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ABSTRACT: For efficient maintenance and repair, 3D modeling of bridges for converting analytical models and visualizing 

deformation locations is being advanced. Instead of manually creating models from drawings and ledgers, automating model 

generation from point cloud data, capable of capturing as-is geometry quickly and widely, can improve efficiency. Generating 3D 

modeling of bridges from point cloud data requires segmenting each member, but dynamically setting thresholds for shape features 

and positional relationships is challenging due to point density and missing points. While deep learning can dynamically set 

thresholds, in the case of point cloud data, it is impractical to prepare sufficient training data, and the number of inputting points 

is inadequate for setting appropriate thresholds. Therefore, this research focuses on two aspects: most bridges consist of members 

with swept cross sections along longitudinal direction, and deep learning classification methods for 2D images are highly 

developed. The aim is to segment members based on deep learning on 2D cross-sectional point cloud data obtained by slicing 

along longitudinal direction. This reduces the number of inputting points and increases training data. Additionally, fine cross 

sections enable segmentation close to 3D. The multiple patterns of learning methods, training data processing, and procedures of 

segmentations are compared to identifying highly accurate segmentation methods. 

KEY WORDS: Point cloud; Deep learning; Segmentation; Cross section; Steel truss bridge. 

1 INTRODUCTION 

A vast number of existing bridges are rapidly aging. Since it is 

not practical to rebuild all of them at the same time, strategic 

renewal through life cycle extension is required. To extend the 

life cycle of bridges, 3D models of bridges are created. These 

models can be converted numerical analysis models [1] and can 

visualize deformations [2]. However, in cases of old bridges, 

as-build drawings are often unavailable. In addition, conditions 

of bridges inevitably changed since its construction due to 

various factors. Therefore, it is necessary to construct 3D model 

based on dimensions data instead of relying on drawings, but 

manual measurement is time-consuming and prone to various 

human errors. 

Therefore, a method to efficiently create 3D models from 

point cloud data, capable of capturing as-is 3D geometry as a 

set of points quickly and widely, has begun to attract attention. 

It can make a significant contribution to efficiency. Qin et al. 

[3] sliced the point cloud data of a PC box girder bridge 

vertically from the ground and used the density of each 

obtained point cloud as a threshold to divide the superstructure 

and substructure for Building Information Modeling (BIM). 

Schatz et al. [4] semi-automatically divided the point cloud data 

of a PC box girder bridge into substructure, girders, bearing 

pavement, drainage facilities, etc. based on template matching, 

and created an Industry Foundation Classes (IFC) model. The 

authors [5] performed Finite Element Method (FEM) modeling 

of a steel truss bridge by segmenting a fine section along a 

longitudinal direction and dividing the point cloud of the 

section based on Euclidean distance. The segmentation and 

component determination processes in these papers are a 

mixture of manual processing based on human visual judgment 

and automatic processing based on threshold values such as 

shape features and positional relationships. In general, it is not 

easy to set the threshold dynamically in automatic processing 

because of the effects of point density, missing points, and 

other factors. In recent years, deep learning has attracted 

attention as a method for dynamically setting threshold values, 

and there are several cases where it has been applied to point 

cloud data processing [6, 7]. However, when targeting large-

scale bridges with a wide variety of geometries, the 

classification is roughly divided into upper and lower 

structures, and the lack of training data and the number of input 

points are insufficient. 

Therefore, this research focuses on the characteristics of 

bridges, which generally have many structures with swept cross 

sections of each member along a longitudinal direction, and the 

fact that classification methods for 2D images are relatively 

well-developed. In this research, point cloud data of 2D cross 

sections sliced along the longitudinal direction is used to 

classify members using deep learning. The number of input 

points can be reduced, and the number of training data can be 

increased by inputting point cloud data of cross sections. In 

addition, a finer cross-sectional view leads to an almost 3D 

segmentation. The optimal learning method, processing 

procedures, and multiple proposed patterns are compared and 

validated, and a highly accurate segmentation method is 

considered. 

