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ABSTRACT: Structural dynamical properties are vulnerable to the dynamic loads because such loads can change those parameters 

significantly. It is not possible to halt the aforementioned issue as dynamic loads are entirely unpredictable. The changes in 

stiffness, mass, and damping can lead to minor to serious damage scenarios depending on the level of changes of those parameters. 

Typically, the displacements trajectories of any systems are unknown, and if any other physical parameters e.g. damping is 

unknown that will form a nonlinear problem. Herein, to deal with the early mentioned problem a nonlinear observer namely the 

unscented Kalman filter (UKF) is employed. In conventional practice, the partial or full stiffness matrix are identified but 

identifying damping matrix is rare due to inherent complicacy. Hence, this study has focused on the identification of the entire 

damping matrix by adopting the UKF. The outcome of study shows that UKF is capable of identifying damping coefficients quite 

accurately. This outcome can play a vital role in the area of structural health monitoring and control applications. 

KEY WORDS: Structural Health Monitoring, Unscented Kalman Filter, Dynamic Loads, Damage. 

1 INTRODUCTION 

System identification is a process that helps to estimate any 

desire quantities e.g. stiffness based on measured sensory data 

and develop an underlying mathematical model of the 

dynamical system. Typically, the goal of the system 

identification is to develop a representative model that can 

render the true behavior of the dynamical system. Modern 

structures are getting complicated to monitor due to many 

underlying uncertainties such as their form, adaptation of state-

of-art technologies e.g. sensors, dampers, monitoring tools. 

Therefore, monitoring such structures require proper tools, 

scheme and knowledge to deal with hidden uncertainties. For 

instance, in order to keep track on any changes real-time 

monitoring could be an option [1], [5], [13] and [14]. On the 

other hand, system identification might assist to understand the 

structure better as it might help to update the virtual or 

mathematical systems real-time or offline. 

   System identification (SI) is a shared topic in many areas of 

science and engineering e.g. mechanical/civil engineering, 

robotics, process engineering [15][16]. However, in case of 

civil engineering application still the use and application of SI 

is limited due to associated problems, for instance, models are 

very large compare to a robot or mechanical tool. Dealing with 

large model require serious attention as many variables are 

unknows along with inputs. To deal with the numerous 

uncertainties, typically, from the measured data, stiffnesses are 

identified and feed to the control loop to adjust and update the 

model. Thereby, the updated model can render the true system 

behavior better contrary to doing no update. If the 

aforementioned process is done in real-time, optimal control 

performances can be expected.  

Many works can be found those who tried various methods 

to identify different parameters of various type of structures e.g. 

buildings, bridges. Among them, a new type black-box by the 

use of extended Kalman filter (EKF) is studied for SI [4], a 

neural network and dead-zone Kalman filter algorithm has been 

reported in [6], SI for time-varying system [7], autoregressive 

models based frequencies and damping ratio identification by 

[8], new forms of EKF for SI [9], SI for medical image 

processing application [10], SI using stochastic filter 

techniques [12]. The fundamental concept of the Kalman filter 

was proposed by Rudolf E. Kalman in 1960 [17]. Later, many 

have been proposed and developed different nonlinear filters 

such as EKF and UKF [11], [18] and [19] and their modified 

version. 

It is mentioned early that stiffness are often identified for 

civil engineering application due to the simplicity in contrast to 

identifying damping. For instance, a detail theoretical 

formulation and an experimental validation of semi-active 

control problem along with stiffness matrix identification has 

been carried out in [14]. In the aforementioned study, author 

did not perform the identification of damping matrix 

individually or linked to any control problem. Because, 

damping coefficients are extremely sensitive to inputs and 

material properties as a result dealing with the control problem 

makes things troublesome or even could lead to an 

uncontrollable situation. Therefore, not many studies have been 

conducted in case of damping coefficients/matrices in 

combination with states due to the underlying complicacy. 

