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ABSTRACT: Describing the damage initiation and development of engineering structures during strong dynamic loadings such 

as earthquake is one of the most important topics in structural condition monitoring and identification. Structural nonlinear 

restoring force (NRF) can not only directly describe the initiation and development process of nonlinear behavior of the structure 

during strong dynamic loadings but also can be used to evaluate the energy dissipation of structural members or substructures. 

However, it is hard to measure structural dynamic responses at all degree of freedoms (DOFs) of a structure in practice, and to 

model the NRF with an accurate parametric mathematical model in advance due to the variability and individuality of structural 

materials and types. In this study, a Chebyshev polynomial model as a nonparametric model is employed to model the NRF of a 

structure and structural stiffness, damping, mass and NRF are identified based on the extended Kalman particle filter (EKPF) 

algorithm by using acceleration measurements at limited DOFs during the known external excitation. Then, two multi-degree-of-

freedom (MDOF) numerical models equipped with different types of magnetorheological (MR) dampers are used as numerical 

examples to validate the performance of the proposed approach. Identified results show that the proposed method is effective for 

identifying the nonlinear MDOF structures with different nonlinearity with limited noise-polluted acceleration measurements. 

KEY WORDS: Nonlinear restoring force; Extended Kalman particle filter; nonparametric identification; Chebyshev polynomial; 

MR damper. 

1 INTRODUCTION 

During the service of engineering structures, when subjected to 

severe loads, the structural characteristics may change abruptly 

or gradually, resulting in stiffness deterioration and increased 

damping. The problem of precisely detecting parameter 

changes has piqued civil engineering researchers’ interest. 

Understanding changing structural parameters is crucial for 

designing, maintaining, and reinforcing structures, as well as 

selecting post-disaster rescue routes. When civil engineering 

structures are subjected to extraordinarily significant external 

excitations, such as earthquakes on buildings or heavy cars on 

bridges, they frequently exhibit nonlinear behavior. 

Identification of structural parameters and nonlinear 

restoring force (NRF) of nonlinear structural systems using 

partial acceleration measurements from structural health 

monitoring (SHM) is crucial for structural condition 

assessment and damage identification[1, 2]. In the past decades, 

many researchers have developed many parameters and NRF 

identification methods of nonlinear system. It is difficult to 

measure the acceleration responses of all degrees of freedom in 

practical engineering, some methods based on Kalman filter 

(KF)[3, 4], extended Kalman filter (EKF)[5, 6], unscented 

Kalman filter (UKF) [7-9], and particle filter (PF) [10, 11] were 

proposed to tackle the problem. However, conventional 

methods are only suitable for nonlinear hysteresis model 

parameters that are known. Due to the diversity and 

individuality of nonlinear behaviors, it is crucial to propose a 

general nonparametric identification method for nonlinear 

behaviors that does not rely on nonlinear hysteresis models. 

The idea of nonparametric identification of nonlinear 

behavior was first proposed by Masri and his collaborators[12, 

13]. Based on the equivalent linear theory and least squares 

method, identified methods of the structural nonlinear restoring 

force were proposed by Xu et al. [14, 15] using external 

excitation and complete dynamic response information and 

verified the feasibility of the proposed method through 

dynamic test data of a multi-degree-of-freedom shear frame 

model equipped with a magnetorheological (MR) damper. Xu 

and his cooperators proposed nonparametric identification 

method of the NRF in the presence of the known or unknown 

input, where the NRF was expressed using different polynomial 

models[16-19]. Some researchers regarded the nonlinear 

restoring force as an unknown virtual input, proposing different 

NRF identification methods[20-22]. The effectiveness of the 

proposed method was verified by numerical simulation and 

experiment. However, as far as the author knows, there is no 

extended Kalman particle filter (EKPF) method that is suitable 

for nonparametric identification of structural nonlinear 

behavior under non-Gaussian measurement noise without the 

need of the known parametric model of nonlinear behavior. 

Since the standard PF algorithm takes the transition 

probability of the system state as the importance density 

function, it does not use the updated observations. Therefore, 

the generated particle samples are concentrated at the tail of the 

posterior probability distribution, resulting in a large 

randomness in the selection of particles, which affects the 

filtering results. When there is a peak in the likelihood 

distribution, the prediction state is distributed at the tail of the 

likelihood distribution, which has a particularly serious impact 

on the filtering accuracy. The EKPF uses EKF as the posterior 

probability density function, which solves the problem of 

particle degradation in PF algorithm and improves the filtering 
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accuracy. For the EKF part of EKPF, when Kalman filter is 

applied in practice, model error, noise error and calculation 

error may cause the prediction error covariance matrix and gain 

matrix to weaken the modified state estimation with the 

increase of iteration times, which leads to filter divergence. 