2 STRUCTURE OF THE MODEL 

 Literatures about segmentation by using deep learning 

Deep learning-based image classification and segmentation 

often uses Convolutional Neural Network (CNN), which 

obtains features by convolving surrounding pixel features. If 

the number of pixels is reduced by convolution, the 
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segmentation results are restored to the original number of 

pixels by increasing the number of pixels based on the 

convolved features again. Typical models include U-Net [8], 

which performs domain segmentation at the pixel level; Feature 

Pyramid Networks (FPNs) [9] which combine high-resolution 

and low-resolution features to exploit multi-scale information; 

DeepLav v3+ [10] which applies convolution with different 

expansion rates in parallel. As an example of member 

segmentation of point cloud data of bridges, Saovana et al. [11] 

implemented segmentation of point cloud data by segmenting 

photographs of bridges from multiple viewpoints into members 

using U-Net and then projecting the results onto the point cloud 

data generated by Structure from Motion (SfM). The results are 

then projected onto the point cloud data generated by SfM to 

implement point cloud data segmentation. 

On the other hand, point cloud data differs from images in 

that pixels are not arranged in a regular and continuous manner, 

the same shape and color data can be obtained even if the order 

of the points is changed, and the three-dimensional coordinates 

provide a large degree of freedom. To cope with these 

problems, a transformation matrix is obtained from the features 

and applied to control the posture, and MaxPooling is applied 

to eliminate the effect of reordering. The segmentation of point 

cloud data is similar to that of a CNN. Typical models include 

PointNet [12], PointNet++ [13], and Dynamic Graph CNN 

(DGCNN) [14]. PointNet does not perform convolution to 

obtain features for all input points. PointNet++, an advanced 

version of PointNet, reduces the number of points and obtains 

features from the points in the neighborhood of the point, which 

is similar to the convolution process. DGCNN also obtains 

features from neighboring points, but the number of points does 

not change at any layer. 

 Structure of the deep learning model in this research 

Since the aforementioned PointNet++ [13] and DGCNN [14] 

are candidates for deep learning models in this research, the 

details of these model configurations are described in this 

section. 

The model structure of PointNet++ is shown in Figure 1. First, 

c1 is obtained by randomly sampling n1 points from the cross-

sectional point set c0. Next, a point pc1 in c1 is used to search k1 

neighbor points within r1, and then vectors from pc1 to the 

neighbor points as feature values. The obtained feature values 

are convoluted by using Conv1d, BatchNormlize and Relu 

function. This process is repeated 4 times to obtain a set of 

cross-sectional points c1, c2, c3, and c4 reduced by random 

sampling and the features associated with c4. After that, 3 

neighbor points from c3 to c4, are detected and their feature 

values are convoluted by using Conv1d, BatchNormlize and 

Relu function. This process is repeated until the c0 features are 

updated, and finally they are convolved with the classified 

features and output as random variables by applying the 

Logsoftmax function. 

The model structure of DGCNN is shown in Figure 2. In 

PointNet++, the neighbor points were obtained based on the 

position coordinates, but in DGCNN, the kn neighbor points are 

obtained based on all the feature values changed by 

convolution, not limited to the position coordinates, and the 

vector from the reference point to the neighbor points and the 

original feature values are integrated and convolved. The 

 

Figure 1. Model structure of PointNet++. 

 

 

Figure 2. Model structure of DGCNN. 
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number of input points does not change in either layer, but the 

xyz coordinates also change due to convolution. After repeating 

this process 3 times, the feature values obtained in each step are 

integrated. Next, MaxPooling is applied, and replicated for the 

number of input points. Finally, after several convolutions, the 

number of classified features is obtained and output as a 

random variable by applying the Logsoftmax function. 

Although the paper [14] describes a categorical vector that 

provides labels for each input data as additional information, it 

is not used in this research. 

3 PREPARING DATA FOR DEEP LEARNING 

 Case study 

A two-span continuous through-type truss bridge in Aichi 

Prefecture, Japan, is the case study. A photograph of the bridge 

is shown in Figure 3. The bridge length is 136.9m with a span 

length of 2@67.9m. A full width is 14.3 m with sidewalks on 

both sides. The effective width of the roadway is 7.5 m and that 

of the sidewalk is 2.0 m without widening. A slab thickness is 

200 mm with a pavement of 80 mm thickness (roadway) and of 

30 mm thickness (sidewalk). In addition, the bridge is straight 

and has a symmetric cross slope. A general bridge drawing is 

shown in Figure 4. The members to be segmented are "Upper 

chord", "Lower chord", "Brace (tensile)", "Brace 

(compression)", "Main girder", "Cross beam", "Upper lateral 

bracing", "Lower lateral bracing", "Sway bracing", "Gate", 

"Handrail", "Mounted components", and "Slab". 

