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ABSTRACT: Solving structural dynamic equations is crucial for evaluating the reliability and safety of civil infrastructures such 

as bridges, airport runways and railways under various loads. Currently, the Neural Operator (NO) shows great potential in solving 

structural dynamic equations under various excitations and boundary conditions without retraining and are capable of zero-shot 

learning. However, there has been a dearth of research into providing prediction errors and explicit uncertainty quantification of 

the operator-learned model for computing structural responses in different data regimes. This research aims to approximate the 

solution operator of structural dynamic equations with uncertainty quantification. Deep evidential learning is introduced to 

establish the Evidential Neural Operator (ENO) and the epistemic uncertainty of structural responses can be obtained. An 

illustrative example is given in this paper, which shows that the E-NO model can effectively identify the well-prediction condition 

and the worse-prediction condition. This work can provide an end-to-end framework for building surrogate models of real-world 

structures, which can rapidly compute structural responses with uncertainty. 
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1 INTRODUCTION 

The uncertainty analysis of structural systems is the key to 

ensuring the safety and reliability of structural design. The 

conventional physical model-based method can analyze the 

uncertainty of the forward computation under random material 

parameters, geometric dimensions or external excitation 

through the probabilistic or non-probabilistic framework [1]. 

Probabilistic uncertainty analysis methods such as Monte Carlo 

simulation [2], [3], stochastic finite element method [4], [5], 

etc., statistically sample uncertainty propagation on uncertainty 

parameters by calculating models or conducting experiments. 

Non-probabilistic methods such as interval analysis [6], [7] and 

fuzzy theory [8], [9], which are different from probabilistic 

methods, are suitable for analyzing the epistemic uncertainty 

caused by a lack of knowledge in the absence of deterministic 

prior information. The above methods are versatile and flexible 

in the form of the model, but the calculation cost would greatly 

increase to conduct the uncertainty analysis of large-scale and 

high-dimensional structures. 

With the breakthrough of deep learning technology, neural 

operators [10], [11] can effectively learn the global mapping 

relationship of complex systems, especially for the cross-

resolution solution of high-dimensional and nonlinear 

problems, which reduces the computational cost compared with 

traditional physical modeling methods. Chawit et al. 

established the vehicle-bridge interactive neural operator as a 

surrogate model of the bridge structure, which can more 

accurately predict the structural response under different 

structural damage fields than the traditional finite element 

model [12]. Ding et al. solved the coupled differential equations 

of structural dynamics based on the physics-informed neural 

operator (PINO-CDE). Also, PINO-CDE provides a higher 

resolution for uncertain propagation tasks, which takes less 

than a quarter of the computing time compared to the 

probability density evolution method [13]. 

However, the neural operator mapping process is nonlinear 

and non-intuitive. The results are affected by multiple sources 

of uncertainty, such as aleatoric uncertainty and epistemic 

uncertainty [14], [15]. Most of the existing studies focus on the 

probability distribution of the output results of neural operators, 

but it is difficult to distinguish the sources of quantitative 

uncertainty. This fuzziness may lead to misjudgment in 

practical engineering based on computing results. While deep 

evidential learning provides a feasible path for aleatoric and 

epistemic uncertainty qualification of regression problems [16]. 

Therefore, how to integrate deep evidential learning and neural 

operators to build an efficient and interpretable computational 

uncertainty framework for dynamic structures is worth 

exploring. 

In this work, we propose an evidential neural operator, 

extending evidential deep learning to a more flexible and 

complex neural network like the Fourier neural operator. For 

parametric structural dynamic systems with stochastic 

structural parameters and load excitation, ENO can 

quantitatively distinguish aleatoric uncertainty and epistemic 

uncertainty in the forward computation without retraining. The 

multi-task regularizer is introduced in ENO to improve 

adaptability to high-dimensional scenarios and complex 

structural systems, by flexibly controlling the weights of 

regularizer. A single-degree-of-freedom system is provided as 

a numerical example to verify the accuracy of uncertainty 

estimation and quantization distinction. 