Therefore, the fading memory filtering (MF) technology can be 

used for EKF to increase the proportion of new data, reduced 

the proportion of old data and the negative impact of old data 

on filtering [16]. 

In this paper, a model-free identification method for 

structural parameters and nonlinear restoring force under 

limited acceleration observation is proposed by using EKPF 

algorithm. Based on the equivalent linear theory and EKPF 

algorithm, the structural parameters, unknown dynamic 

response measurements and nonlinear locations are identified 

under limited acceleration observations. Based on the 

identification value, the Chebyshev polynomial model is used 

to characterize the nonlinear restoring force of the structure, 

and the nonparametric identification of the NRF is realized. To 

verify the feasibility of the proposed method, two four-degree-

of-freedom shear frame models are established, and MR 

dampers with different numbers and different parameter 

models are introduced to simulate the nonlinear behavior of 

shear frame structures. Considering the influence of 

measurement noise in the observed acceleration signal, the 

structural stiffness, damping coefficient, mass, unknown 

dynamic response and NRF are identified. The feasibility of the 

proposed method is verified by comparing the identification 

results with the real values. 

2 EXTENDED KALMAN PARTICLE FILTERING 

ALGORITHM 

 The state-space equation 

In general, the nonlinear dynamic system of structures in civil 

engineering can be described as,  

 1 1( )

( )

k k k

k k k

f

h

− −= +


= +

x x r

y x v
 (1) 

where, the function ( )f  and ( )h represent the state transition 

function and the measurement model function of the system 

respectively. k is the number of time steps, kx is the state value 

of step k, ky  is the observation value of step k, kr is the 

process noise of step k, kv is the observation noise of step k. 

Equation (1) describes the recursive relationship between the 

structural state vector and the structural response over time. 

 Bayesian theorem and Monte Carlo simulation 

For the state space equation assumed by the formula (1), let 

0: 0 1{ , ,..., }k kx x x=x , 1: 1 2{ , ,..., }k ky y y=y , and given 0:kx , 

when the measurement sequence ky  is independent of each 

other, the prediction and update can be written recursively by 

the Bayesian formula, 
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For nonlinear models, the above analytical formulas are often 

unable to be obtained, and it is also very difficult to solve them 

integrally. Therefore, the Monte Carlo simulation is considered 

to realize the recursion of Bayesian filter. The Monte Carlo 

simulation regards the problem to be solved as a random 

variable. By establishing a probability model and sampling a 

large number of samples, the integral value is regarded as the 

mathematical expectation of the random variable, and then the 

problem to be solved is estimated. That is to say, for the 

integrand ( )f x , it can be decomposed into the product of the 

state variable ( )g x  and its probability density function ( )p x , 

then the integral of ( )f x  can be regarded as the mathematical 

expectation of ( )g x . 

 The sequential importance sampling 

According to the Monte Carlo simulation, if we can sample 

from the posterior probability density function 
0: 1:( )k kp x y  

and get the sample set  ( ) ( )
0:

1
,

N
i i
k k

i
x 

=
, then 

0: 1:( )k kp x y  can be 

approximated by the sum of discrete samples, that is, the 

approximate solution formula of 0:( )kg x  can be written as, 

 ( ) ( )0: 0:
1
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N
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k k k

i
E g x g x

=
=   (4) 

However, in practice, it is very difficult to extract samples 

from the posterior probability distribution. Therefore, the 

importance sampling method is introduced to extract samples 

from the importance density function (i) (i)
k k 1 )(x |x , kq y−

. Then the 

mathematical expectation of ( )g x  can be written as,  

 

( )

0: 1:
0: 0: 0: 1: 0:

0: 1:

( ) ( )
0:

1

ˆ               

( | )
[ ( )] )

 

( ( | )
( | )

k k
k k k k k

k k

N
i i

k k
i

p x y
E g x g x q x y dx

q x y

g x
=

= 

= 

 (5) 

where ( )ˆ i
k  is the normalized weight, which can be written as, 
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For the weight ( )i
k  of each particle, it can be recursively 

expressed as, 
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Accordingly, the implementation steps of the PF algorithm 

are as follows, 

(1) By sampling from the known prior probability 

distribution 0( )p x , the initial sample  ( ) ( )
0:

1
,

N
i i
k k

i
x 

=
 is 

obtained, where ( )
1{ } 1/

i N
ik N = = . 

