
13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-090 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 589 

ABSTRACT: Real-time monitoring of road infrastructure is crucial in addressing the challenges posed by the increasing volume 

of vehicles and the need for timely maintenance to manage structural aging. Traditional Weight-in-Motion (WIM) systems provide 

accurate measurements of vehicle load, axle configurations, and speed but are costly to install and require road closures, hindering 

widespread deployment. This study introduces an innovative method for estimating traffic load by repurposing acceleration-based 

Structural Health Monitoring (SHM) systems integrated with an AI powered vision system which enables to classify vehicles, 

estimate their weight, speed and finally assess traffic load over time with a scalable and cheaper solution. 

Vehicles have been classified into three macro classes: cars, lightweight trucks and heavy trucks. A comparative analysis has been 

performed between load estimation using only the AI-powered vision system, based on YOLO object detection, and an enhanced 

approach that integrates acceleration data. The combined method demonstrated significantly improved accuracy in weight 

estimation. The methodology was tested on an highway viaduct and the results validated by using a reference WIM system. The 

findings underscore the potential of this integrated approach to provide cost-effective and scalable solutions for traffic load 

estimation and structural health assessment. 
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1 INTRODUCTION  

In recent decades, highway infrastructure has been subjected 

to escalating stress due to the combined impacts of increasing 

traffic volumes and the aging of structural components. 

Transportation networks, which serve as vital conduits for 

economic activity and goods distribution, are facing growing 

demands. A major driver of this strain is the rapid expansion of 

road-based freight transport, fueled by the rising demand for 

efficient and adaptable logistics. In Europe, for instance, road 

freight accounted for more than 75% of all inland freight 

transport in 2023, with heavy-duty vehicles (HDVs) playing a 

central role in long-haul logistics and supply chains [1]. 

Bridges and viaducts are particularly susceptible to the 

combined effects of increased loading and structural aging. 

These assets often endure long service durations, facing 

environmental wear, and intensified mechanical stresses. 

Among the various contributors to their deterioration (e.g. 

material fatigue, environmental factors, seismic forces and 

inadequate maintenance) overloading by HDVs stands out as 

one of the most widespread and damaging. Numerous studies 

have identified overloading as a critical factor in both the 

progressive degradation and sudden failure of bridge structures 

across different contexts and typologies [2, 3]. 

Given this context, the need for effective and continuous 

traffic monitoring systems has become increasingly urgent. In 

particular, identifying and quantifying the load contribution 

from heavy vehicles is critical for estimating cumulative 

damage, supporting load rating decisions, and optimizing 

maintenance schedules. Traditional static weighing stations, 

while accurate, are inefficient for large-scale deployment due 

to their reliance on vehicle stops, high operational costs. 

Consequently, Weigh-In-Motion (WIM) systems have 

emerged as a valuable alternative, capable of measuring axle 

loads, gross vehicle weight (GVW), and vehicle classification 

in real time without interrupting traffic flow [4] 

 

WIM systems are generally classified into two main 

categories: Pavement-based WIM (P-WIM) and Bridge-based 

WIM (B-WIM). P-WIM systems involve the installation of 

strain or piezoelectric sensors within the roadway surface to 

directly record the forces exerted by passing axles. While 

effective in certain applications, these systems require an high 

installation cost and frequent maintenance and recalibration 

due to their direct exposure to traffic and weather. In contrast, 

B-WIM systems leverage the dynamic or static responses of 

bridge structures to estimate vehicle weights typically using 

strain, displacement, or acceleration sensors. This approach is 

advantageous as it utilizes existing infrastructure, minimizes 

road surface interventions, and offers spatial scalability over 

the entire highway network [5].  

The concept of B-WIM was first introduced by Moses in 

1979, where an inverse problem formulation was used to 

estimate axle weights based on strain measurements recorded 

during vehicle crossings [6]. This methodology laid the 

foundation for modern B-WIM systems and has since been 

refined through the integration of improved sensing hardware, 

robust signal processing algorithms, and advanced calibration 

procedures [7]. Strain-based B-WIM systems are currently the 

most widely adopted, offering high accuracy for vehicle weight 

estimation under controlled conditions. However, they still face 

limitations related to temperature sensitivity, sensor drift, and 
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the need for detailed knowledge of bridge geometry and 

boundary conditions.  