2 THEORETICAL BASIS 

 Fourier Neural Operator 

Fourier Neural Operator (FNO) can capture high-frequency 

characteristics of dynamic systems by Fast Fourier Transform 
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and spectrum convolution operation and is suitable for solving 

structural vibration differential equations to simulate the 

dynamic behavior of structural systems. 

Besides, performing convolution in Fourier space greatly 

reduces the computational complexity. For a single hidden 

layer (1), the Fourier neural operator utilize the kernel-integral 

operator, extend deep neural networks to infinite dimensions： 

(𝑁𝑙𝑉)(𝑥) = 𝜎(𝐴𝑙𝑉(𝑥) + 𝐵𝑙(𝑥) + ∫ 𝐾𝑙(𝑥, 𝑦)𝑉(𝑦)𝑑𝑦
0

𝐷
)   (1) 

Due to, 

𝐾𝑙(𝑥, 𝑦) = 𝐾𝑙(𝑥 − 𝑦)                         (2) 

∫ 𝐾𝑙(𝑥 − 𝑦)𝑉(𝑦)𝑑𝑦
0

𝐷
= 𝐾𝑙 × 𝑉                   (3) 

Using the Fourier transform result in (4)： 

𝐾𝑙 × 𝑉 = 𝑓−1(𝑓(𝐾) ∙ 𝑓(𝑉))                    (4) 

Hence, the computational complexity can be reduced from 

O(N2) to O(Nlog(N)). FNO shows great potential for fast and 

accurate computation of oscillatory differential equations. 

 Evidential Neural Operator 

The sources of uncertainty can be divided into aleatoric 

uncertainty and epistemic uncertainty. Evidential theory 

assumes that the prediction target Zi can be independently 

sampled from the Gaussian distribution. Then, a probabilistic 

estimate of its mean and variance is required. 

The normal-inverse-gamma (NIG) prior distribution is 

introduced in evidential regression [16]. The mean μ is assumed 

to follow a Gaussian distribution, and the variance σ is assumed 

to follow an inverse gamma distribution. By marginalizing μ 

and σ, the model evidence can be expressed as a Student-t 

distribution (5)： 

𝑝(𝑧𝑖|𝜃) = 𝑆𝑡(𝑧𝑖 ; 𝛾,
(1+𝜏)𝛽

𝜏𝛼
, 2𝛼)                 (5) 

where θ represents the combination of parameters of the NIG 

distribution. γ represents the expectation of the mean μ. τ is the 

precision parameter of the Gaussian distribution. α and β are 

the shape parameters of the inverse gamma distribution. 

Combining the high-dimensional computing capability of 

FNO and the ability of NIG high-order distribution for 

capturing data diversity and uncertainty. The evidential neural 

operator is proposed to convert the model output into four 

parameters of NIG distribution. The loss function (6) of the 

evidential neural operator is designed for uncertainty sources, 

which can be divided into two parts: negative log-likelihood 

loss and evidence regularizer. 

ℒ𝐸𝑁𝑂 = ℒ𝑁𝐿𝐿 + ∑ 𝜆𝑖ℒ𝑅𝐸𝐺𝑖
𝑛
𝑖=1                 (6) 

where, 

ℒ𝑁𝐿𝐿 =
1

2
log (

𝜋

𝜏
) − 𝛼 log(𝜙) + (𝛼 +

1

2
) log((𝑧𝑖 − 𝛾)2𝜏 +

𝜙) + log⁡(
Γ(𝛼)

Γ(𝛼+
1

2
)
)  

ℒ𝑅𝐸𝐺𝑖 = |𝑧𝑖 − 𝛾| ∙ (2𝜏 + 𝛼)                      
where, 𝜙 = 2𝛽(2𝜏 + 𝛼) . 𝑛  represents the number of 

regularizers for different outputs.  

