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ABSTRACT: Integrated Motion Measurement Systems (IMMSs) are multi-sensor systems, based on the principle of integrated 

navigation with inertial sensors as central components and an aiding by, e.g., GNSS receivers. IMMSs can be used to track elastic 

motions as additional degrees of freedom (DOFs) that capture the deformations of the object. To support the estimation of elastic 

properties, additional internal aiding measurements like strain gauges can be implemented. In addition to the raw sensor data, the 

elastic DOFs in the time and frequency domain are possible indicators to be used for Structural Health Monitoring (SHM). 

With the increasing availability of low-cost micro-electro-mechanical systems (MEMSs), combined with their ease of 

implementation, applications in large sensor quantities become feasible. To validate and experimentally test such an integrated 

motion measurement, a test rig with a movable, flexible pendulum beam was designed, to represent an idealization of a mast, rotor 

blade, or aircraft wing. 

In this study a short categorization of possible SHM applications for IMMSs is given, based on previous work and state-of-the-

art SHM approaches. In this context, the principle of IMMS is explained with the experimental realization, validation, and the 

resulting modal characteristics of the elastic DOFs as potential indicators for SHM. Furthermore, the importance of strain gauges 

is investigated with methods to reduce their number by redundant sensors and restricted aiding. 

KEY WORDS: Sensor fusion; Kalman filter; Inertial sensors; Complementary Sensors. 

1 INTRODUCTION 

Integrated motion measurement of flexible structures is the 

expansion of conventional integrated navigation systems, 

typically employing an inertial measurement unit (IMU) aided 

by GNSS (global navigation satellite system) [1-3]. In contrast 

to the classic approach, the object of interest is now developed 

from a simple rigid point with six degrees of freedom (DOFs, 

three for the position and three for the attitude) to an elastic 

body with extra DOFs, capturing elastic deformations. 

Furthermore, additional sensors are distributed on the structure, 

enabling this model extension. Such additional sensors are, on 

the one hand, inertial sensors like accelerometers or gyroscopes 

to expand the system input to accommodate the extra DOFs. 

On the other hand, further GNSS receivers, strain gauges, or 

other sensor types are feasible for aiding [4].   

With the ongoing development and miniaturization of micro-

electromechanical systems (MEMSs), such integrated motion 

measurement systems (IMMSs) can now be realized with cost-

effective sensors. A test rig [5], as well as a hybrid sensor 

system [6] was developed to validate the principle of IMMS on 

a flexible beam. The test rig and beam were designed to 

resemble an aircraft wing, mast, or rotor blade of a wind 

turbine. The validation proved that such low-cost sensor 

systems are suitable for IMMS applications and can reliably 

estimate structural deformations [7]. Concluding, IMMSs for 

flexible structures allow a comprehensive movement 

determination of the object including the rigid body part as well 

as elastic deformation of the structure itself.  

The validation [7] so far relied on the usage of a quantity of 

strain gauges being the same as the number of characteristic 

deformations introduced as additional DOFs. This means that 

with rising complexity of the structure and increased number of 

relevant mode shapes, more strain gauges are needed to 

complete the system requirements. Despite dominant 

advantages like high sensitivity leading to a reliable aiding of 

the selected deformations, certain disadvantages would benefit 

a reduction of these sensors. Such disadvantages are i.e. a 

complex installation process as well as maintenance. Installing 

strain gauges can be a lengthy and complex task that demands 

skill and accuracy. It requires specialized knowledge to ensure 

that the gauges are attached, wired, and calibrated correctly. 

Furthermore, strain gauges are vulnerable to environmental 

factors and therefore need to be shielded adequately. All these 

factors can add to the overall complexity of the project [8]. In 

contrast to that, the application of IMUs and Time-of-Flight 

distance sensors (ToFs) is relatively easy. In the present setup, 

both sensors are located on a circuit board and screwed to the 

structure [6]. It can be beneficial to reduce the usage of strain 

gauges in favor of low-cost, easy to apply sensors like IMUs, 

ToFs, or GNSS receivers for installation and maintenance 

reasons. 

The additional estimation of deformations by a distributed 

sensor network puts IMMSs in the spotlight as a potential 

application for vibration-based structural health monitoring 

(SHM) at a global approach. Unlike local methods, where a 

dense sensor network is setup around a perimeter of expected 

damage, the behavior of the complete structure is evaluated for 

damage diagnosis [9]. An abundance of methods exists in this 

field, however, to the knowledge of the authors, no existing 

method utilizes the estimation of elastic deformations via 

kinematic considerations: 
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In state-of-the-art SHM applications, accelerometers are 

widely used as sensors and typical parameters for damage 

evaluation are modal parameters like natural frequencies and 

mode shapes. Often, the input or output signals are further 

processed by methods like Fast Fourier transform (FFT), or 

Wavelet transform (WT) [10]. While several methods combine 

IMU or accelerometer data with GNSS measurements [11-13], 

the sensor network or node is treated as a rigid body and in 

practice, the displacement of the monitored location is 

extracted for signal evaluation. On the other hand, applications 

with distributed sensors, mostly accelerometers without any 

aiding exist. For example, a network of low-cost MEMS 

accelerometers is applied in a bridge structure for displacement 

and vibration analysis [14]. In this case, modal parameters like 

frequencies, damping ratios and amplitudes are estimated based 

on the model of a damped harmonic oscillator. Subsequently, 

the mode shapes are extracted from the calculated amplitudes 

of the involved sensor locations and modes. In other 

applications, the overall deflection of a bridge [15] or wind 

turbine [16] is reconstructed based on the calculated rotation 

angles of distributed IMUs or accelerometers, gyroscopes, and 

magnetometers respectively. The latter method proposes to use 

the obtained deflection to assess the occurring stresses via a 

Finite Element (FE) simulation for SHM.  

