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ABSTRACT: As climate change leads to increasing temperatures around the globe, rail track buckling has become an increasing 

concern for rail operators. This paper provides an overview of the key outcomes from a four-year research program that sought to 

explore the use of distributed fibre optic sensors (DFOS), analytical modeling, and artificial intelligence techniques to aid in track 

buckling assessment and detection. Lab tests and field monitoring data were used to develop and evaluate two DFOS systems, 

one for short length dynamic buckling assessment due to train passage and the other for long length thermal buckling assessment. 

The data from each system was used to develop models for the detection of buckling using different techniques depending on the 

quality of the initial data and the required output. Finite element model (FEM) updating and statistical FEMs were explored to 

predict buckling response based on measurements at service loads. Beam on elastic spring models were used to estimate the 

influence of train passage on buckling capacity while Gaussian process regression (GPR) techniques provided insights into 

buckling indicators at the field sites. 

KEY WORDS: Distributed fibre optic sensing; Rail track buckling; Lab tests; Field monitoring; Data-based modelling. 

1 INTRODUCTION 

Continuous welded rail (CWR) is used in most modern rail 

networks because of the enhanced ride quality it provides as 

well as reducing noise and wear on the rails. However, the 

removal of joints along the rail means that there is no room for 

the rail to expand when its temperature changes relative to the 

rail neutral temperature (RNT) resulting in the development of 

a state of self-stress within the rail. If the temperature increases 

to a critical value, the lateral load resistance system of the rail 

track, consisting of ballast, ties, and fasteners, can no longer 

provide adequate support and the rail track buckles laterally 

[1,2]. The critical temperature can change over the operational 

life of the rail network as deterioration lowers this buckling 

temperature and proper maintenance increases it [1,3]. 

Analytical models exist to account for buckling during the 

design stage [1,4] however there are a number of challenges 

with using these models for the assessment of in-service 

buckling such as variations in geometry and support conditions 

that are present in existing rail tracks. Numerical simulations 

can provide more accurate estimates of track behaviour since 

they can account for variations in geometry and support 

conditions with length [2,5]. But obtaining the measurements 

required to develop accurate models in the field is time 

consuming and expensive.  

Structural health monitoring techniques represent a 

potentially useful approach for either detecting rail track issues 

directly or acquiring the data required to develop more accurate 

models. Researchers have previously explored the use of a 

variety of sensors to detect rail track issues such as strain 

gauges [6], accelerometers [7], ultrasonic and laser vibrometers 

[8,9], and digital image correlation [10]. The challenge with 

many of these techniques is that they only provide a local 

measurement of rail behaviour whereas buckling can occur 

anywhere along the length of the rail. 

A potential solution to this challenge is the use of distributed 

fibre optic sensors (DFOS). For strain sensing, research has 

focused on the use of Rayleigh based systems when high-

resolution (gauges lengths less than 1 mm are possible) and 

high-accuracy measurements (up to + 1 microstrain at the fiber 

core for Rayleigh based systems) are required [11]. And 

Brillouin based systems when lower resolution (gauge lengths 

of 50 mm) and lower accuracy (+ 15 microstrain) [12] is an 

acceptable trade-off to achieve longer sensing lengths (100 m 

per channel for Rayleigh-based systems [11] versus up to 25 

km and more for Brillouin-based systems [12]). Most of the 

current research using DFOS for rail applications has focused 

on the response of the rail due to vehicle loading [13,14]. Initial 

studies have been conducted on short lengths of rail to measure 

thermal strain due to free expansion using Brillouin Optical 

Time Domain Analysis (BOTDA) [15,16] as well as to measure 

strains due to thermal stress in the lab and the field [16]. 

The goal of the research campaign described in this paper 

was to evaluate the viability of using DFOS for the assessment 

of rail track buckling. The objective of this paper is to provide 

an overview of the entire research campaign starting with lab-

based thermal buckling experiments that were used to update 

finite element models (FEM) as well as to explore the use of 

statistical FEM (StatFEM) with distributed sensing data for the 

first time. Three field tests were also undertaken on a tangent 

track and a curved track section in Ontario, Canada to acquire 

first of their kind data sets and to explore the use of DFOS data 

to inform improved models of rail track buckling.  

