) model of a simply 

supported beam was developed to simulate the dynamic 

response under both healthy and damaged conditions. A 

moving load was applied to reflect real-world traffic 

scenarios, and acceleration data were collected at mid-span. 

The time-series signals were segmented using a sliding 

window, and statistical and spectral features were extracted. 

These were used to train an unsupervised Isolation Forest 

model, aiming to detect structural damage based solely on 

deviations from the healthy baseline vibration signature. 

 

2 METHODOLOGY 

 Simulation Setup 

The finite element model represents a simply supported beam 

subjected to a moving load, as illustrated in Figure 1. This 

configuration is used to emulate bridge structures, where the 

pinned–roller boundary condition provides a simplified yet 

effective representation of real-world support systems [8]. To 

ensure the accuracy of the model and to validate the results, the 

initial simulation setup was based on the approach outlined in 

[8]. Specifically, the model was first validated by replicating 

their results, ensuring that the acceleration of the mid-span of 

the beam matched their findings before proceeding to select the 

range of velocities and forces for further simulations.  

The beam is discretised into ten elements, with damage 

introduced in a single element for selected cases[8]. In the 

validation setup, the damaged element is positioned at 35% of 

the beam’s total span from the left support. 

In this study, damage was introduced by locally reducing the 

stiffness of a single finite element in the beam by 20 per cent. 

The damage location remained static across all damaged 

simulations and was fixed at 35 per cent of the beam span from 

the left support, following the setup used in Mousavi and 

Holloway [8]. This fixed location was chosen to allow 

consistent comparison of model predictions across simulations 

and to simplify the initial sensitivity analysis. The reduction in 

stiffness was chosen to represent a moderate-to-severe 

degradation, such as advanced cracking or corrosion. While 20 

per cent is a relatively large value, it was selected to ensure the 

damage signal was sufficiently distinct to validate the 

effectiveness of the detection method. Future work will explore 

smaller reductions and varying damage locations to assess the 

model’s robustness in detecting more subtle or distributed 

damage scenarios. 

 

Figure 1. The schematic of the simply supported beam with a 

moving load 

A total of 200 dynamic simulations were conducted to evaluate 

the beam’s acceleration under varying loading conditions—100 

with undamaged beams and 100 with damage applied. For each 

simulation, the magnitude of the vertical force and the moving 

velocity were randomly selected within specified ranges, using 

uniform random sampling. The vertical force was chosen 

randomly between 5000 N and 15000 N, and the velocity was 

selected between 13 m/s and 25 m/s. This approach introduces 

variability in the system, ensuring that a range of realistic 

vehicle loading conditions is tested.   

Material properties for the beam were based on structural steel, 

assuming linear elastic behaviour. To simulate structural 

degradation, damage was introduced by locally reducing the 

stiffness of a single element. This modelling approach is used 
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in the literature to represent localised damage within a linear 

elastic framework [9]–[11]. 

Huner, Irsel, Bekar, and Szala demonstrate that explicit solvers 

provide advantages over implicit methods in both 

computational efficiency and accuracy when dealing with 

transient impact loads [12].An explicit solver (LS-DYNA) was 

used to perform the simulations, selected for its effectiveness 

in modelling highly dynamic and nonlinear systems.  

All simulations were sampled at a frequency of 1000 Hz, 

ensuring high-resolution capture of the system’s dynamic 

response. The main modelling parameters are listed in Table 1. 

Table 1. System Parameters for the SHM model. 

Quantity Value 

Modulus of elasticity 200 GPa 

Density 7800 kg/m³ 

Poisson’s ratio 0.3 

Beam length (L) 20 m 

Cross-section width 

(w) 

0.2 m 

Cross-section depth 

(h) 

0.2 m 

Sampling frequency 1000 Hz 

Load range (F) 5000 – 15000 N 

Velocity range (V) 13 – 25 m/s 

Number of simulations 200 (100 damaged, 100 

undamaged) 

 
 

 Anomaly Detection with Isolation Forest  

An unsupervised anomaly detection framework was developed 

to identify structural damage from acceleration time-series data 

obtained from simulations of both healthy and damaged beam 

conditions. The overall procedure is summarised in Figure 2, 

which presents a flowchart of the anomaly detection pipeline. 

