
13th International Conference on

Structural Health Monitoring of Intelligent Infrastructure DOI: 10.3217/978-3-99161-057-1-083

CC BY 4.0
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise 550

ABSTRACT: For efficient maintenance and repair, 3D modeling of bridges for converting analytical models and visualizing

deformation locations is being advanced. Instead of manually creating models from drawings and ledgers, automating model

generation from point cloud data, capable of capturing as-is geometry quickly and widely, can improve efficiency. Generating 3D

modeling of bridges from point cloud data requires segmenting each member, but dynamically setting thresholds for shape features

and positional relationships is challenging due to point density and missing points. While deep learning can dynamically set

thresholds, in the case of point cloud data, it is impractical to prepare sufficient training data, and the number of inputting points

is inadequate for setting appropriate thresholds. Therefore, this research focuses on two aspects: most bridges consist of members

with swept cross sections along longitudinal direction, and deep learning classification methods for 2D images are highly

developed. The aim is to segment members based on deep learning on 2D cross-sectional point cloud data obtained by slicing

along longitudinal direction. This reduces the number of inputting points and increases training data. Additionally, fine cross

sections enable segmentation close to 3D. The multiple patterns of learning methods, training data processing, and procedures of

segmentations are compared to identifying highly accurate segmentation methods.

KEY WORDS: Point cloud; Deep learning; Segmentation; Cross section; Steel truss bridge.

1 INTRODUCTION

A vast number of existing bridges are rapidly aging. Since it is

not practical to rebuild all of them at the same time, strategic

renewal through life cycle extension is required. To extend the

life cycle of bridges, 3D models of bridges are created. These

models can be converted numerical analysis models [1] and can

visualize deformations [2]. However, in cases of old bridges,

as-build drawings are often unavailable. In addition, conditions

of bridges inevitably changed since its construction due to

various factors. Therefore, it is necessary to construct 3D model

based on dimensions data instead of relying on drawings, but

manual measurement is time-consuming and prone to various

human errors.

Therefore, a method to efficiently create 3D models from

point cloud data, capable of capturing as-is 3D geometry as a

set of points quickly and widely, has begun to attract attention.

It can make a significant contribution to efficiency. Qin et al.

[3] sliced the point cloud data of a PC box girder bridge

vertically from the ground and used the density of each

obtained point cloud as a threshold to divide the superstructure

and substructure for Building Information Modeling (BIM).

Schatz et al. [4] semi-automatically divided the point cloud data

of a PC box girder bridge into substructure, girders, bearing

pavement, drainage facilities, etc. based on template matching,

and created an Industry Foundation Classes (IFC) model. The

authors [5] performed Finite Element Method (FEM) modeling

of a steel truss bridge by segmenting a fine section along a

longitudinal direction and dividing the point cloud of the

section based on Euclidean distance. The segmentation and

component determination processes in these papers are a

mixture of manual processing based on human visual judgment

and automatic processing based on threshold values such as

shape features and positional relationships. In general, it is not

easy to set the threshold dynamically in automatic processing

because of the effects of point density, missing points, and

other factors. In recent years, deep learning has attracted

attention as a method for dynamically setting threshold values,

and there are several cases where it has been applied to point

cloud data processing [6, 7]. However, when targeting large-

scale bridges with a wide variety of geometries, the

classification is roughly divided into upper and lower

structures, and the lack of training data and the number of input

points are insufficient.

Therefore, this research focuses on the characteristics of

bridges, which generally have many structures with swept cross

sections of each member along a longitudinal direction, and the

fact that classification methods for 2D images are relatively

well-developed. In this research, point cloud data of 2D cross

sections sliced along the longitudinal direction is used to

classify members using deep learning. The number of input

points can be reduced, and the number of training data can be

increased by inputting point cloud data of cross sections. In

addition, a finer cross-sectional view leads to an almost 3D

segmentation. The optimal learning method, processing

procedures, and multiple proposed patterns are compared and

validated, and a highly accurate segmentation method is

considered.