 

2 LAB TESTING 

 Introduction 

Before undertaking field tests, the first phase of this research 

involved a series of small-scale lab-based experiments to 
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explore the use of both Optical Frequency Domian 

Reflectometry (OFDR), and BOTDA measurements for 

assessing rail track buckling. The rails were subjected to both 

mechanical and thermal loading to induce buckling in the rail. 

 Specimens 

An ASCE 5.95 kg/m (12 lbs/yd) mining rail specimen with the 

length of 3,048 mm (Hammer Steel Products, Canada) was 

used, as buckling of the member could be induced within the 

available lab constraints. The specimen had a specified elastic 

modulus (E) of 207 GPa, cross-sectional area (A) of 761 mm2, 

and coefficient of thermal expansion (α) of 11.6 × 10-6 / ℃. 

The second moment of area was 53,000 mm4 about the weak 

axis (Iy) and 229,000 mm4 about the strong axis (Ix). The 

specimen was instrumented with eight nylon-coated single 

mode strain measurement optical fibres (F1 – F8) to measure 

the surface strain and a temperature measurement fibre to 

measure the distributed temperature as illustrated in Fig. 1. 

Further details about the specimens are provided in [17,18]. 

 

 

Figure 1. Lab buckling test specimen (in mm). (a) rail cross-

section dimensions, (b) fibre locations on cross-section, (c) 

longitudinal dimensions and fibre layout. 

 Test setup 

As shown in Figure 2, the testing frame consisted of two steel 

plates that were connected to four threaded rods using nuts. 

Two types of tests were conducted: (1) buckling due to applied 

load from an actuator with three different lateral support 

conditions and (2) thermal buckling caused by restraining axial 

elongation due to changes in temperature. 

Figure 2(a) shows the schematic frame setup for the applied 

load buckling with no lateral restraint (NS) and thermal 

buckling tests. In the applied load tests with lateral restraint, the 

lateral restraint was provided by springs with a stiffness of 32.7 

N/mm, and a maximum compressible length of 30.2 mm. 

Figure 2(b) illustrates the test setup for the applied load tests 

with one spring placed at the mid-length test, and Figure 2(c) 

shows the applied tests with two springs placed at 1/3 and 2/3 

of the rail length, respectively, where weak-axis buckling 

occurs in the vertical direction.   

For the thermal buckling tests, the rail temperature was 

adjusted by changing the temperature within a climate chamber 

where the specimen was placed. The steel frame experienced 

similar thermal expansion/contraction as the rail due to a 

temperature increase/decrease (∆T), so to keep the length of the 

rail constant (e.g. full axial restraint), an axial load was applied 

to the rail to ensure the net axial displacement of the rail was 0 

mm. For all tests, the axial load was applied by a hydraulic jack 

with a capacity of 1010 kN and measured using a load cell with 

a 222 kN capacity. The actuator, supports, and the specimen 

could not be aligned perfectly, and axial loads with different 

eccentricities occurred in all tests. A linear potentiometer (LP) 

was placed at the mid-length of the rail to measure the lateral 

deflection during the test. The strain was measured using a 

LUNA ODiSI 6104 analyzer (LUNA Innovation, USA) for the 

OFDR tests and an NBX-6050A Brillouin Optical Time 

Domain Analysis (BOTDA) analyzer (Neubrex, Japan) for the 

BOTDA tests. 

 

 

Figure 2. Lab buckling test setup. (a) no lateral restraint, (b) 

one spring, (c) two springs. 

 Results 

The lab experiments were used to evaluate the potential for 

using DFOS measurements to assess buckling. Because 8 fibres 

were placed around the rail cross-section (see Figure 1), it was 

possible to define a fitted strain plane using the measurements 

at each point along the length of the rail as seen in Figure 3. 