Furthermore, many papers suggest the usage of Operational 

Modal Analysis (OMA). Here, only the measurement data with 

unknown system excitation is used to obtain modal parameters 

of the observed structure. A commercial OMA tool is for 

example used to identify different damage scenarios of an 

open-source benchmark system with distributed 

accelerometers [17]. In other OMA applications, simulated 

accelerometer data of distributed sensors are used to extract 

mode shapes [18] or natural frequencies, mode shapes, and 

curvature mode shapes [19] for floating offshore wind turbines 

and wind turbine blades respectively. Damage detection can 

then be applied by assessing the change of mode shape after 

applying damages [19]. Alternatively, distributed strain sensors 

in the form of Fiber Bragg Gratings (FBGs) can be used for 

damage detection by identifying the change of 

eigenfrequencies, obtained from OMA on a wind turbine 

structure [20].  

In another approach, damage assessment is done by Finite 

Element Model Updating for a laboratory bridge structure 

equipped with accelerometers [21]. Based on the measurements 

obtained, the mass, damping, and stiffness matrices of the FE 

simulation are updated to match the characteristics of the 

measurements. To conclude, there exist a variety of SHM 

methods and applications which could potentially be adapted to 

an IMMS, which aims at a more complementary, integrated use 

of different types of sensors. 

Thus, in this study, a preliminary classification and outlook 

on potential SHM applications by IMMS is conducted. 

Furthermore, the reduction as well as replacement of strain 

gauges with different sensor types and aiding approaches is 

investigated. For that, Section 2 introduces the concept of 

IMMS of flexible structures, including the general system 

equations and the kinematic equations for accelerometers and 

gyroscopes as central components. Section 3 provides the 

application of such a system for a flexible beam, introducing 

unit deformations as characteristic elastic deformations and 

aiding models of different sensor types. The test rig for 

experimental implementation as well as a summary of the 

conducted validation are presented subsequently. Based on this, 

the experimental approach of this study is presented in Section 

4, followed by the presentation and discussion of the results in 

Section 5. A conclusion and outlook finalize the paper in 

Section 6. 

2 INTEGRATED MOTION MEASUREMENTS OF 

FLEXIBLE STRUCTURES 

The main task of IMMSs is to track the propagation with time 

of the motion state vector  

  
T

( ) ( ) ( ) ( )t t t t=x r r Θ , (1) 

which holds the classical navigation parameters position r , 

velocity r , and attitude Θ . The state vector is further 

expanded by additional DOFs reflecting elastic deformations, 

which will be derived within this section. Other typical 

parameters like sensor biases are excluded for a better overview 

[4]. The dynamic behavior of x  can be modelled by a 

nonlinear, kinematical model 

 =x f(x,u)+Gw , (2) 

driven by the input vector ( )tu . In the case of IMMSs, the 

input consists of accelerations and angular rates, measured by 

an array of inertial sensors. Additionally, the stochastic 

measurement noise ( )tw  of the input is mapped to x  via the 

noise matrix G . Inherent errors like sensor noise and bias of 

the input u , in combination with numerical integration leads to 

a rising error if the system state x  is calculated from Equation 

(2). To reduce this error and ensure observability of the system, 

regular correcting measurements are necessary which are 

represented by the aiding vector 

 y = h(x,u)+ v . (3) 

The aiding vector ( )ty  comprises measurements, e.g. from 

GNSS receivers, which can be modeled according to the 

current system state x , input u , and their stochastic 

measurement noise ( )tv  [1].  

The IMMS combines the calculated system state from 

Equation (2) with the aiding Equation (3) to merge different 

sensor types by using the advantages of each sensor type 

against the disadvantages of the other sensors. This so-called 

sensor fusion, as well as solving the differential Equation (2) is 

accomplished by an extended Kalman Filter (EKF). The system 

architecture and signal flow of an EKF, which works according 

to the observer principle, is depicted in Figure 1 [22]. 
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object aiding 

device 
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Figure 1. System architecture of IMMS. Adapted from 

Wagner and Wieneke [22]. 

The system state x  and therefore the aiding vector y  results 

from the accelerations and angular rates acting on the object, 
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which are measured by the input u . Based on this input, an 

estimate of the system state x̂  and measurement vector ŷ  is 

calculated. Conclusively, the difference between actual aiding 

measurements and their estimation ˆy - y  is used to calculate an 

updated system state x̂ . 

 Kinematic system model and input 

To complete the state vector from Equation (1), to 

accommodate elastic deformations, and to give an overview of 

the involved input sensors within an IMMS, a simplified model 

of an aircraft fuselage with one wing as a beam is depicted in 

Figure 2. 
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Figure 2. Simplified aircraft model with exemplary input 

sensors. Adapted from Örtel [4]. 