2 STRUCTURE OF THE MODEL

 Literatures about segmentation by using deep learning

Deep learning-based image classification and segmentation

often uses Convolutional Neural Network (CNN), which

obtains features by convolving surrounding pixel features. If

the number of pixels is reduced by convolution, the

Developing a Deep Learning-Based Method to Segment Bridge Members by using

2D Cross Sectional Point Clouds

Nao Hidaka 1, Naofumi Hashimoto 1, Ei Watanabe 2, Daisuke Uchiyama 1

1 Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan
2 Aichi Prefectural Government, 3-1-2, Sannomaru, Naka-ku, Nagoya, Aichi, Japan

email: hidaka.nao@nitech.ac.jp, n.hashimoto.704@stn.nitech.ac.jp, ei_watanabe@pref.aichi.lg.jp,

d.uchiyama.703@stn.nitech.ac.jp

13th International Conference on

Structural Health Monitoring of Intelligent Infrastructure DOI: 10.3217/978-3-99161-057-1-083

CC BY 4.0
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise 551

segmentation results are restored to the original number of

pixels by increasing the number of pixels based on the

convolved features again. Typical models include U-Net [8],

which performs domain segmentation at the pixel level; Feature

Pyramid Networks (FPNs) [9] which combine high-resolution

and low-resolution features to exploit multi-scale information;

DeepLav v3+ [10] which applies convolution with different

expansion rates in parallel. As an example of member

segmentation of point cloud data of bridges, Saovana et al. [11]

implemented segmentation of point cloud data by segmenting

photographs of bridges from multiple viewpoints into members

using U-Net and then projecting the results onto the point cloud

data generated by Structure from Motion (SfM). The results are

then projected onto the point cloud data generated by SfM to

implement point cloud data segmentation.

On the other hand, point cloud data differs from images in

that pixels are not arranged in a regular and continuous manner,

the same shape and color data can be obtained even if the order

of the points is changed, and the three-dimensional coordinates

provide a large degree of freedom. To cope with these

problems, a transformation matrix is obtained from the features

and applied to control the posture, and MaxPooling is applied

to eliminate the effect of reordering. The segmentation of point

cloud data is similar to that of a CNN. Typical models include

PointNet [12], PointNet++ [13], and Dynamic Graph CNN

(DGCNN) [14]. PointNet does not perform convolution to

obtain features for all input points. PointNet++, an advanced

version of PointNet, reduces the number of points and obtains

features from the points in the neighborhood of the point, which

is similar to the convolution process. DGCNN also obtains

features from neighboring points, but the number of points does

not change at any layer.

 Structure of the deep learning model in this research

Since the aforementioned PointNet++ [13] and DGCNN [14]

are candidates for deep learning models in this research, the

details of these model configurations are described in this

section.

The model structure of PointNet++ is shown in Figure 1. First,

c1 is obtained by randomly sampling n1 points from the cross-

sectional point set c0. Next, a point pc1 in c1 is used to search k1

neighbor points within r1, and then vectors from pc1 to the

neighbor points as feature values. The obtained feature values

are convoluted by using Conv1d, BatchNormlize and Relu

function. This process is repeated 4 times to obtain a set of

cross-sectional points c1, c2, c3, and c4 reduced by random

sampling and the features associated with c4. After that, 3

neighbor points from c3 to c4, are detected and their feature

values are convoluted by using Conv1d, BatchNormlize and

Relu function. This process is repeated until the c0 features are

updated, and finally they are convolved with the classified

features and output as random variables by applying the

Logsoftmax function.

The model structure of DGCNN is shown in Figure 2. In

PointNet++, the neighbor points were obtained based on the

position coordinates, but in DGCNN, the kn neighbor points are

obtained based on all the feature values changed by

convolution, not limited to the position coordinates, and the

vector from the reference point to the neighbor points and the

original feature values are integrated and convolved. The

Figure 1. Model structure of PointNet++.