More specifically, when both sates and damping coefficients 

are unknown simultaneously, it leads to a nonlinear problem 

that requires a nonlinear observer to solve. The aforementioned 

problem has been focused in [20] to identify damping matrix 

where main consideration was to see the effect of initial 

covariance of the observer. Another work [3] has tried to 

identify damping via sensitivity enhanced method linked to 

Principal Component Analysis. A more detail issues linked to 

nonlinear damping identification has been reported in [2].  

From above discussion it is clear that identification of 

damping itself leads to a complicated problem and it gets more 
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complicated when both sates and damping coefficients are 

unknown. To handle this issue, this study has focused into the 

identification of damping coefficients along with unknown 

states. A 15 degree-of-freedom (DOF) dynamical system is 

consider for the numerical implementations. The system 

identification task is performed by employing the unscented 

Kalman filter (UKF). The overall outcome shows that the UKF 

is capable of identifying damping coefficients quite accurately. 

As a result, the dynamical response (e.g. displacements) of the 

system shows excellent match with the response of the true 

system. Rest of the paper contains, problem description & 

formulation, results and discussion and finally a summary of 

the study.  

2 PROBLEM DESCRIPTION & FORMULATION 

The numerical investigations are conducted by adopting a 15 

storied dynamical system. The dynamical system is considered 

to be model as lumped-mass-spring system as depicted in 

Figure 1. A sample free-body diagram of the top floor and a 

typical floor is shown in the early mentioned figure along with 

the full structure. Typically, equation of motion (EOM) is 

derived for each floor from the free-body diagram of the 

structure. As for example, an EOM has been derived for the 1st 

DOF as shown below,  

𝑚1𝑥̈1(𝑡) + 𝑐1𝑥̇1(𝑡) + 𝑘1𝑥1(𝑡) − 𝑐1[𝑥̇2(𝑡) −
𝑥̇1(𝑡)] − 𝑘1[𝑥2(𝑡) − 𝑥1(𝑡)] =  −𝑢̈1(𝑡) (1) 

𝑚1𝑥̈1(𝑡) + [𝑐1 + 𝑐2]𝑥̇1(𝑡) − 𝑐1𝑥̇2(𝑡) + [𝑘1 +
𝑘2]𝑥1(𝑡) − 𝑘1𝑥2(𝑡) =  −𝑢̈1(𝑡) (2) 

Later, all those equations of motion are combined into one 

single equation in matrix-vector form. And the dynamical 

model can be expressed in vector-matrix form as, 

𝑀𝑋̈(𝑡) + 𝐶𝑋̇(𝑡) + 𝐾𝑋(𝑡) =  −𝛽𝑢̈𝑔(𝑡) (3) 

where M, C and K are the mass, damping and stiffness matrices 

with a size of 15 × 15, 𝑋, 𝑋̇ and 𝑋̈ are the displacement, 

velocity, and acceleration vector those have a size of 15 × 1, 

𝑢̈𝑔 is the input excitation, 𝛽 controls input excitations location, 

t is the time vector.  

 

 

Figure 1. The structure and sample free-body diagram of a 

typical floor and top floor. 

 

It is quite common that the dynamical system further 

formulated by adopting the state space (SS) formulation 

technique. The SS formulation contains two main equations, 

they called, (i) the process equation in Eq. (2), and (ii) the 

observation equation in Eq. (3). 

𝑥𝑘+1 =  𝐴𝑥𝑘 + 𝐵𝑢𝑘 (4) 

𝑦𝑘 =  𝐶𝑥𝑘 + 𝐷𝑢𝑘 (5) 

where 𝑥  is the states vector that has displacement and velocity, 

A is the state matrix, B represents the input matrix, it can be 

with single of multi inputs, D is the feedthrough matrix, C is 

output matrix, u contains input and control force (if any), y is 

the output vector.  

   Step ahead, the noise terms (both process and observation) 

are added to the SS formulation to deal with the observer. 