The wing is sketched in its deformed (solid line) and 

undeformed (dashed line) state. In this case, measurements of 

the input vector u  are indicated as red arrows, which are 

comprised of the accelerations , ,,D Da a  , and the angular rate 

D  obtained from an IMU in the center of the system D . 

Furthermore, additional peripheral accelerometers or 

gyroscopes at arbitrary positions j  measure either the 

acceleration ja  or angular rate j . Instead of single-axis 

accelerometers or gyroscopes, complete IMUs can be installed 

as peripheral sensors, however, only one of the signals shown 

is mandatory for the presented system model. The relevant 

coordinate systems are indicated by dotted arrows, which are 

the inertial coordinate system ( , )i i  , the body coordinate 

system ( , )b b  , and the sensor coordinate system ( , )s s  . 

Accelerations and angular rates are measured with respect to 

the inertial coordinate system, in either the body coordinate 

system (IMU in the center D ) or the sensor coordinate system 

(peripheral sensor in j ). The lever arm j  is the distance 

between D  and j . In the case of peripheral accelerometers, 

the kinematic equation of motion of j  is 

( ) ( )2i i b b i
j D j bi j bi j bi bi j= + +  +  +  r r ω ω ω ω , (4) 

with i
jr  comprising ja , which is therefore directly measured 

by the peripheral accelerometer (the left superscript indicates 

the reference system for differentiation). Furthermore, 
i

Dr  

holds the accelerations , ,,D Da a  , whereas biω  contains the 

angular rate D , meaning both vectors are readily available 

from the IMU measurements in D . With lack of low-cost 

angular acceleration sensors, biω  is calculated via numerical 

differentiation of biω . Considering peripheral gyroscopes, the 

kinematic equation of motion becomes 

 
( )d rot 

d

j

j bi
t

= +ω ω . (5) 

Here, jω  is directly measured by the peripheral gyroscope with 

j . Both Equations (4) and (5) contain the unknown lever arm 

j  and its first and second derivative ( b
j  and b

j ) in the case 

of peripheral accelerometers [4]. 

As indicated in Figure 2, the lever arm j  is modeled by a 

rigid part jr  on the undeformed wing plus a time-dependent, 

elastic part ( )j t . Under the assumption of small 

deformations, the lever arm is modeled by a series approach 

 ( )
1

( ) ( ) ( )j j j j jt b t 





=

= +   + r r s r , (6) 

with a selected number   of time-dependent deformation 

variables ( )b t  as a coefficient to their associated shape 

functions ( )js r . The deformation variables act as additional 

DOFs and reflect the current amplitudes of the shape functions, 

which spatially represent the structural deformations. For the 

latter, it is  assumed that ( )js r  only have components in b -

direction, which justifies the usage of single-axis sensors (more 

components require more sensor-axes). Additionally, the shape 

functions are defined in a way that they have the maximum 

displacement value of 1 at least at one point. Due to this 

definition, they will be referred to as unit deformations, of 

which two exemplary selections 1( )js r  and 2 ( )js r  are 

sketched in Figure 3. In this case the rigid part jr  of the lever 

arm is aligned with the  -axis of the body coordinate system. 
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1 1( )jb s r   2 2 ( )jb s r   
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Figure 3. Typical unit deformations. Adapted from Örtel [4]. 

As a result, the superposition of all selected unit deformations 

multiplied with their current amplitudes should reflect the total 

deformation of the structure. Consequently, the choice of type 

and number of unit deformations is essential for a proper 

approximation of the structure. It has been proven that the 

eigenmode shapes are a reasonable, but not mandatory choice 

for the unit deformations [4,7]. 

Based on Equation (6), the first and second derivative of j  

can be formulated with 

 

( )

( )

1

1

( ) ( )

( ) ( )

b
j j

b
j j

b t

b t

 



 





=



=

= 

= 





s r

s r

. (7) 

With the abbreviation ,( )j j =s r s , Equations (7) are 

substituted into (4), to deliver the set of Equations 

 
(

)
1

1 1 1,1 ,

( ) , , , , , ,

, , , , , , , ,

i i i
D bib t f

b b b b

 

  

= r r r ω

s s
, (8) 

for 1, , =   selected unit deformations and 1, ,j =  

peripheral accelerometers. Substituting Equation (6) into (5) 

yields 

 ( )1 1,1 ,( ) , , , , rot , , rot bib t f  = ω ω ω s s , (9) 

for 1, , =   selected unit deformations and 1, ,j =  

peripheral gyroscopes [4]. 
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Depending on the type of peripheral sensor being either 

accelerometer (acc) or gyroscope (gyro), the state vector from 

Equation (1) becomes 

 
 

T

acc

T

gyro

 =  

                or   

i D i D

i D i D

  

=

x r r Θ b b

x r r Θ b
, (10) 

according to the general form of Equation (2). All selected 

deformation variables 1, ,b b  and their derivatives are 

summarized in the vectors b  and b  respectively. The system 

input becomes 

 
 

 

T

acc , ,

T

gyro , ,

=  

              or   

D D D D

D D D

a a

a a

 

 

 

=

u a

u ω
, (11) 

with a  and ω  holding all measured peripheral accelerations 

1, ,a a  and angular rates 1, ,   . To maintain the 

observability of the IMMS, the number of peripheral sensors 

must be equal or higher than the elastic DOFs    . A further 

condition is that the chosen unit deformations need to be linear 

independent, and the sensor positions must be chosen 

adequately [4]. 