 

Figure 3. Strain measurements from 8 fibres on the rail 

forming a strain plane enabling calculation of axial strain and 

strong and weak axis curvature. 

The strain plane seen in Figure 3 can be used to calculate the 

axial strain and weak and strong axis curvatures in the rail. The 

curvatures can then be numerically integrated twice to obtain a 

lateral deflection profile along the rail. One of the key 

conclusions from this part of the research was that both OFDR 

and BOTDA sensor systems could be used to measure the 

response of the rail using the strain plane approach although 

OFDR provided more accurate measurements, especially of the 

lateral restraint force provided by the springs [18]. While 

measurements of axial strain and displacement can be used as 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-073 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 490 

thresholds for assessing the impact of buckling, to provide 

predictions of future behaviour, a numerical model based on the 

experimental data is required as discussed in the next sections. 

Further details about the lab-based experimental campaigns can 

be found in [17,18]. 

 Finite element model updating 

One challenge with using monitoring data to estimate the 

ultimate limit state behaviours of a structure is that the data is 

usually recorded at service loads. In this investigation DFOS 

data captured at service loads (i.e., applied loads and 

temperatures that were 50% of ultimate) were used to update 

finite element models to estimate the buckling capacity. A 

commercially available finite element analysis (FEA) program 

(i.e., Abaqus) was used to model the tests. The 3.048 m long 

slender member was modelled with 30 three-noded beam 

elements (B32), with the same cross-sectional and material 

properties as the rail. Connector elements with one degree of 

freedom perpendicular to the member were used to model the 

spring supports and were given one of two stiffnesses: (i) the 

manufacturer specified value (i.e., 32.7 N/mm) or (ii) the 

stiffness calculated from the DFOS measurement derived 

reaction force divided by the DFOS measurement derived 

displacement at the support location for each test [18]. Three 

steps of analyses were undertaken: 1. a linear buckling analysis 

to obtain the initial deflected shape, 2. a static general analysis 

considering geometric nonlinearity to determine the value of 

the mid-span imperfection and the end eccentricities through 

model updating and, 3. a static risk analysis to develop the 

buckling load-displacement response. Two approaches were 

taken to step 2: (a) a coarse grid and (b) a fine grid analysis. In 

the coarse grid analysis, the initial eccentricity parameters (at 

the supports and at midspan) were varied over a range of ±2.0 

mm with an increment of 0.5 mm and the optimum analysis was 

chosen based on the computed root mean square error (RMSE) 

between the modelled curvature values and the measured 

curvature values. In the fine grid analysis, each of the optimal 

eccentricity values from the coarse grid analysis were varied 

over a range of ±0.5 mm with an increment 0.1 mm resulting in 

1331 analyses. 

Figure 4 presents the load-deflection responses from the 

finite element model updating investigation for (a) the NS tests 

and (b) the OS tests. Also plotted in the figure are the measured 

load and displacement at each load stage. Figure 4(a) shows the 

results from the tests using both the OFDR and BOTDA 

sensing systems. The difference in behaviour between the 

OFDR and BOTDA tests is not a function of the measurement 

systems but is due to the different axial load eccentricities 

present in each test. The results from the fine and coarse grid 

approaches plot on top of each other suggesting either approach 

to estimating the impact of eccentricities on the tests results is 

acceptable. Overall, the finite element model updated using the 

service load data was able to capture the ultimate behaviour of 

the rail accurately. In Figure 4(b) it can be seen that using the 

manufacturer or estimated spring stiffness provides the same 

result for the OFDR system.. This is because the higher spatial 

resolution and accuracy of this system compared to the 

BOTDA allows for localized behaviour, such as lateral 

supports, to be resolved more accurately. Using the 

manufacturer’s spring stiffness along with the BOTDA data at 

service loads enables the updated FEM to capture the full 

behaviour. Though the estimated spring stiffness model is not 

as accurate, it is still conservative. 