(2) A new particle set  ( )

1

N
i

k
i

x
=

 is obtained by sampling from 

the importance density function 1( | , )i
k k kq x x y− . 

(3) Calculating the weight of each particle according to 

Equation (7). 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-072 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 481 

(4) Normalized weights, 
(i) ( ) ( )
k

1
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ˆ /
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(5) k=k+1, and return to step (1) to continue the iteration. 

 Resampling 

Because the variance of the particle weight increases with time, 

the particle degradation in the basic PF is inevitable. After 

multiple iterations, most of the particle weights are so small that 

they can be ignored, while the weights of individual particles 

are too concentrated. To improve this situation, the resampling 

method is used to discard the particles with small weights, copy 

the particles with large weights and make them have equal 

weights, so as to reduce the phenomenon of particle 

degradation. The system resampling method is adopted to avoid 

particle degradation in this paper. 

 EKF importance sampling density 

At time k, according to the new observation, the EKF algorithm 

is used to calculate the particle mean estimation i
kx  and 

variance estimation 
( )ˆ i

kP , and then the particles are extracted 

from the approximate Gaussian distribution 
( ) ( )

( , )ˆi i
k kN x P . 

This method of using EKF to generate importance density 

function is called EKPF. For a state vector ( )tX , the specific 

algorithm is as follows, 

(1) The initial particle samples are obtained by sampling 

from the known prior probability distribution. 

(2) The initial particles are updated by EKF, 
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where 
( )

1|
i

k k+Φ  is the state transition matrix, 
( )

1
i

k+H  is the 

observation coefficient matrix, there are, 
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Considering the cause of filtering divergence and the infinite 

growth of Kalman filter memory, the data error at the previous 

moment will cause the error covariance matrix P and the gain 

matrix K to lose the ability to correct the state estimation with 

the iteration, resulting in filtering divergence. To increase the 

weight of new data and relatively weaken the influence of old 

data, a fading factor is introduced to reduce the negative impact 

of old data on filtering estimation. The formula (9) is modified 

as follows, 

 ( )
T

( ) ( ) ( ) ( )
1| 1| | 1|

i i i i
k k k k k k k k S+ + +=P Φ P Φ  (15) 

Among them, the forgetting factor 1 S = , the literature 

suggests 0.95 1.0  , then the weighted weight of the fading 

memory is 1.0 < S < 1.05. 

(3) Complete the sequential importance sampling with 

reference to Section 2.3. 

(4) Complete system resampling with reference to Section 

2.4. 

3 PARAMETER-FREE RESTORING FORCE 

IDENTIFICATION METHOD BASED ON EKPF AND 

CHEBYSHEV POLYNOMIAL 

 The equivalent linearization theory 

For a multi-degree-of-freedom nonlinear dynamic system, the 

equation of motion can be written as, 

 ( ) ( ) ( ) ( ) ( )nont t t t t+ + + =Mx Kx Cx f f  (16) 

In the formula, M, K and C are the mass, stiffness and 

damping matrices of the system respectively. ( )tx , x(t) and 

( )tx  are the acceleration, displacement and velocity vectors 

respectively. ( )non tf  is the nonlinear restoring force vector 

provided by the nonlinear element, and f(t) is the excitation 

vector the system. 

The dynamic equation of the equivalent linear system is, 

 ( ) ( ) ( ) ( )E E Et t t t+ + =M x C x K x f  (17) 

where EM , EC  and EK represent the equivalent linear mass, 

equivalent linear damping and equivalent linear stiffness, 

respectively. Since the structural mass does not change during 

the nonlinear development process, EM  can be regarded as 

the identification value of the mass, that is, and M is 

numerically equal EM . The nonlinear restoring force of the 

structure in the equation (17) will be reflected in the parameters 

EC and EK  of the equivalent linear system, which is, 

 ( ) ( ) ( )non E Et t t= +R C x K x  (18) 

 Model-free nonlinear restoring force representation 

based on Chebyshev polynomial 

The Chebyshev polynomial is one of the most important 

function sets in mathematics. Any continuous function can be 

represented by a set of orthogonal function sequences on [ -1,1], 

the expression is as shown in the literature[16]. 