In this work, ENO adds multi-task regularization to ensure 

that each task has independent error and evidence constraints, 

and can better adapt to multi-task learning and complex 

scenarios by flexibly controlling regularization weights. The 

data normalization module is incorporated into the training 

process to normalize and denormalize the dataset to address the 

potential training instability and gradient explosions arising 

from differences in the scale of output variables. 

3 ILLUSTRATIVE EXAMPLE 

For validating the effectiveness of ENO, a single degree of 

freedom random vibration equation (7) with harmonic 

excitation is used as an example to solve the forward 

uncertainty of response prediction:  

 𝑀𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = 𝐴𝑠𝑖𝑛(𝑤𝑡) (7) 

where, M is mass, M = 1kg. C is damping and K is stiffness. A 

represents amplitude and w represents the frequency of the 

 ̇harmonic force.𝑢, 𝑢̇, 𝑢̈ represent the displacement, velocity, 

and acceleration, respectively. 

K, A, and w are randomly sampled with a uniform distribution. 

The sampling interval of stiffness is [200,300] N/m. The 

sampling interval of amplitude and frequency are [50,100] N 

and [10, 45] rad/s, respectively. The probability density surface 

diagrams of three stochastic variables are shown in Figure 1. 

The Newmark-β integral algorithm is used to solve equation (7) 

and generate the datasets. The proportions of the training set, 

verification set and test set are 70%, 20% and 10%, respectively. 

The network parameters, such as convolutional layer depth 

Dconv, convolutional layer width Wconv, fully connected layer 

depth Dfc and width Wfc of FNO were optimized by using the 

Bayesian optimization algorithm. The optimal network 

parameters were determined as follows: Dconv=4, Wconv=32, 

Dfc=3, and Wfc=64.  

The ENO model is implemented in PyTorch and the Fourier 

modes of spectral convolution layers are 26. The weight 

parameters of the loss item are：𝜆1 = 1, 𝜆2 = 2, 𝜆3 = 2. The 

total number of epochs is 300 and the Adam optimizer was used 

with a learning rate of 10-3. 

 

 
(a) A-K distribution surface 
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(b) w-K distribution surface 

 

 
(c) K-A distribution surface 

Figure 1. Probability density surfaces of stochastic variables. 

The ENO model is validated against the state-of-the-art 

Deep Ensemble model presented in [17]. The baseline model is 

also embedded in the FNO framework (FNO-DE) to conduct 

ablation experiments, and the network parameters are 

consistent with those adopted by ENO. FNO-DE consists of 

five independently trained models with identical architecture 

but different random initializations. The evaluation metrics 

applied Root Mean Square Error (RMSE), Empirical Coverage 

Probability (ECP) and Pearson Correlation Coefficient (𝑅𝑝𝑟). 

RMSE can evaluate the error level between the predicted mean 

and the ground truth. ECP monitors the proportion of samples 

falling into the predicted confidence interval to the total number 

of samples. In this work, 95% confidence is considered, and the 

ideal value of ECP should be close to 0.95. Besides, the Pearson 

Correlation Coefficient can evaluate the correlation between 

prediction error and uncertainty. 

4 RESULTS AND DISCUSSION 

For solving the single-degree-of-freedom vibration equation, 

the ENO model performance was first tested by sampling test 

sets in the interval. The outputs of displacement, velocity and 

acceleration responses and their corresponding uncertainties 

are shown in  Figure 2. Due to the high cognition level of the 

tested model within the interval, it can be seen that the aleatoric 

and epistemic uncertainty are both small,  which are lower than 

101. 

 
(a) Uncertainty prediction of the displacement 

 

 
(b) Uncertainty prediction of the velocity 

 

 
(c) Uncertainty prediction of the acceleration 

Figure 2. Uncertainty prediction in the distribution (ENO). 