Figure 2. Model structure of DGCNN.

13th International Conference on

Structural Health Monitoring of Intelligent Infrastructure DOI: 10.3217/978-3-99161-057-1-083

CC BY 4.0
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise 552

number of input points does not change in either layer, but the

xyz coordinates also change due to convolution. After repeating

this process 3 times, the feature values obtained in each step are

integrated. Next, MaxPooling is applied, and replicated for the

number of input points. Finally, after several convolutions, the

number of classified features is obtained and output as a

random variable by applying the Logsoftmax function.

Although the paper [14] describes a categorical vector that

provides labels for each input data as additional information, it

is not used in this research.

3 PREPARING DATA FOR DEEP LEARNING

 Case study

A two-span continuous through-type truss bridge in Aichi

Prefecture, Japan, is the case study. A photograph of the bridge

is shown in Figure 3. The bridge length is 136.9m with a span

length of 2@67.9m. A full width is 14.3 m with sidewalks on

both sides. The effective width of the roadway is 7.5 m and that

of the sidewalk is 2.0 m without widening. A slab thickness is

200 mm with a pavement of 80 mm thickness (roadway) and of

30 mm thickness (sidewalk). In addition, the bridge is straight

and has a symmetric cross slope. A general bridge drawing is

shown in Figure 4. The members to be segmented are "Upper

chord", "Lower chord", "Brace (tensile)", "Brace

(compression)", "Main girder", "Cross beam", "Upper lateral

bracing", "Lower lateral bracing", "Sway bracing", "Gate",

"Handrail", "Mounted components", and "Slab".

 Generating point cloud data from 3D CAD data

The 3D CAD data was manually created based on the drawings

of the bridge shown in Section 3.1. Furthermore, for each 3D

CAD component, point cloud data is obtained by randomly

sampling points on its surface. In this case, noise and missing

points are not generated. In addition, a uniform density (1

[pts./cm2] in this case) was set for all members in order to avoid

extreme bias in density. It is also possible to assign to each

point the normal vector of the plane from which it was

generated as a parameter. The generated point cloud data is

shown in Figure 5. Each point in the point cloud data has a label

number that corresponds to only one of the 13 types of

components mentioned above, and the colors of the points in

the figure correspond to the labels of the components (Figure

6). The total number of points was 64,016,718.

 Creating cross sectional point clouds

The following shows the flow of the method for acquiring

cross-sectional point clouds.

First, the line that corresponds to a longitudinal direction is

determined. Since the bridge in this research has straight linear

and the width is not widened, a line passing through the

centroid of the point cloud data and having the direction of the

first principal component vector obtained by principal

component analysis is defined as the "longitudinal direction

line".

Next, the point p is shifted pitch (0.1[m] in this case) from

the starting point of the longitudinal direction line, and the

plane that contains p and is perpendicular to the line along the

longitudinal direction line is defined as the "cutting plane".

Points within d (0.05 [m] in this case) of the cutting plane are

detected, and these points are projected onto the cutting plane.

This process is repeated until p reaches the end point (Figure

7).

From the point cloud data described in Section 3.2, 695 cross-

sectional point clouds were created. Examples are shown in

Figure 8. The position of the braces differs depending on the

cross section, and those irregular cross sections such as cross

beams and sway bracings, are also included.

 Normalization process for deep learning

When training a cross-sectional point cloud, the coordinate

system is modified. Define a local coordinate system for the

cutting plane as shown in Figure 7. The cutting plane is the xy-

coordinate plane of the local coordinate system. The world

(a) Side view

(b) Bottom view

Figure 3. Pictures of the case study bridge.

(a) Front, Top, Bottom view

(b) Cross sectional diagram

Figure 4. General bridge diagram (Unit: mm).