Typical, formulation of the UKF would look like,   

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑣𝑘) (6) 

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑛𝑘) (7) 

where 𝑣𝑘 represent process noise and 𝑛𝑘 is the observation 

noise. The dynamical systems are described via 𝑓 and ℎ 

functions [18]-[19]. UKF propagates random variables using a 

specific statistical procedure known as the unscented 

transformation (UT). Due the aforementioned procedure UKF 

is derivative free, as a result it is faster than its counterpart EKF 

[18]. In short, a structured transformation, distributed equally 

around the mean (also known as the sigma points) that 

propagate through early mentioned complex nonlinear 

functions. The sigma points (𝑥̂𝑘) are estimated as follows, 𝑥̂𝑘 =

[𝑥̂𝑘−1 ,  𝑥̂𝑘−1 + √(𝐿 + 𝜆)𝑃𝑘−1 ,  𝑥̂𝑘−1 − √(𝐿 + 𝜆)𝑃𝑘−1 ], 

where 𝐿 is the dimension of the states and 𝜆 is a scaling factor. 

There are two main steps for the UKF, they are known as (i) 

the prediction Eq. (6) and (ii) the measurement update Eq. (7). 

𝑥̂𝑘|𝑘−1 = 𝑓(𝑥̂𝑘−1, 𝑢𝑘−1) + 𝑤𝑘−1 (8) 

𝑦̂𝑘|𝑘−1 = ℎ(𝑥̂𝑘|𝑘−1) + 𝑣𝑘 (9) 

    A simplified flow-chart of the UKF is depicted in Figure 2. 

The overall estimation is done recursively until the simulation 

ends.  

 

 

Figure 2. Basic steps of the UKF. 

    

The estimation steps of the UKF is given below with more 

detail: 
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(i) The initialization step (setting the states and covariance): 

 

𝑥̂0 = 𝐸[𝑥0], 𝑃0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)𝑇]  
 

𝑥̂0
𝑎 = 𝐸[𝑥𝑎] = [𝑥̂0

𝑎 0 0]𝑇 , 𝑃0
𝑎 = 𝐸[(𝑥0

𝑎 − 𝑥̂0
𝑎)(𝑥0

𝑎 − 𝑥̂0
𝑎)𝑇] 

 

(ii) The Sigma Points estimation: 

 

𝛾𝑘−1
𝑎 = [𝑥̂𝑘−1

𝑎  ,  𝑥̂𝑘−1
𝑎 + √(𝐿 + 𝜆)𝑃𝑘−1

𝑎  ,  𝑥̂𝑘−1
𝑎

− √(𝐿 + 𝜆)𝑃𝑘−1
𝑎  ] 

 

(iii) The prediction or time update: 

 

𝛾𝑘|𝑘−1
𝑥 = 𝑓[𝛾𝑘−1

𝑥  ,  𝛾𝑘−1
𝑣 ] 

 

𝑥̂𝑘
− = ∑[𝑤𝑖

𝑚𝛾𝑖,𝑘|𝑘−1
𝑥 ]

2𝐿

𝑖=0

 

 

𝑃𝑘
− = ∑ [𝑤𝑖

𝑐(𝛾𝑘|𝑘−1
𝑥 − 𝑥̂𝑘

−)(𝛾𝑘|𝑘−1
𝑥 − 𝑥̂𝑘

−)
𝑇

]

2𝐿

𝑖=0

 

 

𝜏𝑘|𝑘−1 = ℎ[𝛾𝑘|𝑘−1
𝑥  ,  𝛾𝑘|𝑘−1

𝑛 ] 

 

𝑦̂𝑘
− = ∑[𝑤𝑖

𝑚𝜏𝑖,𝑘|𝑘−1]

2𝐿

𝑖=0

 

 

(iii) The measurement update & correction: 

 

𝑃𝑦̅𝑘𝑦̅𝑘
= ∑ [𝑤𝑖

𝑐(𝜏𝑖,𝑘|𝑘−1 − 𝑦̂𝑘
−)(𝜏𝑖,𝑘|𝑘−1 − 𝑦̂𝑘

−)
𝑇

]