More recently, research has explored the use of acceleration-

based B-WIM systems as a low-cost and scalable alternative. 

These systems utilize MEMS (Micro Electro-Mechanical 

System) accelerometers to measure bridge vibrations induced 

by vehicle crossings. Their non-intrusive nature and ease of 

deployment make them attractive for widespread monitoring 

applications. Nevertheless, acceleration-based systems 

introduce new challenges, particularly related to signal 

variability caused by vehicle dynamics, road roughness and 

environmental noise [8]. Despite these challenges, several 

promising studies have demonstrated the feasibility of such 

approaches. For instance, Sekiya et al. [9] deployed MEMS 

accelerometers on a steel bridge and demonstrated the potential 

to estimate GVW and axle positions from a single vehicle 

crossing. A follow-up study [10] extended this investigation to 

a year-long deployment, highlighting the need for temperature 

compensation and advanced data filtering techniques to ensure 

accuracy.  

Further developments in the field have explored hybrid and 

data-driven methods. O'Brien et al. [11] used statistical analysis 

of acceleration signals to jointly estimate vehicle weight and 

assess bridge integrity. While effective for GVW estimation, 

the method struggled to resolve axle weights and spacings. 

Wang et al. [12] addressed some of these limitations by 

integrating vision-based systems with acceleration data to 

enhance vehicle detection and classification capabilities. The 

incorporation of transfer learning also demonstrated improved 

generalization across different bridge types. 

These advancements underscore the growing interest in low-

cost, scalable, and intelligent structural health monitoring 

systems. The evolution of WIM technologies, particularly B-

WIM systems enhanced by MEMS sensors and machine 

learning algorithms, opens new possibilities for real-time 

infrastructure assessment. However, significant challenges 

remain in terms of robustness, environmental adaptability, and 

the reliable estimation of axle-level loads. As urban 

infrastructure continues to age and traffic volumes increase, the 

development of resilient and accurate WIM systems becomes 

not only desirable but essential for the future of bridge 

maintenance and safety. 

This study aims to demonstrate the feasibility of estimating 

highway traffic loads by utilizing existing structural monitoring 

systems installed on viaducts, offering a cost-effective 

alternative to conventional, high-cost systems such as P-WIM 

technologies. The proposed methodology integrates vision-

based systems for vehicle detection and classification with 

acceleration data acquired using accelerometers positioned on 

the bridge spans of the viaduct. The effectiveness of this 

approach is illustrated through a case study involving an 

operational highway viaduct located in Italy (schematized in 

Figure 1) where a reference P-WIM system is present as a 

reference for the vehicle weight.  

In this work, sensitive data regarding highway traffic and 

viaduct accelerations were used; therefore, the actual 

acceleration values will be masked in the figures, and no 

Figure 1: Viaduct schema and accelerometer position. 

Figure 2: Piezoelectric accelerometers (Acc_1 and Acc_2) 

positioned on the viaduct spans. 
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absolute values will appear in the text. This does not affect the 

validity of the results. 

  

2 MATERIALS AND METHODS 

The viaduct features a simply supported beam configuration 

and consists of six spans. This study focuses on the first three 

spans, each measuring 21 meters, as they correspond to the 

direction of traffic flow. The primary structural components are 

made of conventional reinforced concrete, while the decks and 

pier caps are constructed using pre-stressed reinforced concrete 

to enhance load-bearing capacity and durability. Overhangs are 

located at piers 5 and 6, supporting the adjacent suspended 

spans through Gerber saddles, which facilitate simple support 

articulation and allow for structural continuity. The entire 

structure is founded on direct foundation systems. 