 Generating point cloud data from 3D CAD data 

The 3D CAD data was manually created based on the drawings 

of the bridge shown in Section 3.1. Furthermore, for each 3D 

CAD component, point cloud data is obtained by randomly 

sampling points on its surface. In this case, noise and missing 

points are not generated. In addition, a uniform density (1 

[pts./cm2] in this case) was set for all members in order to avoid 

extreme bias in density. It is also possible to assign to each 

point the normal vector of the plane from which it was 

generated as a parameter. The generated point cloud data is 

shown in Figure 5. Each point in the point cloud data has a label 

number that corresponds to only one of the 13 types of 

components mentioned above, and the colors of the points in 

the figure correspond to the labels of the components (Figure 

6). The total number of points was 64,016,718. 

 Creating cross sectional point clouds 

The following shows the flow of the method for acquiring 

cross-sectional point clouds. 

First, the line that corresponds to a longitudinal direction is 

determined. Since the bridge in this research has straight linear 

and the width is not widened, a line passing through the 

centroid of the point cloud data and having the direction of the 

first principal component vector obtained by principal 

component analysis is defined as the "longitudinal direction 

line".  

Next, the point p is shifted pitch (0.1[m] in this case) from 

the starting point of the longitudinal direction line, and the 

plane that contains p and is perpendicular to the line along the 

longitudinal direction line is defined as the "cutting plane". 

Points within d (0.05 [m] in this case) of the cutting plane are 

detected, and these points are projected onto the cutting plane. 

This process is repeated until p reaches the end point (Figure 

7). 

From the point cloud data described in Section 3.2, 695 cross-

sectional point clouds were created. Examples are shown in 

Figure 8. The position of the braces differs depending on the 

cross section, and those irregular cross sections such as cross 

beams and sway bracings, are also included. 

 Normalization process for deep learning 

When training a cross-sectional point cloud, the coordinate 

system is modified. Define a local coordinate system for the 

cutting plane as shown in Figure 7. The cutting plane is the xy-

coordinate plane of the local coordinate system. The world 

 
(a) Side view 

 
(b) Bottom view 

Figure 3. Pictures of the case study bridge. 

 

 
(a) Front, Top, Bottom view 

 
(b) Cross sectional diagram 

Figure 4. General bridge diagram (Unit: mm). 
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coordinate Z-axis corresponds to the y-axis of the local 

coordinate system. The origin point is adjusted so that the 

midpoint between min. and max x-coordinates and y-

coordinates as shown in Figure 7. In order to prevent 

overlearning, the x-coordinate is flipped with respect to the y-

axis with a probability of 50%. 

4 IMPLEMENTATIONS AND DISCUSSIONS 

 Overview 

In this chapter, several cases are implemented and discussed 

using training data described in Chapter 3 and test data obtained 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 5. Point cloud generated from 3D CAD data. 

 

 

Figure 6. Legend of point colors. 

 

 

Figure 7. Detecting cross-sectional point clouds. 
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(a) General section 1 

 
(b) General section 2 

 
(c) Around the cross beam 

 
(d) Around the Sway bracing 

Figure 8. Examples of cross-sectional point clouds from 3D 

CAD data. 
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from the actual steel truss bridge by the stationary laser 

scanner. The implementation environment is shown in Table 1, 

and the common parameters used for verifying multiple cases 

are listed in Table 2. The number of input points and the batch 

size must fit in the GPU’s memory. If this limit is exceeded, 

computation is offloaded to the main memory, significantly 

increasing computation time. In addition, the batch size must 

be 2 or greater due to the use of BatchNormalize function as 

explained in Section 2.2. The number of training samples is 

10,336, calculated by dividing the total number of points in the 

cross-sectional point cloud by the number of input points. 

The implementation cases are organized in Table 3. During 

training, validation is included in each epoch. No fixed 

distinction is made between training and validation data; 

instead, 8,000 samples are randomly selected from the 10,336 

available for each epoch. The Intersection over Union (IoU) for 

each member in the cases is shown in Figure 9. The values 

shown represent the results from the epoch in which the 

average IoU across all members was the highest. Computation 

times for each case are summarized in Table 4. 

 Point cloud for using the implementation 

In this section, the measured point cloud data of the actual 

bridge without member labels is mentioned. It is used for the 

test of the trained model. The point cloud data (1,065,353,413 

points, Figure 10) measured with a stationary laser scanner 

Leica RTC360 (resolution: 3mm@10m, accuracy: 

1.9mm@10m) from 27 locations on the underpass and road 

surface of one span of the bridge described in Section 3.1. 