 

 

(a) No lateral restraint tests comparing BOTDA and OFDR 

data to FE models using Coarse and Fine Grid approach 

 

(b) One spring restraint tests comparing BOTDA and OFDR 

data to FE models using both the Manufacturer and Estimated 

spring stiffness, K, from the data 

Figure 4. FE model updating results compared to measured 

response from applied load tests. 

 Statistical FEM model 

The previous section highlighted that DFOS data could be 

used to support FEM updating but one limitation of the 

approach is that depending on the number of structural 

parameters to be optimized and the complexity of the model, 

model updating can have a high computational cost associated 

with finding the structural parameters that provide the optimum 

fit to the data. A second limitation is that traditional model 

updating assumes the model perfectly represents the true 

structural response whereas in reality the model always 

involves assumptions and idealization of the actual system (e.g., 

materials, boundary conditions, loading, etc.). To address these 

two limitations, a second FEM updating investigation was 

undertaken, exploring the use of the Statistical FEM (StatFEM) 

with distributed sensor data for the first time [19]. The basis of 

the StatFEM approach is that the measured structure response 

is composed of the true structure response and errors due to 

sensor measurement noise that have a known statistical 

distribution. The true structural response is assumed to be a 

combination of the FEM structural response and the model-

reality mismatch due to model idealization and assumptions. 

The same approach was taken whereby data acquired at service 
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loads was used to update the model that was then used to predict 

ultimate capacity. In this investigation, polynomial chaos 

expansion (PCE) was investigated as an approach to generate 

the FE probability distribution prior to updating as opposed to 

the more traditional Monte Carlo simulation. This resulted in 

order of magnitude improvements in computation time from 16 

hours and 40 minutes to 9 minutes with a less than 1% reduction 

in accuracy.  

Figure 5 shows the strain versus load relationship for an (a) 

OFDR tests and (b) a BOTDA test for when 40 data points 

along the rail length (i.e. ny = 40) were used. It can be seen that 

the initial FE probability distribution overestimated the strain 

at a given load in the nonlinear range but that the StatFEM 

prediction of the ultimate limit state response incorporating the 

DFOS data collected in the service load range shows an 

excellent visual agreement with the measured ultimate limit 

state structural response. The model updated using the OFDR 

measurements (Figure 5(a)) demonstrates an excellent fit to the 

data over the entire measurement range and the error range (the 

grey shaded area) is smaller than the model updated using 

BOTDA data (Figure 5(b)). 

 

(a) OFDR measurements 

 

(b) BOTDA measurements 

Figure 5. Strain versus load relationship where the blue line 

and shaded area represents the FE prediction, the black line 

and shaded area represent the StatFEM prediction, and the 

discrete points are measured strain. 

The number of data points used to update the model was also 

found to play an important role in terms of prediction accuracy 

and the size of the error envelope. This shows the benefit of 

using DFOS for FEM updating as the number of points enable 

much higher prediction accuracy. Further details on the use of 

DFOS with the StatFEM can be found in [19]. 

3 FIELD MONITORING 

 Introduction 

Having demonstrated the potential to use DFOS for monitoring 

of thermal buckling and development of robust numerical 

models using controlled lab-based experiments, the next phase 

of the research involved three separate field investigations to 

evaluate the use of DFOS to monitor rail track buckling in the 

field: (i) short term dynamic monitoring, (ii) long-term thermal 

monitoring and assessment of tangent track, and (iii) long-term 

thermal monitoring and assessment of curved track. 

 Site installations 

The site installations were similar in that three nylon-coated 

strain measurement fibres with a diameter of 0.9 mm were 

installed at the various heights in the cross section as illustrated 

in Figure 7 so that the strain plane in Figure 3 could be 

measured. The two long-term monitoring installations were 

similar with the major difference being one was on a tangent 

track and the other was on a curved track. In both cases, a 20 m 

long 8 mm diameter temperature fibre and 4 thermocouples 

were also installed on the rail as shown in Figure 7 to capture 

thermal effects. The long-term fibre optic data was acquired 

using an NBX-6050A Brillouin Optical Time Domain Analysis 

(BOTDA) analyzer with readings being taken every 30 minutes 

over the course of one month [20].  For the short-term dynamic 

monitoring, the installed fibre length was 9 m (as opposed to 

the 20 m shown in Figure 7) so that the data could be acquired 

at a rate of 13 Hz using a LUNA ODiSI 6104 analyzer [21]. 
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Figure 7. Field monitoring installation on curved track. Strain 

(S) and temperature fibre (TF), and thermocouple (TC) 

locations on (a) cross-section (in mm) and (b) rail length, and 

(c) site layout and location. 