Although each simulation lasts only 1.54 seconds at the lowest 

velocity (13 m/s), the signals were concatenated across 100 

healthy and 100 damaged runs to emulate continuous traffic 

loading. The resulting dataset was divided into overlapping 

windows of two seconds, with 50% overlap. This approach 

enables the system to track localised signal variations while 

preserving frequency content and computational efficiency. 

 

Figure 2. Flowchart of the anomaly detection model. 

This configuration was selected to balance temporal and 

frequency resolution and improve the model’s sensitivity to 

dynamic structural changes. While smaller window sizes were 

considered, they reduced the effectiveness of frequency-

domain features and increased susceptibility to noise. The 

adopted strategy aligns with recent studies in structural health 

monitoring that use similar windowing to support reliable 

anomaly detection. An example of the sliding window 

approach used to segment the time-series data is illustrated in 

Figure 3. 

 

Figure 3. Sliding windows illustration 
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For each window, a set of statistical and spectral features was 

extracted to characterise the dynamic response. The features 

used in this study include root mean square (RMS), entropy, 

kurtosis, skewness, dominant frequency, spectral centroid, and 

band power ratio. These features were selected for their proven 

utility in vibration-based structural health monitoring and are 

supported by recent benchmark studies. 

An Isolation Forest model was trained exclusively on the 

healthy feature set to establish a baseline for normal structural 

behaviour. This algorithm builds an ensemble of binary trees 

(isolation trees), each of which recursively partitions the data 

space using randomly selected features and split values. The 

key idea is that anomalies differ sufficiently from the bulk of 

the data to be isolated more quickly. For any input vector 𝑥, the 

anomaly score is computed as: 

 

𝑠(𝑥, 𝑛)  = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)

−
  

where: 

• ℎ(𝑥) is the path length, that is, the number of splits 

required to isolate the data point within a tree. 

•  𝐸(ℎ(𝑥)) represents the average path length of x 

across all trees in the forest. 

• 𝑐(𝑛) is the expected average path length in a binary 

search tree built from n samples. It is approximated 

by: 

𝑐(𝑛) =  2𝐻(𝑛 –  1)–
2(𝑛 –  1)

𝑛
 

 

Here, 𝐻(𝑖) is the ith harmonic number, approximated by ln(i) 

+ 𝛾, with 𝛾 ≈  0.5772 being the Euler–Mascheroni constant. 

Data points with short path lengths (i.e. those isolated quickly) 

receive anomaly scores close to 1, indicating a higher 

likelihood of being anomalous. Normal points, which are 

harder to isolate, tend to have longer path lengths and receive 

scores closer to 0. 

In this study, the IsolationForest implementation from the 

scikit-learn library (v1.6) was used. The number of trees 

(n_estimators) was set to 100 to ensure a stable estimation of 

anomaly scores. The random_state was fixed at 42 to ensure 

reproducibility. The contamination parameter, which estimates 

the expected proportion of anomalies in the dataset, was tuned 

to 0.085 based on preliminary experiments. This value 

provided a good balance between capturing true positives and 

minimising false detections. 

After training on the healthy data, the model was applied to 

both healthy and damaged datasets. The .predict() method 

classified each window as either normal (+1) or anomalous 

(−1), depending on whether its anomaly score exceeded the 

threshold determined by the contamination setting. To enhance 

reliability, only groups of five or more consecutive anomalous 

windows were treated as an indication of structural damage. 

This post-processing step helped reduce the risk of false 

positives caused by transient fluctuations or signal noise, 

ensuring that only sustained deviations from the healthy 

baseline were flagged as damage. 

 

Once trained, the model was used to classify both healthy and 

damaged windows as either inliers (labelled +1) or anomalies 

(labelled −1). To enhance the robustness of the classification 

and reduce false positives, a post-processing step was applied 

whereby only groups of five or more consecutive anomalous 

windows were considered indicative of actual damage. This 

thresholding logic aligns with practices in unsupervised SHM 

where transient anomalies or noise could otherwise trigger 

misleading alerts [17]. 