13th International Conference on

Structural Health Monitoring of Intelligent Infrastructure DOI: 10.3217/978-3-99161-057-1-083

CC BY 4.0
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise 553

coordinate Z-axis corresponds to the y-axis of the local

coordinate system. The origin point is adjusted so that the

midpoint between min. and max x-coordinates and y-

coordinates as shown in Figure 7. In order to prevent

overlearning, the x-coordinate is flipped with respect to the y-

axis with a probability of 50%.

4 IMPLEMENTATIONS AND DISCUSSIONS

 Overview

In this chapter, several cases are implemented and discussed

using training data described in Chapter 3 and test data obtained

(a) Bird view

(b) Side view

(c) Top view

(d) Bottom view

Figure 5. Point cloud generated from 3D CAD data.

Figure 6. Legend of point colors.

Figure 7. Detecting cross-sectional point clouds.

d mmd mm

x

y
= Z in world cood.

z = Longitudinal direction

X

Y

Z

origin point

=

=

=

=

Longitudinal direction line
p

(a) General section 1

(b) General section 2

(c) Around the cross beam

(d) Around the Sway bracing

Figure 8. Examples of cross-sectional point clouds from 3D

CAD data.

13th International Conference on

Structural Health Monitoring of Intelligent Infrastructure DOI: 10.3217/978-3-99161-057-1-083

CC BY 4.0
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise 554

from the actual steel truss bridge by the stationary laser

scanner. The implementation environment is shown in Table 1,

and the common parameters used for verifying multiple cases

are listed in Table 2. The number of input points and the batch

size must fit in the GPU’s memory. If this limit is exceeded,

computation is offloaded to the main memory, significantly

increasing computation time. In addition, the batch size must

be 2 or greater due to the use of BatchNormalize function as

explained in Section 2.2. The number of training samples is

10,336, calculated by dividing the total number of points in the

cross-sectional point cloud by the number of input points.

The implementation cases are organized in Table 3. During

training, validation is included in each epoch. No fixed

distinction is made between training and validation data;

instead, 8,000 samples are randomly selected from the 10,336

available for each epoch. The Intersection over Union (IoU) for

each member in the cases is shown in Figure 9. The values

shown represent the results from the epoch in which the

average IoU across all members was the highest. Computation

times for each case are summarized in Table 4.

 Point cloud for using the implementation

In this section, the measured point cloud data of the actual

bridge without member labels is mentioned. It is used for the

test of the trained model. The point cloud data (1,065,353,413

points, Figure 10) measured with a stationary laser scanner

Leica RTC360 (resolution: 3mm@10m, accuracy:

1.9mm@10m) from 27 locations on the underpass and road

surface of one span of the bridge described in Section 3.1.

5,000 cross-sectional point clouds are created as the validation

data by slicing at regular intervals (0.02 [m] in this case) along

the longitudinal direction. Note that although this point cloud

data contains color information, it is not used because there is

no color information in the training data. Normals were

obtained by calculating them with the Point Cloud Library [15],

a point cloud data processing library. The normalization

described in Section 3.4 is also applied to this cross-sectional

point cloud.

 Comparing PointNet++ or DGCNN

First, the effectiveness of PointNet++ and DGCNN in

segmenting point cloud data of cross sections sliced along the

longitudinal direction is evaluated. The construction of model

is shown in Figure 1 and Figure 2. As shown in the results of

the application to the point cloud data presented in Section 4.2

(Figure 11 and Figure 12), PointNet++ was more accurate in

the test. Although DGCNN resulted in a higher IoU and faster

computation time during training, there were many places

where other members were misidentified as the main girders in

the test. PointNet++ was able to distinguish between two types

of cross-sections of the braces with high accuracy, although in

some cases the slabs were misidentified as the cross beams in

areas where the data quality was low due to limitations of the

measurement environment. This is likely due to the fact that

DGCNN have over-trained the training data. In addition, it

seems that PointNet++ is more versatile in handling 2D point

cloud data with image-like features, as its behavior more

closely resembles the convolution process used in image-based

deep learning. For generality, PointNet++ is used in the

subsequent validations, although it takes more time.

Table 1. Development Environment.