 Aiding equations and measurements 

The aiding Equation (3) relates the actual aiding measurements 

y  to their estimate ŷ , to correct the state estimate x̂  according 

to Figure 1. To achieve that, the measurements need to be 

reconstructed from the system state, which corresponds to the 

right-hand side of Equation (3). Aiding equations can be 

divided into two principles, with applications in Section 3:  

External aiding: The systems providing the measurements 

are independent and located outside of the object. A prominent 

example of such an aiding system are GNSSs. If the system, i.e. 

provides a position or distance reference of a point j, the 

measurement can be related with a function including the 

position, orientation, and the deformations [4]. 

Internal aiding: The measurement systems are located on the 

structure. Strain gauges, for example, provide data which can 

be related to the elastic DOFs only [4]. 

3 IMMS APPLICATION OF A FLEXIBLE BEAM 

For experimental validation and application of IMMS of 

flexible structures, the simplified aircraft model from Figure 2 

was reduced to a suspended, elastic pendulum as shown in 

Figure 4. This setup should abstract the aircraft fuselage and 

one wing as the pendulum bearing D and the pendulum itself. 

This representation also holds for a rotor or mast of a wind 

turbine and is therefore generally applicable. Considering 

technical limitations and the desired realization, all inertial 

sensors are applied in the form of a six-axis IMU measuring 

three accelerations and three angular rates. This means, that an 

IMU is placed in D, measuring ,Da  , ,Da  , and D , as well as 

in sj , measuring jsa  and js . As a result of restricted GNSS 

visibility due to an indoor test rig, Time-of-Flight distance 

sensors (ToFs) are placed alongside the peripheral IMUs, 

measuring the distance j  from the point j  towards a 

reflector plane, placed at the known location ref .d  Internal 

aiding is provided via strain gauges, which are applied as a 

wheatstone full bridge, measuring the bending strain j  in the 

location j  close to the IMU. The setup is completed by a high 

precision distance sensor, providing the displacement of the 

bearing D . The Pendulum is a steel sheet of the material 

DX51D+Z, with the dimension 4 m x 0.2 m x 0.002 m [5,7].  
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Figure 4. Experimental IMMS setup [7]. 

The state vector of the IMMS can be taken directly from 

Equation (10), with 

  
T

, i D d h = =r Θ  (12) 

and h  being the displacement of D  in i -direction. The input 

follows from Equation (11) without adjustments, including 

1,...,s sj =  peripheral accelerometers or gyroscopes. 

Ultimately, the aiding vector becomes 

  
T

acc gyro D D= =y y ρ ρ ρ ε . (13) 

The vectors ρ  and ε  hold the data set of all measured distances 

1, ,    and bending strains 1, ,    from 1,...,j =  

utilized ToFs and 1,...,j =  strain gauges. The position 

measurement Dρ  contains the horizontal distance of the 

bearing D  corresponding to d  and a pseudo-measurement of 

0 corresponding to h  respectively. In the final application, not 

all available sensor signals are utilized, meaning that an IMU is 

used without the accompanying ToF or vice versa. Therefore a 

distinction between placement and number of the sensors at 

hand s ,  , and    must be made. 

 Unit deformations 

The unit deformations of the pendulum are acquired from the 

eigenmodes of the linearized structure. These were calculated 

with a Finite Element (FE) analysis in ANSYS®. As indicated 

in Figure 2 and 3, the unit deformations are relevant from the 

perspective of the object and therefore should be transformed 

into body coordinates. The first six transformed modeshapes 

are plotted in Figure 5, where the first two modes of the 

structure have similar shape due to the transformation. As a 

result, these two modes are merged to a combimode, since their 

distinction by the system can not be guaranteed [4,7]. 
Consequently, the first six modeshapes are represented by the 

first five unit deformations 1, ,5 = , with the third mode 

corresponding to the second unit deformation, etc. The 

eigenfrequencies as well as the associated modes of each unit 

deformation are listed in Table 1. 
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Figure 5. First six transformed modeshapes [4,7]. 

Table 1. Allocation of eigenmodes to unit deformations with 

corresponding frequencies [7]. 

Unit def. 1 2 3 4 5 

mode 1 2 3 4 5 6 

 [Hz]if   0.302 0.860 1.909 3.492 5.262 8.318 

 Beam deflection, curvature, and aiding equations 

To give insight into the applied aiding measurements and 

equations, a sketch of the randomly deformed pendulum is 

shown in Figure 6. Furthermore, an arbitrary point (or sensor) 

j, placed at position j  on the undeformed wing with 

deformation j  is highlighted. The sensor coordinate system 

s is rotated relative to the body system b by the angle ,j sb , 

whereas b is rotated by   relative to the inertial system i. 
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s   

s   

s   

 j 
j ,j sb   j   

1 

j   
j   

i      

Figure 6. Relation between the local rotation and gradient of 

the bending line. 

Considering 1,...,j =  arbitrary peripheral points, the elastic 

deformation of the object at each location can be reconstructed 

with 

 

1 1,1 ,1 1

1, ,

s s b

s s b  



 

     
     

=  = 
     
          

S b  (14) 

and the matrix of unit deformations S . With the angle   being 

permanently calculated as part of the state vector, the location 

of j  in the inertial coordinate system is given by the 

transformation 

 
cos sin

sin cos

i j j

i j
i j jd

  

  

−    
= =     −     

r  (15) 

for small deformations. Under the same condition, the rotation 

,j sb  from the body to the sensor coordinate system can be 

approximated by the gradient of the bending line j . 