Therefore, the restoring force of the nonlinear element 

between the two degrees of freedom of the structure can be 

expressed by a set of relative velocity and relative displacement 

between the stories, 

 ( ) ( )non non
, 1 , 1, , , 1 , 1

0 0
( ) a b

A B

i i i i a b i i i i
a b

t c C v C s 
− − − −

= =
  R  (19) 

where 
non
, 1( )i i t−R  denotes the NRF of the nonlinear member 

between the i-th and (i-1)-th degrees of freedom of the system, 

and non
, 1, ,i i a bc −

 denotes the coefficient of the Chebyshev 

polynomial. ( ), 1a i iC v −  and ( ), 1b i iC s −  are Chebyshev 

polynomials. A and B are integers, and their values are related 

to the degree of nonlinearity of the structure. In this paper, 
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A+B=4. 
, 1i iv −

 and 
, 1i is −

 denote the relative velocity and 

relative displacement between the i-th and i-1th degrees of the 

normalized system, respectively. 
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Among them, , 1i iv −  and , 1i is −  are the relative velocity and 

relative displacement between the layers of the structure before 

normalization. 

From Eqs. (17) and (18), the motion equation of the i-th DOF 

of the structure can be discretized as, 

 

non
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− + +
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+   +
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 (21) 

Therefore, the nonlinear member is introduced into the 

structure. After the complete structural parameters and 

dynamic response are obtained by the EKPF method, the 

Legendre polynomial coefficients are identified by the least 

square method, and the total nonlinear restoring force ( )non tR  

of the structure can be calculated. Finally, according to Eqs. (16) 

to (18), the damping force provided by the nonlinear member 

can be inversely derived. 

4 NUMERICAL VERIFICATION 

 Example 1 

To verify the effectiveness of the proposed method, numerical 

simulations are carried out to validate the four-degree-of-

freedom shear-type frame with MR damper as an example. The 

nonlinear behavior of the structure is simulated by introducing 

the MR damper in the four-story concentrated mass shear-type 

frame shown in Figure 1. The mass of each layer of the 

structure mi=150kg, the inter-story stiffness ki=2.0×105N/m, 

and the damping coefficient ci=160N·s/m, where i=1, 2, 3, 4. A 

horizontal external excitation f(t) with an action time of 2s is 

applied to the third story, and the time profile is shown in 

Figure 2. The structural response is obtained by the fourth-

order Runge-Kutta method with a time step of 0.001s. 

 
Figure 1. Nonlinear model equipped with MR dampers 

Define the structure state vector as, 

 
1 2 3 4 1 2 3 4 1 2 3 4

T
1 2 3 4 1 2 3 4

( ) [ , , , , , , , , , , , ,

            , , , , , , , ]

E E E E

E E E E E E E E

t x x x x x x x x k k k k

c c c c m m m m

=X
 (22) 

 

The MR damper introduced in the structure is a Bingham 

model with a damping force that satisfies the relation, 

 
Bh Bh Bh Bh

non c , 1 0 , 1 0sgn( , )i i i iF f v v C v f− −=  +  +  (23) 

where Bh
nonF  is the damping force provided by the Bingham 

model, Bh
c 20Nf = , Bh

0 600N s / mC =   and Bh
0 0f =  are 

model coefficients. The damping force calculated from Eq. (23) 

is accurately calculated by the mathematical relation equation 

and thus can be used as the theoretical damping force of the 

structure to evaluate the identified value. 

 
Figure 2. External excitation force time history 

The setting range of the initial parameters of the structure is 

estimated based on the real parameters of the structure, and the 

number of particles is set to 20000, the initial value of the 

stiffness of each floor is 130kN/m~210kN/m, the initial value 

of the damping coefficient is 0kN·s·m-1~1000kN·s·m-1, and the 

initial value of the mass is 100kg~160kg. In fact, due to the use 

of EKF as the importance function for sampling, the identified 

range of particles after EKF update can exceed the setting range 

of initial parameters. Assuming that the acceleration of the 

second story of the structure cannot be measured, only the 

accelerations of the first, third and fourth stories of the structure 

are observed, and 5% non-Gaussian noise is added to the 

observations. 