The monitoring setup implemented on the viaduct includes 

three PCB 393A03 piezoelectric IEPE accelerometers 

positioned on the first three spans of the viaduct (see Figure 1 

and Figure 2). The use of multiple accelerometers enables 

vehicle speed estimation by correlating the time delays between 

the signals captured by the sensors. Furthermore, it allows for 

a comparative analysis of acceleration responses at mid-span 

locations (Acc_0 and Acc_2), where the dynamic amplification 

of structural response is more significant and near the joint 

(Acc_1), where vehicle impacts contribution on the 

acceleration data. Data acquisition was performed 

synchronously using a National Instruments CompactDAQ 

system (model cDAQ-9172 equipped with NI 9230 boards) 

with a sampling frequency of 1000 Samples/s. 

For vehicle detection and classification, a vision system 

comprising a Sony Handycam HDR-CX405 camera was 

installed above the tunnel exit, providing a clear field of view 

of the traffic flow immediately following the tunnel (as shown 

in Figure 3). To establish a ground-truth reference, a P-WIM 

system located upstream of the viaduct was used. Given the 

absence of highway exits along between the P-WIM system and 

the viaduct, it was ensured that all vehicles recorded by the P-

WIM system subsequently traversed the viaduct under 

investigation. To account for potential overtaking between the 

two locations, an auxiliary camera installed at the P-WIM site 

was used to reorder vehicles and ensure accurate matching with 

the viaduct observations. 

The reference data provided by the P-WIM system included 

detailed vehicle information, such as speed, length, lane 

position, axle count and spacing, individual axle loads, gross 

vehicle weight (GVW), and vehicle classification based on the 

ASTM E1318-09 standard [13]. The vehicle flow was sparse 

enough to ensure that only one vehicle crossed at a time, 

simplifying the analysis and reducing the complexity 

associated with multi-vehicle events. The dataset analyzed 

comprises a total of 96 vehicles that traversed the viaduct 

during the time period in which all monitoring systems were 

simultaneously acquiring data. Approximately 90% of the 

recorded vehicles were two-axle vehicles, with an average 

GVW of around 2 tonnes. This category includes not only 

passenger cars, but also vans, light trucks, and motorcycles. 

The remaining 10% consisted of heavier vehicles with three, 

four, or five axles, corresponding primarily to trucks, with an 

average GVW of approximately 20 tonnes. Regarding vehicle 

speed estimation, it was derived by correlating the data from 

the accelerometers with the output from the vision system. The 

velocity measurements provided by the P-WIM system could 

not be considered a reliable reference, as the system is located 

upstream of the viaduct and vehicle speeds may vary along the 

intervening  highway segments. 

 Vision-based vehicle detection and speed estimation 

Vehicle detection and classification within the region of 

interest were performed using a Python-based application that 

integrates OpenCV with a pre-trained object detection 

algorithm. Each video frame was processed to identify and 

localize vehicles using the YOLOv3 (You Only Look Once 

[14]) model, trained on the COCO dataset [15], which enables 

vehicle classification in only four classes: car, motorbike, bus, 

and truck. To achieve more stable classification and refine 

detections, post-processing was performed by applying a 

confidence threshold and non-maximum suppression. A 

tracking algorithm was then employed to assign persistent IDs 

to detected vehicles across consecutive frames by comparing 

the centroids of bounding boxes. This enabled consistent object 

identification throughout the video. Vehicle counting was 

carried out by monitoring object trajectories across a user-

defined detection zone delimited by three virtual lines. When 

an object centroid crossed the designated thresholds, it was 

counted and classified accordingly (see Figure 3 (right)).  

Given the relevance of vehicle speed as a parameter, a 

method for its estimation was also implemented. During video 

processing, the frame numbers at which each vehicle entered 

and exited the detection area is recorded. By combining this 

information with the known frame rate and the estimated 

physical distance (Δ𝑠) between the entry and exit lines, the 

vehicle speed (𝑣_𝐼𝐷) was approximated using the following 

relation: 

 𝑣_𝐼𝐷 =
Δ𝑠 × 𝑓𝑝𝑠

𝑓𝑟𝑎𝑚𝑒1−𝑓𝑟𝑎𝑚𝑒0
 (1) 

 

where 𝑓𝑟𝑎𝑚𝑒0 and 𝑓𝑟𝑎𝑚𝑒1 denote the frame indices 

corresponding to the vehicle entry and exit points, respectively, 

and 𝑓𝑝𝑠 (frame per second) corresponds to 50 for the camera 

used. The accuracy of this estimate depends on factors such as 

camera placement, resolution, and perspective distortion. 