The out-of-distribution test evaluates the zero-shot learning 

ability and generalization of the ENO model. The results of out-

of-interval testing are shown in Figure 3. The epistemic 
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uncertainty of the model has increased by 20~40%, compared 

with that in distribution testing. And the epistemic uncertainty 

is always greater than the aleatoric uncertainty of the raw data, 

due to no extra noise added in the dataset for this illustrative 

case. 

 
(a) Uncertainty prediction of the displacement 

 

 
(b) Uncertainty prediction of the velocity 

 

 
(c) Uncertainty prediction of the acceleration 

Figure 3. Uncertainty prediction out of distribution (ENO). 

The performance comparison between the ENO model and 

the FNO-DE model is shown in Table 1. The ENO model can 

achieve higher fitting accuracy than the FNO-DE model. The 

RMSE of ENO is less than that of FNO-DE, especially when 

ENO is tested out of distribution. ENO has better generalization 

performance. In terms of uncertainty prediction, FNO-DE 

remains competitive in in-distribution testing, and the empirical 

coverage probability of both ENO and FNO-DE is relatively 

close to the nominal values. However, the uncertainty 

estimated by ENO shows a stronger correlation with prediction 

errors (𝑅𝑝𝑟~0.86) in interpreting out-of-domain data. 

 

Table 1. Compared the metrics of ENO and FNO-DE models. 

In distribution  Out of distribution 

Metrics ENO FNO-DE Metrics ENO FNO-DE 

RMSE 0.35 0.38 RMSE 2.22 2.41 

ECP 1.0 1.0 ECP 1.0 0.82 

𝑅𝑝𝑟 0.70 0.79 𝑅𝑝𝑟 0.86 0.67 

 

5 CONCLUSION 

In this paper, a novel evidential neural operator is proposed, 

which cooperates with the basic principle of deep evidential 

learning and the high-dimensional nonlinear mapping 

capability of the Fourier neural operator. ENO provides a 

scientific machine learning framework for the uncertainty 

quantification for the forward computation of structural 

vibration equations. This work solves the vibration equation of 

a single degree of freedom as a numerical example, indicating 

that the model has higher epistemic uncertainty when tested 

outside the interval. Compared to the evaluating metrics with 

the art-of-state ensemble model, the ENO shows superior 

uncertainty calibration and fitting accuracy in out-of-domain 

testing. Future works would consider the effect of data noise on 

the uncertainty qualification and expand the ENO to a more 

complex structural system.  
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APPENDIX: PREDICTION RESULTS OF FNO-DE 

A-1: Test results of FNO-DE within the interval  

The test results of the baseline model (FNO-DE) within the 

sampling interval are also shown in Figure 4. The predicted 

responses are generally consistent with the ground truth, 

indicating the FNO-DE can capture the dynamic change trend 

of the displacement and its derivative. The regions with large 

uncertainties are mainly concentrated at the boundaries of time, 

such as around t = 0 and t ≈ 0.5, while the uncertainty 

distribution is narrow within the time interval. This 

demonstrates that the FNO-DE model is quite sensitive and can 

not comply well with the boundary conditions. 
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(a) Uncertainty prediction of the displacement 

 
(b) Uncertainty prediction of the velocity 

 
(c) Uncertainty prediction of the acceleration 

Figure 4. Uncertainty prediction in the distribution (FNO-DE). 

A-2: Test results of FNO-DE out of the interval 

Outside the sampling interval (Figure 5), the deviation between 

the model prediction results and the Ground Truth increases, 

while the uncertainty region (green shadow) expands 

significantly, especially around the time period t = 0.4s, where 

the confidence interval of displacement u(t) increases from 

about ± 0.1 m to ± 0.2 m. This shows that the prediction 

confidence of FNO-DE for unseen data is greatly reduced. 

 
(a) Uncertainty prediction of the displacement 

 
(b) Uncertainty prediction of the velocity 

 
(c) Uncertainty prediction of the acceleration 

Figure 5. Uncertainty prediction out of the distribution 

 (FNO-DE). 
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