Taking the mean value of the last step in each iteration as the 

parameter identification result, the structural stiffness, damping, 

and mass are identified using EKPF, the convergence process 

of the equivalent linear parameter is shown in Figure 3. Figure 

3(a) gives the convergence process of the identified equivalent 

stiffness of each story of the structure. It can be seen that from 

Figure 3(b) the equivalent damping identification value of the 

first to the third stories tends to the true value, but the identified 

value of the fourth story identifies with the other stories in the 

completely opposite direction, which can be judged that the 

structure has undergone a nonlinear behavior in the fourth story, 

which is also consistent with the actual installation of the 

damper. The convergence result of mass identification is shown 

in Figure 3(c), which can accurately converge to the actual 

value, which also shows that the nonlinear behavior of the 

structure does not affect the mass of the structure after it occurs. 

Table 1 and Table 2 give the identified results of the mass and 

the equivalent stiffness and equivalent damping, respectively. 

It can be seen from Table 1 that the identified result of the 

structural mass is better, and the error of each story is less than 

1 %. The equivalent linear parameters have also achieved good 

identification results. 
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Table1. Identified mass results 

Mass Identified [kg] Actual [kg] Error [%] 

m1 148.85 

150 

0.77 

m2 150.26 0.17 

m3 149.85 0.10 

m4 149.71 0.19 

 
(a) Equivalent linear stiffness 

 
(b) Equivalent linear damping 

 
(c) Equivalent linear mass 

Figure 3. Structural parameter convergence process 
Table2. Identified equivalent stiffness and damping results 

Parameter Identified Actual 

𝑘𝐸1(kN/m) 200 200 

𝑘𝐸2(kN/m) 198 200 

𝑘𝐸3(kN/m) 200 200 

𝑘𝐸4(kN/m) 201 200 

𝑐𝐸1(kN
 ⋅ s ⋅ m−1) 0.13 0.16 

𝑐𝐸2(kN
 ⋅ s ⋅ m−1) 0.16 0.16 

𝑐𝐸3(kN
 ⋅ s ⋅ m−1) 0.17 0.16 

𝑐𝐸4(kN
 ⋅ s ⋅ m−1) 0.86 0.16 

Figures 4 and 5 show the comparison between the identified 

results and the actual values of the displacement and velocity 

response of each story of the structure, and Figure 6 shows the 

comparison between the identified values and the true values of 

the unobserved acceleration of the 2nd story of the structure. 

The identified results of displacement, velocity and 

acceleration of the second story are in good agreement with the 

true values. 

 

 
Figure 4. Identified structural displacement responses

 

 
Figure 5. Identified structural velocity responses 

 
Figure 6. Identified structural acceleration responses on second floor 

Based on the identified structural parameters, displacement 

and velocity responses, the NRF of the 4th floor of the structure 

can be further obtained using the least squares algorithm in a 

nonparametric manner, and the results of the comparison 

between the identified and the true values of the NRF of the 4th 

floor of are shown in Figure 7. 

 
Figure 7. Identified MR damper force 
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The identified results of the unknown acceleration and NRF 

are quantified by the root mean square error (RMSE)[23], 

which are calculated to be 0.12m/s2 and 12.59N for the 

acceleration of on the 2nd floor and NRF, respectively. 

 Example 2 

Considering the actual situation that the structure may have 

multiple damages under strong dynamic loading, in order to 

verify the generality of the proposed algorithm, MR dampers 

are introduced in the first and fourth stories of the structure, and 

horizontal external excitation is applied to the second floor, and 

the nonlinear structural model and the external excitation are 

shown in Figure 8 and Figure 9, respectively. 

 
Figure 8. Four-story shear frame model with MR dampers 

 
Figure 9. External excitation force time history 

Distinguishing from the Bingham model in Example 1, the 

two MR dampers in this example use the modified Dahl model 

with the expression, 

 
Dh Dh Dh Dh Dh

0 , 1 0 , 1 0 0non i i i iF K s C v F Z f− −= + + +  (24) 

  (25) 

where Dh
nonF  is the damping force provided by the Dahl model, 

Dh
0 30N / mK = , Dh

0 600N s / mC =  , Dh
0 35NF = , 

500s / m = and Dh
0 0f = , Dh

0 0f = , Dh
0C , Dh

0F  and  are 

model coefficients, and Z is the dimensionless hysteresis. 