This decision was motivated by the observation that isolated 

anomalous predictions frequently arose due to short-lived 

signal fluctuations or imperfect feature generalisation. By 

requiring a minimum streak of five consecutive anomalies, the 

model avoids false alarms while still being sensitive to 

sustained deviations caused by damage. Additionally, the 

simulation data were not shuffled during concatenation. 

Instead, the 100 healthy simulations were placed first, followed 

by 100 damaged ones, ensuring a continuous transition from 

undamaged to damaged conditions in the time series. This 

ordering reflects a realistic monitoring scenario in which 

damage develops after a prolonged healthy period and also 

allows for visual and algorithmic evaluation of detection 

accuracy at the transition point. 

 

3 RESULTS 

The system's performance was evaluated using accuracy, 

precision, recall and F1-score metrics, with the confusion 

matrix providing a summary of classification outcomes. 

Results 

The performance of the anomaly detection framework was 

evaluated using both visual comparison of signals and 

quantitative metrics derived from classification results. 

Figure 4 shows a side-by-side comparison of raw acceleration 

data from the damaged and undamaged simulations. It is 

evident that the damaged signal (red) exhibits a higher density 

of peaks and more abrupt variations in magnitude than the 

undamaged signal (blue). This variation highlights the physical 

impact of stiffness reduction on dynamic response. 

 

 

Figure 4. (a) Time-series comparison of acceleration signals 

between damaged and undamaged beams at mid-span from 

101 to 103 seconds under a 10,000 N moving load at 15 m/s. 

(b) Kernel density estimate of full signal distributions, 

showing increased spread in the damaged case. 
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Figure 5 illustrates the point of transition between healthy and 

damaged data in the concatenated signal, where the black 

dashed line marks the onset of damage. This figure does not 

represent a change in damage location, but rather demonstrates 

the model’s ability to correctly identify the onset of anomalous 

behaviour. The Isolation Forest model successfully 

distinguishes between the two conditions, with no false 

detections in the healthy region prior to the transition.

 

Figure 5. Mid-span acceleration response under moving load 

for healthy and 20% stiffness-reduced beam. Dashed line 

marks detected damage. 

The confusion matrix in Figure 6 provides a quantitative view 

of the model’s predictive accuracy. Out of 945 damaged 

windows, all were correctly identified, yielding a recall of 

1.000. Meanwhile, 860 out of 945 healthy windows were 

correctly classified, producing a precision of 0.917. The overall 

accuracy of the model was 0.955, and the F1 score was 0.957, 

indicating a strong balance between precision and recall. 

 

Figure 6. Confusion matrix for SHM anomaly detection. 

 

Table 2. Anomaly detection performance metrics. 

Metric Value 

Accuracy 0.955 

Precision 0.917 

Recall 1.000 

F1 Score 0.957 

True Positives (TP) 945 

True Negatives (TN) 860 

False Positives (FP) 85 

False Negatives (FN) 0 

 

These results, summarised in Table 2, demonstrate that the 

proposed combination of statistical and spectral features with 

an unsupervised Isolation Forest algorithm is effective in 

identifying structural damage using only healthy training data. 

The perfect recall of 1.000 confirms the model’s ability to 

detect all instances of damage under the simulated conditions. 

While this result is promising, it may also reflect the relatively 

distinct nature of the simulated damage (a 20% stiffness 

reduction), which provides a clear contrast to the healthy 

baseline. In real-world scenarios, where damage may be more 

subtle or masked by noise, recall performance may vary. 

Nonetheless, achieving full sensitivity in this setup is an 

important step toward validating the model’s potential for 

practical SHM applications. 

The absence of false negatives indicates that the selected 

features, including root mean square, kurtosis and spectral 

centroid, are sensitive enough to detect changes in the mid-span 

acceleration response associated with damage. 

Permutation feature importance analysis in Figure 7 supports 

this, showing that RMS had the greatest influence on the 

model’s predictions, while entropy, kurtosis and skewness 

contributed less. This highlights the importance of signal 

energy in distinguishing damaged from undamaged states and 

suggests that the model relied primarily on RMS to detect 

anomalies. 

 

Figure 7. Permutation feature importance showing the relative 

contribution of all features to the Isolation Forest model’s 

anomaly detection performance. 