 Impact of temperature and train passage 

One of the key findings from the installation on the tangent 

track was that solar gain had an impact on rail strain 

measurements. Figure 8 shows the difference in temperature 

measurements from the thermocouples at various points on the 

rail cross-section relative to the location of the temperature 

fibre (TC3). It can be seen that at night (between midnight and 

8 am in Figure 8) the difference in temperature measurements 

is less than 1°C and is within the noise of the thermocouple 

measurements. During the day this difference can be as high as 

approximately 2°C and depends on the position of the sun 

relative to the rail as well as the amount of cloud cover. The 

impact of this temperature difference is three-fold. First, it 

challenges the conventional assumption of constant 

temperature in the rail cross-section often used in buckling 

assessment. Second, the strain measurements from the fibres 

must be compensated for temperature with the correction factor 

being approximately 20 microstrain/°C for the BOTDA system 

[16]. Third, this differential temperature can cause rail bending 

if the rail is not adequately restrained, which could increase the 

likelihood of rail track buckling. 

 

Figure 8. Difference in rail temperature at 4 different locations 

on the rail cross-section with time of day. 

A second issue that affects the accuracy of long-term 

monitoring data is the passage of trains. Figure 9 shows three 

sets of consecutive measurements taken at the curved track site 

taken before any trains passed, after the position of Train 1, and 

after the passage of Train 2 at a constant temperature.  

 

Figure 9. Effect of train passage on DFOS measurements at 

the curved rail site. (a) Curvature and (b) Axial Strain 

One can see from Figure 9 that both the curvature and the 

axial strain are impacted by the passage of a train. While this 

might not be the case for a track that was properly restrained 

against lateral and longitudinal movement, previous research 

has demonstrated that rail tracks supported by wooden ties and 

gravel ballast can experience longitudinal movement and thus 

changes in axial strain due to the passage of trains [22]. Thus, 

when monitoring and assessing rail tracks for buckling using 

DFOS, temperature effects due to solar gain and the passage of 

trains are important issues that must be carefully addressed. In 

the case of thermal effects, a potentially straightforward 

solution is to use combined strain and thermal measurement 

fibres at all three measurement heights along the rail. 

 Dynamic thermal buckling models 

Dynamic buckling occurs when the train wheel loads acting on 

the rail track cause a section of the track to lift off the ties and 
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become laterally unsupported. If that section of rail track is 

already prone to buckling due to being on a curve, having a 

small amount of misalignment along its length, or both then 

railway buckling can occur at lower temperatures than static 

thermal buckling.  