Several limitations in the detection and classification process 

were addressed. First, the object class assigned by YOLOv3 

may vary across frames, leading to misclassification. To 

Figure 3: Vehicle detection when it crosses the P-WIM system 

(left) and while it crosses the first viaduct span (right). 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-090 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 592 

mitigate this, all class labels assigned to an object during its 

passage were stored, and the most frequently assigned class 

(mode) was used as the final classification. Second, incomplete 

or intermittent detections, often due to low confidence scores, 

could cause the same vehicle to be assigned to different IDs, 

affecting both vehicle counting and speed estimation. To 

address this, the ID matching process was extended to compare 

across both temporary detection lists, improving continuity in 

object tracking. However, if a vehicle was detected only in the 

latter part of the detection zone, the estimated speed would be 

significantly overestimated. To prevent this, the system 

recorded the initial detection point for each object and 

suppressed speed calculations for vehicles detected too late in 

the zone, where time-distance correlation becomes unreliable.   

 Acceleration-based vehicle detection and sped 

estimation 

This section focuses on vibration analysis using accelerometer 

data, aiming to correlate sensor-derived information with data 

obtained from video recordings. Specifically, the analysis 

addresses two objectives: (i) the identification of light and 

heavy vehicles using time-domain features extracted from 

acceleration signals, and (ii) the estimation of vehicle speed 

through the synchronization of signals from three 

accelerometers, followed by comparison with speed estimates 

derived from the vision-based system. 

By analyzing the time histories from raw accelerometer data 

(see Figure 4), vehicle pass-by events were initially identified 

by observing distinct signal peaks. A representative segment of 

the vibration data, collected during one of the experimental 

campaigns, illustrates this concept. To improve detection 

clarity, a moving Root Mean Square (RMS) function was 

applied to the signal. The RMS provides a measure of signal 

energy over a defined time window and is particularly useful 

for distinguishing between light and heavy vehicles, as heavier 

vehicles are expected to induce greater energy in the structure. 

However, fixed thresholds for vehicle classification cannot be 

determined a priori, as they depend on the specific structure and 

sensor placement.  

Frequency domain analysis (see Figure 5) reveals that the 

primary distinction between light and heavy vehicles lies in the 

low-frequency range, specifically below 50 Hz. Based on this 

observation, the signal energy within this band, quantified 

using the RMS of the band-pass filtered signal (5–50 Hz), was 

selected as the key feature for vehicle classification.  

Vehicle speed can be estimated also correlating signals from 

different accelerometers, based on their spatial position and the 

time taken by a vehicle to traverse the corresponding distance. 

Several methods can be used to estimate the time lag between 

two signals; in this case, the cross-correlation method was used, 

which computes the time lag between two signals considering 

the well-known correlation function: 

 

 𝐶𝑜𝑟𝑟(𝜏) = ∫ 𝑎𝑒𝑛(𝑡) 𝑎𝑒𝑥(𝑡 + 𝜏)𝑑𝑡
𝑇

0
 (2) 

 

where 𝑎𝑒𝑛(𝑡) and 𝑎𝑒𝑥(𝑡) represent the signals from entry and 

exit sensors, respectively, and 𝜏 denotes the time shift. The 

correlation was applied either directly to the moving RMS of 

the signal or to the envelope of the signal. These two 

acceleration-based methods will be compared to the vision-

based estimates in the results section to evaluate their 

performance. 

 

3 RESULTS 

This section presents the results of the study, beginning with 

the comparison of speed estimations comparison between the 

two systems and subsequently discussing the outcomes of 

vehicle classification between light and heavy vehicles. 

Although vehicle speed estimation is not the primary focus 

of this study, it remains a valuable parameter, as the velocity at 

which a load travels over a viaduct can significantly influence 

the dynamic response of the structure. Moreover, since speed is 

also estimated by P-WIM systems, utilizing existing 

infrastructure such as cameras or accelerometers for speed 

estimation can enhance the spatial coverage of traffic 

monitoring. This approach has the potential to provide a more 

comprehensive mapping of vehicle speeds across the highway 

network, contributing to a more accurate assessment of moving 

loads on the structure. 