However, the presence of 85 false positives, reflected in a 

precision of 0.917, suggests that some healthy windows 

exhibited irregular but non-damaging patterns. These 

anomalies may be due to transient structural behaviours, 

elevated loads, or complex vibration modes that were not well 

represented in the training data. 

This result reflects a trade-off between sensitivity and 

specificity. In structural monitoring applications, prioritising 

recall is often preferred, as missing damage poses a greater risk 

than raising a false alarm. The high F1 score of 0.957 supports 

the strength of this balance. Nevertheless, repeated false 

positives may reduce user trust in the system and increase 

inspection costs. To address this, further work is needed to 
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investigate the nature of these misclassifications and explore 

feature refinement or adaptive thresholding strategies that can 

improve specificity without compromising detection accuracy. 

The simulations used in this study were designed to represent 

realistic bridge conditions, based on established finite element 

modelling techniques reported in structural health monitoring 

literature. A simply supported beam was subjected to a moving 

load, with force and velocity ranges chosen to reflect typical 

vehicle traffic scenarios. By randomly sampling these 

parameters across simulations, the model captures a level of 

variability comparable to that seen in practice. However, while 

the simulations reproduce essential structural behaviours, 

certain complexities that exist in real-world monitoring, such 

as sensor noise, thermal drift, and environmental changes, were 

not included. Although the method performs well in this 

controlled environment, additional validation using 

experimental or field data is needed to confirm its applicability 

in real conditions. 

In this study, damage was introduced by reducing the stiffness 

of a single element in the finite element model by 20%. This 

level of degradation represents a significant structural change, 

such as might result from cracking or corrosion. The resulting 

increase in vibration energy was clearly detectable in the 

acceleration signal, particularly at the beam's mid-span. While 

the model achieved full sensitivity to this level of damage, its 

performance with smaller changes remains to be assessed. 

Reductions in stiffness of 5%-10%, for example, may produce 

more subtle variations in the signal, making them harder to 

distinguish from normal fluctuations. Future work will 

investigate how sensitive the model is to such smaller 

degradations and how well it performs under more realistic 

conditions that include noise and environmental variation. 

All results presented in this study are based solely on finite 

element simulations. While these simulations provide a 

controlled and repeatable environment for evaluating the 

proposed method, they do not capture the full complexity of 

real-world monitoring scenarios. It is well known that 

vibration-based damage detection techniques often face 

challenges in practical applications due to noise, environmental 

variability, temperature effects, and operational conditions. 

These factors can introduce variability that may obscure subtle 

signs of damage or increase the rate of false positives. 

We acknowledge this as a limitation of the current study and 

plan to address it in future work. Specifically, we aim to 

validate the approach using real-world sensor data collected 

from instrumented laboratory-scale bridge models or in situ 

field deployments. This would involve applying 

accelerometers to physical structures subjected to controlled 

damage and comparing the model's predictions against ground 

truth. Such validation is essential for assessing the robustness 

and transferability of the proposed method and would provide 

critical insights into how it performs under realistic operating 

conditions. 

 

 

 

4 CONCLUSION 

This study set out to develop and evaluate an unsupervised 

machine learning framework for structural health monitoring 

(SHM), with the specific aim of detecting damage using only 

vibration data from healthy structural conditions. The 

motivation was to address the limitations of supervised 

approaches that rely on labelled damage data, which is often 

unavailable or impractical to collect in real-world scenarios. 

The proposed method combined lightweight time-domain and 

frequency-domain features with an Isolation Forest anomaly 

detection model, further enhanced by a consecutive anomaly 

rule to reduce false positives. The approach was tested on 

simulated acceleration data from both healthy and damaged 

beam configurations. Results showed that the model achieved 

high detection accuracy, with perfect recall and no false 

negatives, indicating strong sensitivity to damage. Precision 

and F1 scores also demonstrated the model’s ability to reliably 

distinguish between normal and abnormal structural behaviour, 

despite being trained exclusively on healthy data. 

These findings confirm the method’s suitability for low-cost, 

real-time deployment on civil infrastructure, particularly in 

settings where computational resources and data availability 

are constrained. Although this study relied on simulated data, it 

provides a solid foundation for future experimental validation 

using real-world sensor inputs. Further refinement may focus 

on improving robustness to environmental variability and 

exploring hybrid models to enhance detection performance. 
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