2𝐿

𝑖=0

 

 

𝑃𝑥𝑘𝑦𝑘
= ∑ [𝑤𝑖

𝑐(𝛾𝑖,𝑘|𝑘−1 − 𝑥̂𝑘
−)(𝜏𝑖,𝑘|𝑘−1 − 𝑦̂𝑘

−)
𝑇

]

2𝐿

𝑖=0

 

 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝑃𝑥𝑘𝑦𝑘

𝑃𝑦̅𝑘𝑦̅𝑘

−1 [𝑦𝑘 − 𝑦̂𝑘
−] 

 

where 𝑃𝑥 is the process noise covariance, 𝑃𝑦 is the measurement 

noise covariance, 𝑤𝑖  is the weight parameters [462]. 

 

3 RESULTS AND DISCUSSION 

The numerical investigations are conducted by adopting a 15 

degree of freedom (DOF) dynamical system. Therefore, the 

mass, damping and stiffness matrices size are 15 × 15, while, 

the mass matrix is assumed to be fully-diagonal. The mass is 

assumed to be equal in each floor and the weight of every floor 

is around 60 × 103 Kg. And the stiffness components of each 

floor are considered 65 × 105 N/m. The damping coefficients 

are estimated using eigenfrequencies and a damping ration of 

2%. The main goal here is to identify all of the 15 damping 

coefficients. To do this, UKF is employed as nonlinear observer 

and the numerical investigations are conducted for 160 sec with 

a sampling rate of 200 Hz. The harmonic type input excitation 

(𝑎̈𝑔 = 1 × sin (16.5𝑡)) is used to excite the structure (see 

Figure 3). The harmonic type input load has been selected due 

to the simplicity of the nature of the load in contrary to complex 

type input e.g. earthquake.  

 

 

Figure 3. Input excitation: full-time series (top), zoomed view 

(bottom). 

 

   The comparison of the original versus identified damping 

coefficients are presented in Figure 4, Figure 5, and Figure 6. 

More precisely, the damping coefficients are separated as  
𝑐1 − 𝑐5 in Figure 4, 𝑐6 − 𝑐10 in Figure 5,  and 𝑐11 − 𝑐15 in 

Figure 6, respectively. The aforementioned separation is done 

for better visualization purpose. Additionally, the values are 

normalized with respect to the top floor’s value for the same 

reason as mentioned earlier.  

 

 

Figure 4. Comparison of the original and identified damping 

coefficients [𝑐1 − 𝑐5]. 

 

It is observed that the accuracy of the estimated damping 

coefficients is in generally good. However, few parameters 

have struggled than their peers, it is due to the size of model’s 

variables, meaning, more parameters lead to complex tuning 

process (e.g. noise level, initial covariances, etc.), similar issues 

have been reported by many [12], [20] and [21]. However, even 

after hard tuning still at the end accuracy may not be as 

expected because it is mentioned earlier that the accuracy is not 

depended on any single variable.   
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Figure 5. Comparison of the original and identified damping 

coefficients [𝑐6 − 𝑐10]. 

 

 

Figure 6. Comparison of the original and identified damping 

coefficients [𝑐11 − 𝑐15]. 

 

There are many underlying uncertainties for parameters 

identification in general and it gets worse when it comes to 

damping. It is due to the nature of the damping itself and there 

are many influencing factors such as amplitudes of the inputs, 

initial covariances and noise. Additionally, the accuracy of the 

estimation/identification may change significantly if the 

sampling rate, duration of the simulation, initial states and 

covariances are not tuned properly. A summary of the 

identified damping coefficients is given in Table 1. Along with 

the early mentioned table a graphical representation of the data 

is shown in Figure 7. It should be noted that the normalized 

errors are estimated based on the last value at the end of the 

simulation. Hence for better understanding, Figure 4, Figure 5, 

and Figure 6 are recommended to see the whole time-series. As 

the parameters take some time to reach in stable or so-called 

steady-state condition hence errors are not isolation to a point 

of time of simulation (for example the identified value in the 

table).  