Considering the rotation of b relative to i, the total rotation of s 

relative to i can be formulated with  

   

1 1 1,1 ,1 1

1, ,

s s b

s s b   

 

  

 



 

        
         + = +  = + 
       
               

S b  (16) 

and  

 
, j

j

b

s
s







=


 (17) 

being the gradient of the unit deformations [4]. 

While the aiding measurements Dρ  and Dρ  directly 

correspond to the system states Dr  and Dr , the remaining 

aiding measurements have to be viewed in detail: 

ToFs: The distance j  is measured perpendicular to the local 

sensor position as sketched in Figure 7. With the location of the 

sensor, calculated from Equation (15), and the rotation j  from 

Equation (16), the distance measurement can be modeled by the 

function 

 
ref

( , , )
cos

i j

j

j

d
h d


 



−
= = b . (18) 
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refd   
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Figure 7. Distance measurement of peripheral ToF sensor.  

Strain gauges: Considering the area moment of inertia and 

the moment of resistance, the bending strain of a rectangular 

beam of thickness *h  can be expressed for small deflections 

with 
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S b h(b)  (19) 

for   applied strain gauges. 

 Test rig 

The implementation of the IMMS setup from Figure 4 is 

implemented by a test rig shown in the big picture of Figure 8. 

The movable pendulum 1 is suspended with a plain bearing 2 

from a guidance rail 3. A reflector plane 4 for the ToFs 

completes the general structure. To impose movements d on the 

pendulum, a linear spindle actuator is mounted underneath the 

guidance rail and connected to the bearing suspension. The 

reproducible excitation of the system can then be used to 

provide comparability between different measurements and 

input for simulations [5].  

The intended input and aiding measurements of Equations 

(11) and (13) are realized by a hybrid sensor system [6], 

developed for this application. The system consists of multiple 

interconnected printed circuit boards (PCBs) as shown in the 

small picture of Figure 8, which accommodate an IMU, a ToF, 

along with an analogue to digital converter (ADC) to connect 

the strain gauges. An additional PCB reads the measurements 

of the displacement sensor in the bearing. Controlled by a 

Master PCB, the measurement system provides simultaneous 
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measurements of the implemented sensor types at multiple, 

selectable positions. 

 

Figure 8. Test rig (big picture) and PCB (small picture) with 

IMU 1b, ToF 2b and ADC 3b [5].  

 Validation results 

For validation, a practicable and realistic displacement function 

for the actuator was created. The displacement consists of back-

and-forth movements, superimposed by frequency components 

up to the fifth eigenfrequency of Table 1. The resulting 

displacement ( )d t  is plotted in Figure 9, including an initial 

resting phase of 60 s for initialization purposes. As comparison 

parameters, the horizontal displacement d  of the bearing, the 

angular orientation  , and the pseudo-elastic deformation e  

were chosen, the latter being the joint-related deformation and 

calculated by   according to Equation (14) at the lower tip of 

the pendulum. To evaluate the IMMS, the FE model from 

Section 3.1 was simulated with the displacement input 

measured by D . To create a realistic scenario, an artificial 

white noise is added to D , which is in the order of magnitude 

of the sensor noise of the ToFs.  

 

Figure 9. Displacement function ( )d t  [7].  

It could be proven that for this excitation, the errors of 

attitude   and pseudo-elastic deformation e  converge with 

four involved unit-deformations 4 =  and four peripheral 

sensors (accelerometers or gyroscopes) 4s    = = = . The 

position error d  was insignificantly affected by the inclusion 

of the elastic DOFs. A comparison of the attitude   and 

pseudo-elastic deformation e  is shown in Figure 10 for a time 

interval with relatively high dynamics. The simulated 

parameters (sim) are compared against the accelerometer (acc) 

and gyroscope (gyro) configuration of the converged case. 

Despite time intervals with high dynamics, resulting in large 

deflections and other nonlinear effects, the results indicated that 

the IMMS delivers reliable estimates of the classical navigation 

parameters and the elastic deformation. A clear difference 

between the two sensor types in terms of the error values could 

not be determined, which can be explained by the relatively 

strong aiding of the deformation variables b  by the 

comparatively accurate strain gauges.  This resulted in a 

convergence of the estimated deformation variables of both 

configurations towards the simulated values, as shown in 

Figure 11. Furthermore, the plot shows that an excitation of 

four involved unit deformations from Table 1 could be 

registered, showing frequency components of the 

corresponding eigenfrequencies. Although higher unit 

deformations have less impact on the total deflection, their 

estimation in time and frequency domain can give valuable 

insight into the structural behaviour.  

 

Figure 10. Attitude ϕ and pseudo-elastic deformation e  with 

nearly identical results for “acc” and “gyro”.  

 

Figure 11. Deformation variables b [7].  

For the scenario at hand a sample rate of 200 Hz of the IMUs 

and strain gauges turned out reasonable, whereas the distance 

measurements were sampled with 33.33 Hz due to technical 

limitations. 