The comparison between the acceleration-based and vision-

based vehicle speed estimation methods is summarized in 

Table 1.  

Table 1. Vehicle speed estimation comparison between 

acceleration-based and vision-based methods. 

Method Δ < 20
km

h
 Δ ≥ 20

km

h
 

Moving RMS 91.7% 8.3% 

Envelope 82.5% 17.5% 

 

Both the Moving RMS and the Envelope methods have been 

used for speed estimation from the acceleration based system. 

The parameter ∆ represents the absolute difference in speed 

estimates between the two systems. Results are categorized 

based on whether this difference is less than or greater than 20 

km/h. The Moving RMS method exhibited a high level of 

agreement, with 91.7 % of the estimates falling within a ∆ < 20 

Figure 4: Raw acceleration signals from the 3 accelerometers 

during the passage of two vehicles. 

Figure 5: Average spectrum for heavy vehicles and light 

vehicles during their passage over the accelerometer Acc_0. 
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km/h and only 8.3 % exceeding this threshold. Similarly, the 

Envelope method showed that 82.5 % of estimates were within 

the acceptable margin, while 17.5 % exceeded it. These 

findings suggest that both acceleration-based techniques, 

particularly the Moving RMS approach, demonstrate 

promising accuracy and consistency when compared with the 

vision-based system. 

 

 

4 CONCLUSION AND FURTHER DEVELOPMENT 

This study presents a preliminary investigation into the 

feasibility of leveraging existing monitoring systems - , 

specifically, accelerometers installed on viaducts and highway 

surveillance cameras - to estimate traffic loads acting on 

highway infrastructure.  

Although not the primary objective, traffic load estimation is 

highly relevant for informing maintenance strategies, 

forecasting potential structural damage and design new 

infrastructure.  

Currently, P-WIM systems serve this purpose but are often 

associated with high installation and maintenance costs. As an 

alternative, the proposed methodology offers a low-cost, albeit 

less precise, approach by estimating vehicle loading by 

identifying the number of heavy vehicles (>10 tons) traversing 

the viaduct. A reference P-WIM system was used as ground 

truth for weight calibration, enabling a daily estimate of total 

traffic-induced load, potentially useful in design or assessment 

contexts where knowledge of acting loads is required. 

 

Results demonstrate that employing an intelligent vision-

based system (e.g. using pre-trained deep learning object 

detection models), can distinguish between light and heavy 

vehicles. However, intermediate vehicle categories (e.g., vans, 

minibuses, RVs) are occasionally misclassified. One inherent 

limitation is the high variability in heavy vehicle weights 

depending on loading conditions, making it challenging to 

detect overloading or estimate precise weight using 

classification alone. In this regard, the inclusion of structural 

acceleration data improves classification accuracy, as the 

energy transferred by the vehicle, expressed through the root 

mean square (RMS) of the acceleration signal, provides an 

additional informative metric for estimating vehicle mass. 

Furthermore, the study compares vehicle speed estimates 

derived from both systems. By correlating signals from three 

accelerometers and cross-referencing them with visual 

detections, the comparison shows that in 90% of cases, the 

speed difference between the two methods is below 20 km/h, 

suggesting consistency and potential for dual-system 

validation. 

 

Despite its promising results, the study faces several limitations 

that define avenues for future research. Most notably, the 

dataset includes only 239 vehicles, limiting the use of more 

sophisticated data-driven algorithms that could enhance load 

estimation using richer input features beyond RMS. Expanding 

the dataset would enable the exploration of machine learning 

models trained directly on raw acceleration signals.  

Concerning vision-based algorithms, having a bigger dataset 

would allow model retraining with more vehicle classes 

specifically tailored for this application, enabling a more 

precise weight estimation. Additionally, while the present study 

analyzes the two systems separately, future work should 

consider integrating their outputs into a unified model, enabling 

sensor fusion to enhance overall system robustness and 

accuracy. 
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