The settings of the initial parameters and the structural true 

values in Example 2 are the same as those in Example 1, and 

the identified process of the equivalent linear stiffness, 

damping and mass is given below. From Figure 10 the 

structural stiffness, damping, and mass parameters of the other 

floors converge to the actual value of the structure, except for 

the equivalent damping values of the first and fourth floors in 

Figure 10(b), which deviate from the actual value, and 

according to which it can be shown that the structure undergoes 

nonlinear behavior in the first and fourth floors. The identified 

results of the mass, the equivalent linear stiffness and damping 

are shown in Tables 3 and 4, respectively. The identified results 

of the parameters have small errors. 

 
(a) Equivalent linear stiffness 

 
(b) Equivalent linear damping 

 
(c) Equivalent linear mass 

Figure 10. Structural parameter convergence process 
Table 3. Identified mass results 

Mass Identified [kg] Actual [kg] Error [%] 

m1 147.70 

150 

1.53 

m2 150.48 0.32 

m3 149.01 0.66 

m4 150.13 0.09 

Table 4. Identified equivalent stiffness and damping results 

Parameter Identified Actual 

𝑘𝐸1(kN/m) 197 200 

𝑘𝐸2(kN/m) 199 200 

𝑘𝐸3(kN/m) 200 200 

𝑘𝐸4(kN/m) 201 200 

𝑐𝐸1(kN
 ⋅ s ⋅ m−1) 0.96 0.16 

𝑐𝐸2(kN
 ⋅ s ⋅ m−1) 0.16 0.16 

𝑐𝐸3(kN
 ⋅ s ⋅ m−1) 0.15 0.16 

𝑐𝐸4(kN
 ⋅ s ⋅ m−1) 0.95 0.16 

Figures 11 and 12 show the comparison of the identified 

results of displacement and velocity response of the nonlinear 

structure respectively, it can be found that the dynamic 

response of the structure in all floors are identified with good 

results. 

( ), 1 , 11 ( )i i i iZ v Zsgn v − −= −
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Figure 11. Identified structural displacement responses 

 

 
Figure 12. Identified structural velocity responses 

The same as in Example 1, based on the parameters and 

responses identified by the structure, the NRFs between the 

first and fourth floors can be identified, as shown in Figure 13. 

The RMSE of the identified acceleration value of the second 

floor is 0.30m/s2, the RMSE of the identified value of NRF of 

the first floor is 14.43 N, the RMSE of the identified value of 

NRF of the fourth floor is 11.46N. It can be seen in Figure 13 

that the identified  values of the first and the fourth floors of the 

damping force are in good agreement with the real values, 

which indicates that the proposed algorithm is not only able to 

effectively identify the nonlinear behavior of the structure at a 

single unknown location under strong dynamic loading, but 

also applies to the case of a nonlinear system where multiple 

nonlinear locations are unknown. 

 
(a) Identified result of MR damping force on the 1st floor 

 
(b) Identified result of MR damping force on the 4th floor 

Figure. 13 Identified MR damper force 

5 CONCLUSIONS 

In this paper, based on the EKPF algorithm and equivalent 

linear theory, the structural parameters and nonlinear locations 

are identified under limited acceleration observations, and a 

model-free identification of structural NRF is proposed based 

on Chebyshev polynomial. 

Numerical simulations of a four-degree-of-freedom 

concentrated mass nonlinear shear frame model were 

performed. In two examples, different numbers and models of 

MR dampers (Bingham model vs. Dahl model) are sequentially 

introduced to the structure to simulate different nonlinear 

behaviors for different numbers and locations. Considering the 

effect of measurement noise and changing the location of 

horizontal external excitation application, the structural 

stiffness, damping, mass parameters, and the inter-story NRF 

at the arrangement of MR dampers are identified with limited 

observations of the acceleration response, and the validity and 

applicability of the proposed methodology are verified by 

comparing the identified values with the theoretical values. 

The method proposed in this paper is general in that it does 

not need to utilize a parametric model of the NRF of the 

structure in the identified process. The identified NRF under 

strong dynamic loads such as earthquakes is an intuitive 

description of the hysteretic performance of the structure, and 

through the restoring force characteristics at different moments, 

it can reflect the occurrence and development of the damage of 

the structure or sub-structure at different moments in the 

process of dynamic loading, and can be used for the 

quantitative description of the energy dissipation of the 

structural components in the process of the loading. The 

method proposed in this paper is of great significance for 

damage localization, quantitative assessment and post-disaster 

structural performance evaluation of structures subjected to 

dynamic loads such as earthquakes. 
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