 Modal characteristics of deformation variables 

In addition to the conducted validation, the modal 

characteristics of the deformation variables are shortly 

investigated in this Subsection, following the state-of-the-art 

criteria in SHM from Section 1. For that, the single-sided 

amplitude spectrum of the deformation variables of the time 

interval from Figure 11 are plotted in Figure 12 for the “acc” 

and “gyro” configurations. To obtain the amplitude spectrum, 

the according signals are processed via FFT with a Hamming 

window and zero-padding to smooth the results. The 

eigenfrequencies of Table 1 are highlighted with red dotted 

lines, whereas the eigenfrequencies of the according unit 

deformations are marked with red dashed lines. 

While all amplitudes show distinctive peaks at their 

according frequencies, a coupling of the different mode shapes 

is clearly seen, especially for the fourth unit deformation. This 

can be explained by the multiple nonlinearities of the system, 

like the Coulomb-Friction in the bearing [7]. Furthermore, the 

displacement function of Figure 9 has components of the fourth 

eigenfrequency during the analyzed time interval, which 

explains the strong coupling of the fourth deformation variable. 

To minimize the nonlinearities, the bearing was fixed in a 
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purely simulative model, forcing the attitude 0 =  at all times. 

Subsequently, the sensor data were obtained by the FE 

simulation with the same input of Figure 9. For a short 

overview of the fundamental changes by the linearization of the 

system, the deformation variables 3b  and 4b  are plotted in 

Figure 13 for the same selected time interval. Due to the system 

changes, a combimode according to Figure 5 is no longer 

necessary. Therefore the deformation variables 3b  and 4b  of 

Figure 13 correspond to 2b  and 3b  of Figure 11. 

 

Figure 12. Single-sided amplitude spectrum of the 

deformation variables from Figure 11.  

 

Figure 13. Deformation variables 3b  and 4b  for a simulated 

linearized system due to a fixed bearing ( 0 = ).  

Analogously, the single sided amplitude spectrum with the 

adapted eigenfrequencies is shown in Figure 14. Figures 13 and 

14 show that a decoupling of the included deformation 

variables can be observed. This indicates that if the unit 

deformations are set according to the mode shapes of the 

structure, the deformation variables reflect the associated 

modal parameters of natural frequencies and modal damping. 

The prerequisite for this is, however, that the system is linear 

or at least linear during certain time intervals. 

 

Figure 14. Single-sided amplitude spectrum of the 

deformation variables 3b  and 4b  from Figure 13. 

4 EXPERIMENTAL APPROACH 

This part of the study follows the experimental validation of 

IMMS [7], which was recapped in Section 3.4, to assess the 

importance of strain gauges. It is based on a pendulum 

equipped with 18 PCBs (holding IMUs and ToFs) and 12 strain 

gauge arrays (wheatstone full bridge), which were placed to 

investigate different configurations. According to each chosen 

sensor configuration, the optimal set of sensors is selected 

according to the method of Effective Independence [4,23] out 

of the available test beam. In analogy to the conducted 

validation, the system is excited by the displacement function 

of Figure 9. Furthermore, only configurations with four 

additional unit deformations 4 =  are investigated. Due to the 

similarity of the results from Figure 10 and 12, the 

configuration with four unit deformations and four peripheral 

gyroscopes, strain gauges and ToFs (gyro: 4s    = = = ) 

serves as a new benchmark (bm) to compare and evaluate the 

acquired results. The comparative parameters are the attitude 

angle   of the bearing, the pseudo-elastic deformation e , as 

well as the deformation variables 1 4,...,b b . Of these, the error 

values are evaluated by calculating the root mean square error 

(RMSE) according to 

 
2

rmse bm,

1

1
ˆ( )

N

i i

i

x x x
N =

 = −  (21) 

for an arbitrary variable x  with N samples. Again, the sample 

rate of the input vector and strain gauges (if used) is set to 200 

Hz, while the ToFs and the linear distance sensor are set to 

33.33 Hz as in Section 3.4.  

To evaluate the importance of strain gauges, or more 

precisely the accurate aiding of the deformation variables in 

IMMS applications, the experimental procedure is divided into 

the following steps: 

• Removing strain gauges: 

In the first step, an accelerometer and gyroscope 

configuration with four peripheral inertial sensors and 

ToFs (acc/gyro: 4,  0s    = = = ) are compared 

against the benchmark. 

• Extended aiding by redundant ToFs: 

To compensate for omitted strain gauges, configurations 

with varying number of peripheral ToFs 4,...,13 =  and 

redundant inertial sensors 4,5s = are created.  

• Aiding with reduced number of strain gauges: 

A reduced number of strain gauges 1,2,3 =  are 

employed. Even though measurement Equation (19) 

becomes underdetermined in this case, aiding can still be 

employed via the EKF. Based on the preceding results, a 

reduced set of deformation variables ,aidedb  is aided by the 

strain gauges, leaving a remaining set of unaided 

deformation variables ,unaidedb . So, the strain gauges are 

selected in such a way that their placement is optimal with 

respect to ,aidedb . If the unaided deformation variables 

,unaidedb are already accurately estimated by e.g. redundant 

ToFs, their contribution to the bending strain can be 

subtracted from Equation (19). Accordingly, the matrix 

S  is separated, resulting in the adapted aiding Equation  

 ,unaided ,unaided ,aided ,aided ,aided( )     −  =  =ε S b S b h b . (22) 

Consequently, the left-hand side of Equation (22) is the 

adapted bending strain, associated to the aided deformation 

variables. The resulting configurations are supplemented 

by additional ToFs 4,...,13 = . 
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Depending on the degree of observability and quality of 

aiding measurements, a careful filter tuning of the EKF can 

become a crucial task [24]. This applies especially to the cases 

of removed and reduced strain gauges. In these cases, the 

settings of the EKF are adapted in an appropriate range. 