DFOS measurements were taken with the OFDR analyser 

along a section of curved track as a passenger train travelled 

over the instrumented section. Because strains were measured 

at multiple heights on the rail, the curvature profile along the 

instrumented section could be derived. A beam on elastic 

foundation (BOEF) model, where the rail is modelled as a beam 

with the same flexural stiffness (EI) as the rail and the 

foundation is modelled as a series of elastic springs, was then 

created. The curvature pattern was then used to update the 

BOEF model to estimate the track modulus by adjusting the 

spring stiffness until the measured rail curvature matched the 

model beam curvature, which resulted in a track modulus of 

13.6 MPa in this case. 

To predict the dynamic buckling temperature, a finite 

element model was constructed in ABAQUS using two-noded 

beam elements. Two types of connector elements were used in 

the FE model to simulate the interaction between the rail track 

and the rail ties as well as between the ties and the ballast, 

respectively.  The track modulus that affects the rail lifting-off 

behavior under train loading was derived from the DFOS 

measurements as noted above and the rest of the structural 

parameters that affect static thermal buckling behavior were 

obtained from the literature [21]. The FE modelling was 

conducted in two stages. First, a static nonlinear analysis was 

conducted to get the railway lift-off response under train 

loading. Afterwards, the impact of railway lift-off response on 

the lateral resistance provided by the ballast to the railway 

system was inputted into the railway FE model to simulate the 

railway dynamic buckling. A misalignment in the rail of either 

20 mm or 34 mm was modelled and then an increasing 

temperature was applied to the model to determine the 

temperature increase above the rail neutral temperature versus 

lateral displacement response as seen in Figure 10. Further 

details of the model can be found in [21]. 

From Figure 10 it can be seen that the passenger cars had no 

impact on the buckling behaviour as the dynamic buckling 

curve for the passenger cars plots on top of the static thermal 

buckling curve. This was because the rail passenger cars were 

not heavy enough to cause the rail to lift off the ties and reduce 

the lateral resistance. The locomotives, on the other hand, were 

heavy enough to cause the track between trucks of the 

locomotive to lift off the ties. As a result, the temperature to 

cause thermal buckling while a locomotive is passing was 

found to be lower than the static case. By comparing Figures 

10(a) and 10(b) one can also see that rail misalignment impacts 

both the static and dynamic buckling temperature where larger 

misalignments lead to lower critical buckling temperatures as 

would be expected. The combined effect of dynamic buckling 

and misalignment can be significant since in this case the 

critical temperature increase to cause buckling went from 

42.6°C with a 20 mm misalignment and no train loading to 

35.3°C with a 34 mm misalignment and locomotive loading. 

 

 

Figure 10. Static versus dynamic buckling response for 

monitored section of track. (a) 20 mm misalignment, (b) 34 

mm misalignment 

 Data-driven thermal buckling models 

In many infrastructure monitoring applications, the system 

being monitored is too complex to be accurately captured by a 

physics-based model. Such is the case for many rail buckling 

applications where the likelihood of buckling is a function of a 

complex system that involves interaction between the 

environment and a physical system with spatial varying 

geometric and material properties. As noted earlier in the paper, 

the position of the sun and cloud conditions affect the rail 

temperature and due to the lack of perfect rail restraint (e.g., 

due to gaps between the restraint plates and the rail) the rail 

experiences changes in the stress-state due to the passage of 

trains. Other issues such as variable support stiffness and rail 

track alignment further complicate the situation and make it 

essentially impossible to develop a comprehensive physics-

based model. 

One potential solution to this is to use a data-driven 

modelling approach. DFOS produces thousands of data points 

along the length of the rail to capture the spatial variability in 

both strain and temperature and allows for scans to be taken 

multiple times a day over the course of weeks to help resolve 
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the temporal variability. Gaussian process regression is a data-

regression technique that allows for the uncertainty of the 

model to be calculated. The first step in the process is to select 

an appropriate kernel which defines the function and the 

relationships between variables. In the current work a Matern32 

+ linear kernel was selected based on a comparison of 12 

different kernels to determine which one best fit the data. Each 

of the 12 models was trained using the first two weeks of data 

from the curved track monitoring site and then were used to 

predict the data from the last two weeks of monitoring.  

Two different GPR models were developed: Model 1 defined 

a relationship between the axial strain and curvature along the 

rail and the input variables of rail surface temperature and 

location. Model 2 also considered train passage and non-

uniform rail surface temperature as noise components that 

could impact the results based on the observations presented 

earlier. Figure 11 presents the GPR model results for axial 

strain versus temperature where the blue line represents the 

most likely relationship proposed by both models. The dark 

blue shaded region in the figure is the range of potential 

relationships according to Model 1 while the light blue region 

is the range of potential solutions for Model 2. It should be 

noted that the associated uncertainty for each model represents 

the range of potential models and should not be confused with 

other potential sources of error such as measurement error. If 

enough training data was available, it would be possible to have 

a GPR model with no uncertainty, but the actual measurements 

might not lie on the curve due to measurement noise. More 

details about the development of the models can be found in 

[20].   