Common

CPU
Intel(R) Xeon(R) Silver 4214R CPU @

2.40GHz 2.39 GHz (2 processors)

Memory 224GB

GPU NVIDIA GeForce RTX 3080 (10GB)

OS Windows 11 Enterprise 24H2 64bit

Slicing point cloud

Platform Microsoft Visual Studio Community 2022 64bit

Library Point Cloud Library (PCL) 1.12.0 64bit [15]

Language C++

Deep learning

Platform Microsoft Visual Studio Code

Library Pytorch 2.5.1 cuda 12.1

Language Python 3.10.5

Table 2. Common parameters of deep learning.

Num. of input points 6164

Batch size 8

Num. of training data 10336

Num. of epoch 32

Optimization function Adam

Loss function Cross Entropy Loss

Table 3. Implementation cases.

Sec. Model Sampling
Scale

Norm.

Normal

vector

Weights

for loss

4.3 * sample Yes No All 1

4.4 PointNet++ * Yes No All 1

4.5 PointNet++ sample * No All 1

4.6 PointNet++ sample Yes * All 1

4.7 PointNet++ sample Yes No *

* is the comparing topic

Figure 9. IoU of training in each case.

Table 4. Computation time of each case.

 Train Test Train Test

A 18h. 6h. D 16h. 9h.

B 9h. 4.5h. E 15.5h. 11h.

C 16h. 36h. F 15.5h. 9h.

0.775

0.8

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

Bt Bc LLB MG ULB CB UC LC SW Ga Hr MC Sl

A: Sec.4.3 PointNet++
B: Sec.4.3 DGCNN
C: Sec.4.4 block partitioning

D: Sec.4.5 without scale norm.
E: Sec.4.6 with normal vector
F: Sec.4.7 adjusting weights for loss

13th International Conference on

Structural Health Monitoring of Intelligent Infrastructure DOI: 10.3217/978-3-99161-057-1-083

CC BY 4.0
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise 555

 Comparing sampling methods as input data

The number of input points is 6144, but the number of cross-

sectional point clouds is approximately 50,000 to 100,000

points. Therefore, sampling is required. Here, two types of

sampling "block partitioning" and "random sampling" are

selected and compared the accuracy. For block partitioning,

one point is randomly selected from the cross-sectional point

cloud, from which points within a 5 m block around it are

extracted and sampled so that the total number of points is

6144. In addition, the coordinates that origin is at the center of

the block are calculated and added as new features. Random

sampling was performed by randomly selecting 6144 points

from the entire cross-sectional point cloud and x and y

coordinates are adjusted so that a distance to the farthest point

from the origin point is 1. As shown in the test results (Figure

13), block partitioning is able to detect the slabs without

misidentifying them even in areas where the quality of the

measurement data is low, but the accuracy of other members

such as the braces and the cross beams is low.

 Comparing presence or absence of scale normalization

According to Section 4.4, since block partitioning without scale

normalization has a higher detection rate of the slabs, the

additional case without scale normalization with random

sampling is implemented. As shown in the test results (Figure

14), the accuracy of the slab segmentation was improved, but

the accuracy of the braces was significantly reduced. The

second span, where segmentation accuracy is low, was not

originally intended to be measured. However, it was partially

captured during scanning of the adjacent first span. As a result,

the point cloud data is of poor quality, with low density and

many missing points. Although it is necessary to develop a

learning model that can be applied to point cloud data of low

measurement quality as a future challenge, this paper concludes

that random sampling and scale normalization are effective for

segmentation accuracy in high measurement quality areas.

 Comparing presence or absence of normal vector

In the previous explanations, only xyz coordinates were used

for the input point cloud data, but the case with additional

normal vector was also verified. As shown in the test results

(Figure 15), the reason for the poor results in the case where

normals were added is that, as shown in Figure 16, normals

were generated even where the laser scanner would not have

been irradiated if generated from 3DCAD, which may have

caused a discrepancy between the training data and the test

data. Although it is useful to develop a sampling tool that

simulates a laser scanner, it is more effective to create a

learning model that does not use normal vector, considering the

efficiency of training data generation.