However, by applying extensive filter tuning, the results can be 

further improved for any of the applied methods. 

5 RESULTS 

The results are presented in the order as they are introduced in 

Section 4. The configurations in the following subsections will 

be either with accelerometers (acc) or gyroscopes (gyro) as 

peripheral input sensors. If not specified otherwise, the number 

of peripheral sensors are set according to the case with removed 

strain gauges ( 4, 0s    = = = ).  

 Removing strain gauges 

To demonstrate a general effect on the estimated system states 

by removing the direct aiding of the deformation variables, the 

estimates of attitude   and pseudo-elastic deformation e  are 

displayed on the left side of Figure 15 for the whole time 

interval of excitation. 

 

Figure 15. Estimated attitude ϕ and pseudo-elastic 

deformation e (left), and overscaled beam deformation at  

 t = 230 s (right) for the acc and gyro configuration without 

strain gauges, compared to bm.  

Both configurations show a gradual drift from the bm-values 

for both selected parameters in opposite directions, meaning 

that the attitude diverges contrary to the pseudo-elastic 

deformation. This behavior becomes apparent by visualizing 

the deformed, suspended beams at time 230 st =  on the right 

side of Figure 15. The graph displays the three configurations 

including the bearing D  indicated by the black circle. The 

deformations of the beam are overscaled to emphasize the 

occurring effect. Additionally, the positions of the involved 

ToFs are marked by dots on the deformed structures. The 

tangent lines on the beam origin is plotted by dash-dotted lines, 

visualizing the attitude   against an imaginary vertical line. 

Although the positions of the ToFs are accurate within the 

limits of their sensor error, the bending lines show a clear 

mismatch with respect to the benchmark. Without direct aiding 

of the elastic deformations and restricted accuracy of the ToFs, 

the aiding Equation (18) allows seemingly arbitrary 

combinations of   and b  to match the distance measurements. 

Ultimately, an overestimated attitude is compensated by an 

underestimated deformation.   

In analogy to Figure 11, the deformation variables are plotted 

for the same time interval of high dynamics in Figure 16. The 

first deformation variable 1b  is estimated accurately. This can 

be explained by its comparatively high amplitude, which can 

be resolved by the distance measurements. The deformation 

variables 2 4 to b b  display the observed drift, however in phases 

of high amplitude the estimations are partially corrected 

towards the bm values (especially 2b  and 3b ). Furthermore, the 

gyro configuration displays a smoother and qualitatively more 

accurate representation of the deformation variables than the 

acc configuration.  

 

Figure 16. Estimated deformation variables b for the acc and 

gyro configurations without strain gauges, compared to bm.   

 Aiding by redundant ToFs 

To compensate for the effects displayed in Figures 13 and 14, 

varying number of ToFs 4,...,13 =  are employed in 

combination with 4,5s = . The RMSE of   and e  according 

to Equation (21) is plotted in Figure 17 for the new acc and gyro 

configurations. With one additional ToF 5 = , both error 

values for both sensor types can be reduced significantly. By 

further increasing   the errors can be further decreased, 

however both error values converge towards a limit. Redundant 

inertial sensors show no positive effect, which is why they will 

be dismissed for further evaluation. 

 

Figure 17. RMSE of the estimated attitude ϕ and pseudo-

elastic deformation e for the acc and gyro configuration with 

additional ToFs, compared to bm.  

To show the reduced drift, the attitude   and pseudo-elastic 

deformation e  for two exemplary acc and gyro configurations 

with 10 =  is plotted in Figure 18 for the respective time 

interval. All cases display a satisfactory estimate, with the 

unwanted drift significantly reduced. 

Accordingly, the deformation variables are displayed in 

Figure 19, analogously to Figure 16. While still displaying a 

reduced deviation, 2 4 to b b  are no longer shifted exclusively in 
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the negative direction. Again, the gyro configuration displays a 

superior behavior regarding the deformation variables.  

 

Figure 18. Attitude ϕ and pseudo-elastic deformation e for 

exemplary acc and gyro configurations with additional ToFs, 

compared to bm. 

 

Figure 19. Estimated deformation variables b for the acc and 

gyro configurations with additional ToFs, compared to bm.    

Overall, the negative effects of removing the direct aiding of 

the deformations can be significantly compensated (but not 

prevented by placing additional ToFs on the structure). This is 

because the aiding is carried out by Equation (18), which also 

involves deformation variables. However, the Equation is 

highly nonlinear, and the measurement accuracy and frequency 

are not sufficient to distinguish the low amplitudes of higher 

deformation variables. The higher accuracy of gyroscopes can 

be explained by the one-time integration of b  according to 

Equation (10) in comparison to the double integration of b  for 

accelerometers. 