 

Figure 11. GPR model of the relationship between axial strain 

and temperature with and without consideration of train 

passage and differential rail temperature effects. 

From Figure 11 it can be seen that the uncertainty band for 

Model 1 is smaller than for Model 2, due to the added potential 

uncertainty due to train passage and temperature variation 

around the cross-section of the rail. The uncertainty is also 

higher when the temperature is below approximately 7°C and 

above 45°C due to lack of training data in these regions. This 

presents a challenge as rail operators are most concerned about 

the behaviour above 40°C but there is inherently going to be 

less or even no training data at these critical temperature levels. 

Another important thing to note about Figure 11 is that many 

of the measured points do not match the proposed relationship 

or in some cases do not even fall within the uncertainty bounds. 

One reason for this is measurement error but there is another 

more fundamental issue and that is for this system there is more 

than one state of stress that can occur at a given temperature.  

Because of variables such as gaps between the rail and the 

supports, train passage, and differential rail temperatures, the 

rail can actually take on a variety of positions at a given 

temperature. As such, a limitation of using GPR for systems 

such as these is that they are not accurately described by a 

closed-form solution. However, they do provide rail operators 

with guidance as to the overall relationship. 

 Future Work and Scalability 

The initial results suggest that DFOS show promise as a rail 

track thermal buckling detection tool. However, three major 

issues still need to be addressed: (i) installation, (ii) improved 

thermal compensation, (iii) and automated detection. In terms 

of the installation, in a parallel study the research team 

developed a prototype robotic system that could install the fibre 

optic cables at various heights on the rail section an order of 

magnitude faster than human installers with improved 

placement accuracy. In the current work, temperature was only 

measured along the rail at one location on the cross-section, 

which meant that temperatures at other locations must be 

inferred from the single fibre optic measurement and 

thermocouple measurements. However, there are commercially 

available fibres that combine strain and temperature 

measurement fibres in a single housing that could be used to 

improve the temperature compensation. Finally, while the 

current research has shown that data driven techniques can be 

used to assist in modelling rail behaviour, further work is 

required to develop models and detection techniques that can 

be used by rail operators to automatically detect and provide 

warnings of thermal rail track buckling. 

4 CONCLUSIONS 

This paper presented the key findings from a four-year 

investigation into the use of distributed fibre optic sensing 

(DFOS) to support the monitoring and assessment of rail tracks 

that are susceptible to thermal buckling. The key conclusions 

include: 

1. Installing three DFOS strain sensing fibres on the cross-

section of the rail allows a strain plane at every sensor 

location along the length to be derived. Axial strain, and 

weak and strong axis curvature can then be determined 

and the curvature can be numerically integrated to obtain 

displacement along the length of the rail. 

2. DFOS data can be used to update finite element models 

that are capable of predicting the ultimate response even 

when model updating is based on data acquired at 

service loads. Additionally, DFOS data can be used with 

the StatFEM to provide not only more accurate models 

but also error bounds associated with sensor noise. 

3. The change in strains due to the passage of trains and due 

to variable heating of the rail cross-section due to solar 

effects are two of the challenges associated with using 

DFOS results for the assessment and modeling of 

buckling behaviour. 

4. Dynamic DFOS measurements can be used with a beam 

on elastic foundation (BOEF) model to estimate the 

deflected shape of the rail and the track modulus. The 

deflected shape and track modulus can then be used in 

an FE model of the rail track to estimate the impact of 

vehicle load on the dynamic thermal buckling behaviour. 
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5. Data-driven models such as Gaussian process regression 

(GPR) offer a potential approach for developing models 

in situations where a physics-based model is intractable. 

However, if the system does not have a unique solution 

at a given temperature, e.g., due to poorly constrained 

degrees of freedom from gaps between the rail and 

sleepers, the GPR model may not capture this behaviour 

but can still serve as a guide for rail network managers. 
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