5,000 cross-sectional point clouds are created as the validation 

data by slicing at regular intervals (0.02 [m] in this case) along 

the longitudinal direction. Note that although this point cloud 

data contains color information, it is not used because there is 

no color information in the training data. Normals were 

obtained by calculating them with the Point Cloud Library [15], 

a point cloud data processing library. The normalization 

described in Section 3.4 is also applied to this cross-sectional 

point cloud. 

 Comparing PointNet++ or DGCNN 

First, the effectiveness of PointNet++ and DGCNN in 

segmenting point cloud data of cross sections sliced along the 

longitudinal direction is evaluated. The construction of model 

is shown in Figure 1 and Figure 2. As shown in the results of 

the application to the point cloud data presented in Section 4.2 

(Figure 11 and Figure 12), PointNet++ was more accurate in 

the test. Although DGCNN resulted in a higher IoU and faster 

computation time during training, there were many places 

where other members were misidentified as the main girders in 

the test. PointNet++ was able to distinguish between two types 

of cross-sections of the braces with high accuracy, although in 

some cases the slabs were misidentified as the cross beams in 

areas where the data quality was low due to limitations of the 

measurement environment. This is likely due to the fact that 

DGCNN have over-trained the training data. In addition, it 

seems that PointNet++ is more versatile in handling 2D point 

cloud data with image-like features, as its behavior more 

closely resembles the convolution process used in image-based 

deep learning. For generality, PointNet++ is used in the 

subsequent validations, although it takes more time. 

Table 1. Development Environment. 

Common 

CPU 
Intel(R) Xeon(R) Silver 4214R CPU @ 

2.40GHz 2.39 GHz (2 processors) 

Memory 224GB 

GPU NVIDIA GeForce RTX 3080 (10GB) 

OS Windows 11 Enterprise 24H2 64bit 

  

Slicing point cloud 

Platform Microsoft Visual Studio Community 2022 64bit 

Library Point Cloud Library (PCL) 1.12.0 64bit [15] 

Language C++ 

  

Deep learning 

Platform Microsoft Visual Studio Code 

Library Pytorch 2.5.1 cuda 12.1 

Language Python 3.10.5 

Table 2. Common parameters of deep learning. 

Num. of input points 6164 

Batch size 8 

Num. of training data  10336 

Num. of epoch 32 

Optimization function Adam 

Loss function Cross Entropy Loss 

Table 3. Implementation cases. 

Sec. Model Sampling 
Scale 

Norm. 

Normal 

vector 

Weights 

for loss 

4.3 * sample Yes No All 1 

4.4 PointNet++ * Yes No All 1 

4.5 PointNet++ sample * No All 1 

4.6 PointNet++ sample Yes * All 1 

4.7 PointNet++ sample Yes No * 

* is the comparing topic 

 

 
Figure 9. IoU of training in each case. 

 

Table 4. Computation time of each case. 

 Train Test  Train Test 

A 18h. 6h. D 16h. 9h. 

B 9h. 4.5h. E 15.5h. 11h. 

C 16h. 36h. F 15.5h. 9h. 
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0.925
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A: Sec.4.3 PointNet++
B: Sec.4.3 DGCNN
C: Sec.4.4 block partitioning

D: Sec.4.5 without scale norm.
E: Sec.4.6 with normal vector
F: Sec.4.7 adjusting weights for loss
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 Comparing sampling methods as input data 

The number of input points is 6144, but the number of cross-

sectional point clouds is approximately 50,000 to 100,000 

points. Therefore, sampling is required. Here, two types of 

sampling "block partitioning" and "random sampling" are 

selected and compared the accuracy. For block partitioning, 

one point is randomly selected from the cross-sectional point 

cloud, from which points within a 5 m block around it are 

extracted and sampled so that the total number of points is 

6144. In addition, the coordinates that origin is at the center of 

the block are calculated and added as new features. Random 

sampling was performed by randomly selecting 6144 points 

from the entire cross-sectional point cloud and x and y 

coordinates are adjusted so that a distance to the farthest point 

from the origin point is 1. As shown in the test results (Figure 

13), block partitioning is able to detect the slabs without 

misidentifying them even in areas where the quality of the 

measurement data is low, but the accuracy of other members 

such as the braces and the cross beams is low. 