 Aiding with reduced number of strain gauges 

From Section 5.2 it becomes apparent that additional ToFs 

can not fully replace all removed strain gauges. However, it 

could be proven that the first deformation variable 1b  is 

sufficiently aided by a system without strain gauges. Building 

on that, configurations with 1,2,3 =  are created with the 

following specifications of Equation (22): 

• 1 = : T
,aided 2 3 4[ ]b b b =b ,  

• 2 = : T
,aided 3 4[ ]b b =b , 

• 3 = : T
,aided 2 3 4[ ]b b b =b . 

The selection is based on the observation that a set of aided 

variables equal to the number of the strain gauges used turned 

out to be beneficial. Nevertheless, aiding only one deformation 

variable was not feasible in the present setup. 

In analogy to Figure 17, the RMSE of   and e  are plotted 

in Figure 20 including the comparative values of the gyro 

configuration 10 =  from the previous Section with a black, 

dash-dotted line. By employing at least one strain gauge, the 

errors are comparable or better to the one achieved with 

additional ToFs. By increasing their number, the errors can be 

further decreased. Regarding the attitude and pseudo-elastic 

deformation, the gyro configurations with 2 =  displays a 

superior behavior.  
 

 

Figure 20. RMSE of the estimated attitude ϕ and pseudo-

elastic deformation e for the acc and gyro configuration with 

reduced number of strain gauges, compared to bm.  

Assuming an adequate estimation of 1b  and 2b  according to 

the previous Sections, the RMSEs of 3b  and 4b  are further 

assessed in Figure 21. The errors decrease with increasing 

number of strain gauges, whereas the gyro configurations show 

superior characteristics for each number of strain gauges. 
 

 

Figure 21. RMSE of the estimated deformation variables 3b  

and 4b  for the acc and gyro configuration with reduced 

number of strain gauges, compared to bm. 

The results suggest that a configuration with gyros and one 

strain gauge is comparable to accelerometers with two strain 

gauges and the same number of ToFs. Thus, the estimation of 

3b  and 4b  for two corresponding configurations (acc: 

2,  10  = = , gyro: 1,  10  = = ) is plotted in Figure 22 

for the selected time interval. Despite comparable RMSE 

values, the estimation of the gyro configuration approaches the 

bm values significantly better. 
 

 

Figure 22. Estimated deformation variables 3b  and 4b  for the 

acc and gyro configurations with reduced number of strain 

gauges. 

Concerning redundant ToFs and a reduced number of strain 

gauges, an attitude error of around 0.3    corresponds to a 
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deflection of roughly 0.02me  , which matches the error 

values of Figures 15 and 18. This error is within the limit of 

accuracy of the measurements and modelling errors. The gain 

in accuracy of the deformation variables is the result of their 

direct aiding through Equation 22. Nevertheless, the attitude 

and total deflection can not be further improved. Although the 

error 4,rmseb  is roughly the same according to Figure 21 for 

the inspected case in Figure 22, the latter shows a superior 

performance of the gyro configuration. This can be achieved, 

even with fewer strain gauges than the accelerometer case. 
 

6 CONCLUSIONS 

In this study, IMMS are presented as a comprehensive tool 

for determining rigid and elastic movements of a wide range of 

possible structures. In addition to a general categorization 

within possible SHM applications, the reduction of high-

maintenance sensors like strain gauges was investigated. 

This study showed that the direct aiding of the deformation 

variables is crucial for a precise estimation of the state 

variables. It could be shown that redundant position aiding via 

distance sensors can not fully compensate for a loss of strain 

sensors, but the negative effects could be largely reduced. 

However, a reduction in strain gauges is feasible without an 

essential loss in accuracy. This can be achieved by aiding larger 

deformations with the available distance sensors and small 

deformations by the accurate remaining strain gauges.  

With respect to the deformation variables, it could be shown 

that modal parameters are represented within the time and 

frequency domain. Even for a nonlinear system, the 

deformation variables show distinctive frequency peaks at their 

corresponding eigenfrequencies of the linearization. A linear 

simulated system holds the potential to estimate the modal 

amplitudes in the time domain during operation. With current 

SHM approaches using modal parameters like 

eigenfrequencies, mode shapes, or damping ratios, the 

estimation of the deformation variables in time and frequency 

domain are potential parameters to be analyzed. 

Eigenfrequencies could thus be extracted from the frequency, 

while the modal damping ratio could be extracted from the time 

domain. Both time and frequency domain of the deformation 

variables could also serve as an input for Finite Element Model 

Updating to localize simulated damage mechanisms. 

Additionally, the estimated deformation and curvature of the 

structure can indicate changes in the mode shapes due to 

damage. Furthermore, the precise movement analysis can give 

insight into loads and strains during operation and can therefore 

be included in the estimation of the remaining service life. In 

conclusion, this study could show the existing potential of 

IMMS for SHM. 

Next steps will apply artificial “damages” in the form of 

additional masses or stiffeners to the test beam. Subsequently, 

the influence of these structural changes on the behavior of the 

deformation variables in time and frequency domain will be 

analyzed according to the presented state-of-the-art methods in 

SHM. Further steps could replicate the linearized system with 

a fixed bearing and a sensitivity analysis regarding sensor 

requirements like accuracy and noise in combination with 

quantity. Ultimately, the benefit of IMMS in relation to state-

of-the-art methods needs to be proven experimentally. 
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