 

Table 2. Summary of the identified damping coefficients. 

Damping 

coefficients 

Original Identified* Normalized Error 

(%) 

𝑐1 1273.55 1665.95 0.016 

𝑐2 3807.57 5017.11 0.048 

𝑐3  6302.52 501131.164 19.78 

𝑐4 8732.81 493153.22 19.36 

𝑐5 11073.48 53097.78 1.68 

𝑐6 13300.52 25630.01 0.49 

𝑐7 15391.08 28422.90 0.52 

𝑐8 17323.71 47258.82 1.19 

𝑐9 19078.57 42974.68 0.95 

𝑐10 20637.66 411245.85 15.61 

𝑐11 21984.98 36596.87 0.58 

𝑐12 23106.76 3977.92 0.76 

𝑐13 23991.326 7640.00 0.65 

𝑐14 24629.76 28217.52 0.14 

𝑐15 25015.46 75434.76 2.01 

*absolute identified values belong to the end of the simulation 

   Further, the propagation of the uncertainties have evaluated 

and given as the root mean squared (RMS) and the standard 

deviations (STD), those values are estimated and illustrated in 

Figure 8 and Figure 9, respectively.  Both the RMS values and 

STD shows that they are not constant and consistent throughout 

the simulation period. That also justify why the identified 

parameters may have different level of errors based-on at what 

point the parameters are considered. 

 

 

Figure 7. Comparison of the original and identified damping 

coefficients and their errors [𝑐1 − 𝑐15]. 

 

 

Figure 8. Point-to-point error changes during the simulation 

period [𝑐1 − 𝑐15]. 
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Figure 9. Standard deviation changes during the simulation 

period [𝑐1 − 𝑐15]. 

 

Furthermore, to understand the effect of the identified 

damping coefficients, the displacements trajectories of the 5th, 

10th and 15th DOF is evaluated. The displacement of 5th floor is 

depicted in Figure 10, while Figure 11 has the 10th floor 

displacement and the 15th floor displacement is shown in Figure 

12. All of the aforementioned figures have a full-time series 

(top sub figure) and a zoomed view (bottom sub figure). It can 

be observed that all of those figures show a very good accuracy 

in terms of rendering the original behavior of the system.      

 

 

Figure 10. Original versus estimated displacement of the 5th 

floor. 

 

 

Figure 11. Original versus estimated displacement of the 10th 

floor. 

 

 

Figure 12. Original versus estimated displacement of the 15th 

floor. 

 

Last but not least, the acceleration response of those early 

mentioned floors (e.g. 5th, 10th and 15th) has been evaluated and 

presented in Figure 13, Figure 14, and Figure 15, 

correspondingly. Similar to the earlier observation, it has been 

noticed that the estimated acceleration data render the original 

data quite accurately. 

 

 

Figure 13. Original versus estimated acceleration of the 5th 

floor. 

 

 

Figure 14. Original versus estimated acceleration of the 10th 

floor. 
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Figure 15. Original versus estimated acceleration of the top 

floor. 

 

4 CONCLUSION 

This study investigates the possibility of identification full 

damping matrix of a 15 DOF system. The goal is achieved by 

adopting the UKF as an observer. The estimated parameter 

results show very good match with the original data. The 

displacement and acceleration comparison results confirm (due 

to their a very good match) that the identified damping 

coefficient are quite accurate. However, that doesn’t mean that 

all 15 damping coefficients (e.g. 𝑐1 − 𝑐15) are having same 

accuracy. UKF perform recursive estimation during the given 

time-span hence the error of the estimation is optimized by 

minimizing errors. In other words, the accuracy of the states 

(displacements and velocities) are not very much affected due 

to the individual damping coefficient accuracy. In a nutshell, 

the outcome of this study can be summarized that the 

investigated approach might be beneficial for structural health 

monitoring and vibration control applications as the states can 

be updated during the simulation in real-time.  
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