 Comparing presence or absence of scale normalization 

According to Section 4.4, since block partitioning without scale 

normalization has a higher detection rate of the slabs, the 

additional case without scale normalization with random 

sampling is implemented. As shown in the test results (Figure 

14), the accuracy of the slab segmentation was improved, but 

the accuracy of the braces was significantly reduced. The 

second span, where segmentation accuracy is low, was not 

originally intended to be measured. However, it was partially 

captured during scanning of the adjacent first span. As a result, 

the point cloud data is of poor quality, with low density and 

many missing points. Although it is necessary to develop a 

learning model that can be applied to point cloud data of low 

measurement quality as a future challenge, this paper concludes 

that random sampling and scale normalization are effective for 

segmentation accuracy in high measurement quality areas. 

 Comparing presence or absence of normal vector 

In the previous explanations, only xyz coordinates were used 

for the input point cloud data, but the case with additional 

normal vector was also verified. As shown in the test results 

(Figure 15), the reason for the poor results in the case where 

normals were added is that, as shown in Figure 16, normals 

were generated even where the laser scanner would not have 

been irradiated if generated from 3DCAD, which may have 

caused a discrepancy between the training data and the test 

data. Although it is useful to develop a sampling tool that 

simulates a laser scanner, it is more effective to create a 

learning model that does not use normal vector, considering the 

efficiency of training data generation. 

 Adjusting weights for loss calculation 

The equation for the CrossEntropyLoss function is shown 

below:  

 𝐿𝑜𝑠𝑠 = ∑ −𝑤𝑦𝑛𝑥𝑛,𝑦𝑛
𝑁
𝑛=1  (1) 

The loss is calculated each member and they are sum up. N is 

the number of points and 𝑥𝑛,𝑦𝑛  is a random variable in the 

output data. In the previous cases, 𝑤𝑦𝑛  was set to 1 for all 

members, but in this case, it is adjusted for each member. This 
parameter is used to prevent bias in the accuracy of the 

classification depending on the size of the member that is 

 
Figure 10. The point cloud data measured with a stationary 

laser scanner 

 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 11. Result of case A: PointNet++. 

 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 12. Result of case B: DGCNN. 
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number of points. So, in this case, 𝑤𝑦𝑛  is set inversely 

proportional to the number of points in each member (Table 5). 

As shown in the test results (Figure 17), the outcomes were 

generally similar to the case in which all weights were set to 1. 

However, the segmentation accuracy for the braces was slightly 

lower. This is believed to be due to the increased weight 

assigned to members that appear in only a small number of 

cross-sectional point clouds, such as the gates and the sway 

bracings, which in turn reduces the accuracy for other members 

that appear in most cross-sectional point clouds. Therefore, it is 

more effective to set all weights to 1 without adjusting the 

weights between members. 

5 CONCLUTION 

In this research, as a method for segmenting point cloud data of 

bridges into members using deep learning, using point cloud 

data of 2D cross sections sliced along the longitudinal 

direction. Several patterns are proposed and compared for 

validation to identify a highly accurate segmentation method. 

Through the implementation of several cases, it was 

confirmed that the following settings were effective when point 

cloud data obtained by pseudo-sampling the surface of a 3D 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 13. Result of case C: block partitioning. 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 14. Result of case D: without scale normalization. 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 15. Result of case E: Using normals. 

 
(a) 3D CAD 

 
(b) Stational laser scanner 

Figure 16. Normal vectors of the point clouds. 
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model was used as training data and point cloud data obtained 

by measuring the same bridge with a laser scanner was used as 

test data: 

• The learning model type PointNet++ is expected to be 

more versatile because of its higher segmentation accuracy 

of the test data. 

• When the number of input points was reduced to about 5-

10% of the total number of points, random sampling was 

more accurate and faster. 

• To increase versatility, it was more effective to apply scale 

normalization at the time of training model input. 

• Normal vectors can cause discrepancies between training 

data and test data depending on the calculation method, so 

care must be taken when generating them. 

• Weight adjustments during the calculation of the loss 

function for each member did not have a significant effect. 

As future work, training on multiple types of bridges (not 

limited to steel truss bridges) and performing segmentation 

across various bridge types is necessary, since the training and 

test data in this research are from the same bridge, although 

generated by different methods. In addition, since the bridges 

covered in this paper have straight liner and no width widening, 

it is desirable to conduct verification on bridges with curved 

liners or varying widths. 
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Table 5. The weights inversely proportional to points. 

UC 1.76 MG 1.19 SW 2.99 Sl 1.00 

LC 1.55 CB 1.60 Ga 2.51   

Bt 2.45 ULB 1.70 Hr 2.37   

Bc 1.63 LLB 2.10 MC 1.94   
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Figure 17. Result of case F: adjusting weights for loss. 