 Adjusting weights for loss calculation

The equation for the CrossEntropyLoss function is shown

below:

 𝐿𝑜𝑠𝑠 = ∑ −𝑤𝑦𝑛𝑥𝑛,𝑦𝑛
𝑁
𝑛=1 (1)

The loss is calculated each member and they are sum up. N is

the number of points and 𝑥𝑛,𝑦𝑛 is a random variable in the

output data. In the previous cases, 𝑤𝑦𝑛 was set to 1 for all

members, but in this case, it is adjusted for each member. This
parameter is used to prevent bias in the accuracy of the

classification depending on the size of the member that is

Figure 10. The point cloud data measured with a stationary

laser scanner

(a) Bird view

(b) Side view

(c) Top view

(d) Bottom view

Figure 11. Result of case A: PointNet++.

(a) Bird view

(b) Side view

(c) Top view

(d) Bottom view

Figure 12. Result of case B: DGCNN.

13th International Conference on

Structural Health Monitoring of Intelligent Infrastructure DOI: 10.3217/978-3-99161-057-1-083

CC BY 4.0
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise 556

number of points. So, in this case, 𝑤𝑦𝑛 is set inversely

proportional to the number of points in each member (Table 5).

As shown in the test results (Figure 17), the outcomes were

generally similar to the case in which all weights were set to 1.

However, the segmentation accuracy for the braces was slightly

lower. This is believed to be due to the increased weight

assigned to members that appear in only a small number of

cross-sectional point clouds, such as the gates and the sway

bracings, which in turn reduces the accuracy for other members

that appear in most cross-sectional point clouds. Therefore, it is

more effective to set all weights to 1 without adjusting the

weights between members.

5 CONCLUTION

In this research, as a method for segmenting point cloud data of

bridges into members using deep learning, using point cloud

data of 2D cross sections sliced along the longitudinal

direction. Several patterns are proposed and compared for

validation to identify a highly accurate segmentation method.

Through the implementation of several cases, it was

confirmed that the following settings were effective when point

cloud data obtained by pseudo-sampling the surface of a 3D

(a) Bird view

(b) Side view

(c) Top view

(d) Bottom view

Figure 13. Result of case C: block partitioning.

(a) Bird view

(b) Side view

(c) Top view

(d) Bottom view

Figure 14. Result of case D: without scale normalization.

(a) Bird view

(b) Side view

(c) Top view

(d) Bottom view

Figure 15. Result of case E: Using normals.

(a) 3D CAD

(b) Stational laser scanner

Figure 16. Normal vectors of the point clouds.

13th International Conference on

Structural Health Monitoring of Intelligent Infrastructure DOI: 10.3217/978-3-99161-057-1-083

CC BY 4.0
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise 557

model was used as training data and point cloud data obtained

by measuring the same bridge with a laser scanner was used as

test data:

• The learning model type PointNet++ is expected to be

more versatile because of its higher segmentation accuracy

of the test data.

• When the number of input points was reduced to about 5-

10% of the total number of points, random sampling was

more accurate and faster.

• To increase versatility, it was more effective to apply scale

normalization at the time of training model input.

• Normal vectors can cause discrepancies between training

data and test data depending on the calculation method, so

care must be taken when generating them.

• Weight adjustments during the calculation of the loss

function for each member did not have a significant effect.

As future work, training on multiple types of bridges (not

limited to steel truss bridges) and performing segmentation

across various bridge types is necessary, since the training and

test data in this research are from the same bridge, although

generated by different methods. In addition, since the bridges

covered in this paper have straight liner and no width widening,

it is desirable to conduct verification on bridges with curved

liners or varying widths.

ACKNOWLEDGMENTS

This research was supported by the Foundation of public

interest of Tatematsu (Nao Hidaka).

REFERENCES

[1] M. E. Mabsout, K. M. Tarhini, G. R. Frederick, and C. Tayar, Finite-
Element Analysis of Steel Girder Highway Bridges, Journal of Bridge

Engineering, Vol. 2, No. 3, pp. 83-87, 1997.

[2] T. Yamane, P. Chun, J. Dang, and R. Honda, Recording of bridge damage
areas by 3D integration of multiple images and reduction of the variability

in detected results, Computer-Aided Civil and Infrastructure Engineering,

Vol. 38, No. 17, pp. 2391-2407, 2023.
[3] G. Qin, Y. Zhou, K. Hu, D. Han, and C. Ying, Automated Reconstruction

of Parametric BIM for Bridge Based on Terrestrial Laser Scanning Data,

Advances in Civil Engineering, Vol. 2021, No. 1, pp. 8899323, 2021.
[4] Y. Schatz and B. Domer, Semi-Automated Creation of IFC Bridge

Models from Point Clouds for Maintenance Applications, Frontiers in

Built Environment, Vol. 10, 2024.
[5] N. Hidaka, N. Hashimoto, K. Magoshi, T. Nonaka, M. Obata, and E.

Watanabe, Construction of a Practical Finite Element Model from Point

Cloud Data for an Existing Steel Truss Bridge, Proceedings of the 23th

International Conference on Construction Applications of Virtual Reality

(ConVR 2023), pp. 1155-1166, 2023.

[6] T. Xia, J. Yang, and L. Chen, Automated Semantic Segmentation of
Bridge Point Cloud Based on Local Descriptor and Machine Learning,

Automation in Construction, Vol. 133, pp. 103992, 2022.

[7] R. Pierdicca, M. Paolanti, F. Matrone, M. Martini, C. Morbidoni, E. S.
Malinverni, E. Frontoni, and A. M. Lingua, Point Cloud Semantic

Segmentation Using a Deep Learning Framework for Cultural Heritage,
Remote Sensing, Vol. 12, No. 6, pp.1005, 2020.

[8] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks

for Biomedical Image Segmentation, Medical Image Computing and
Computer-Assisted Intervention (MICCAI 2015), pp.234-241, 2015.

[9] T.Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,

Feature Pyramid Networks for Object Detection, Computer Vision and
Pattern Recognition, pp. 2117-2125, 2017.

[10] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-

Decoder with Atrous Separable Convolution for Semantic Image
Segmentation, Computer Vision and Pattern Recognition, pp. 833-851,

2018.

[11] N. Saovana, N. Yabuki, and T. Fukuda, Automated Point Cloud
Classification Using an Image-Based Instance Segmentation for Structure

from Motion, Automation in Construction, Vol. 129, pp. 103804, 2021.

[12] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep Learning on
Point Sets for 3D Classification and Segmentation, Computer Vision and

Pattern Recognition, pp. 652-660, 2017.

[13] C. R. Qi, L. Yi, H. Su, K. Mo, and L. J. Guibas. Guibas. PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Metric Space,

Proceedings of the 31st International Conference on Neural Information

Processing Systems, pp. 5105-5114, 2017.
[14] A. V. Phan, M. L. Nguyen, Y. L. H. Nguyen, and L. T. Bui, DGCNN: A

convolutional neural network over large-scale labeled graphs, Neural

Networks, Vol. 108, pp. 533-543, 2018.
[15] R. B. Rusu and S. Cousins, 3D Is Here: Point Cloud Library (PCL), In

2011 IEEE International Conference on Robotics and Automation (ICRA),

pp. 1-4, 2011.

Table 5. The weights inversely proportional to points.

UC 1.76 MG 1.19 SW 2.99 Sl 1.00

LC 1.55 CB 1.60 Ga 2.51

Bt 2.45 ULB 1.70 Hr 2.37

Bc 1.63 LLB 2.10 MC 1.94

(a) Bird view

(b) Side view

(c) Top view

(d) Bottom view

Figure 17. Result of case F: adjusting weights for loss.

