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ABSTRACT: This paper presents the remaining useful life (RUL) prediction problem in civil engineering applications using a 

hidden Markov regression model (HMRM), as a promising approach for model-based degradation. Unlike self-transition hidden 

Markov models for mass-produced components, where prior lifetime signals are available to estimate state information, the 

proposed HMRM formulates the conditional probability of RUL in terms of the estimated regressor parameters, after temporally 

fitting the damage model. The discrete property of state in HMRM makes it possible to handle heterogeneities in the degradation 

process. The HMRM can also synthesise multiple signals by adopting a decision-level fusion. An adaptive closed-form solution 

for RUL prediction is presented. The performance of HMRM is demonstrated on synthetic measurements and compared with a 

Bayesian extended Kalman filter (EKF) updating technique. 

KEY WORDS: Hidden Markov chain; model-based degradation; remaining useful life prediction; damage model. 

1 GENERAL GUIDELINES 

The prediction of Remaining Useful Life (RUL) holds 

significant importance in both condition-based monitoring 

(CBM) and the formulation of maintenance strategies for 

structural components. RUL is defined as the time a structure 

has before reaching its design threshold, when it can no longer 

perform under its design function. In CBM, damage is 

characterised as a change in structural components due to the 

interaction between internal degradation and the working 

environment which adversely affects its current and future 

performance. The progression of damage is heterogeneous, and 

such heterogeneity can be due to unit-to-unit variability [1] of 

the material, changing operational conditions [2], or periodic 

loading [3]. 

 

Various damage models have been developed, ranging from 

empirical laws (such as Paris’ laws) to continuum damage 

mechanics (CDM) methods [4], which requires stochastic-

based approaches (such as Markov chain, Weiner processes) 

for predicting RUL [5]. However, these approaches suffer from 

parameter correlation. This study focuses on simple power and 

exponential laws suited in a hidden Markov chain, which, 

despite their simplicity, provide correlated, good curve fitting 

by: a linearised and automated regression segmentation and an 

adaptive parameter updates via a recursive Markov chain to 

improving accuracy. According to Si, et al. [5][6] hidden 

Markov models (HMMs) are suited for RUL prediction based 

on degradation state processes. HMM is composed of two state 

processes; an unobservable (hidden) Markov chain which 

accounts for the actual state of degradation such as fatigue at 

the grain level of a metallic component, and an observable 

process that interprets the monitoring information, for instance, 

crack width in a reinforced concrete beam.  

 

Within a degradation process is multiple discrete-hidden states. 

Past studies [7][8] [9][10] focused on the transition probability 

matrix and state duration definition. They consider that these 

states can switch into each other under a predefined transition 

probability, which is specific to the lifetime datasets. Modelling 

degradation by this approach is limited to the Markov property 

[11] which means that: a) the state at any given time step only 

depends on the previous state and not on any earlier states, b) 

and that shorter state durations are more likely than longer ones, 

i.e., state duration follows a geometric distribution. This can be 

a limitation for modelling real-world degradation processes. To 

remedy this weakness, hidden semi-Markov models (HSMM) 

have been proposed to explicitly model state duration 

distributions rather than assuming a geometric one [12][13]. 

Unfortunately, this improvement of modelling degradation in 

components with predefined transition probability and state 

duration does not extend to modelling the degradation 

processes on bespoke components that obeys damage laws. 

 

To the best of the author’s knowledge, this study frontier a 

premise of adopting a sequence of state in model-based 

degradation process. By this approach, the degradation process 

experiences a state switch at stages of damage triggered by the 

weighted state posterior distribution [14]. In addition, the 

proposed approach can handle multiple information of 

measured signals (i.e., multiple HMRM) earlier introduced in 

[13]. This improves the state identification since it captures the 

interacting factors of multiple signals, and reduces 

measurement noise uncertainty, leading to a more confident 

RUL prediction. The extended Kalman filter (EKF) is 

introduced in this study to recursively observe data in real-time, 

to compare with our inspection approach. As with HMM 

belonging to a finite-discrete set of states, the EKF is an optimal 

non-linear filter for finite-dimensional stochastic systems, for 

model-based analysis, where the states are continuous and 

described as parameters of the damage model [15]. 

Within the framework of modelling degradation presented in 

the paper, two case studies are considered: a fatigue crack 

growth process, and a multi-sensor beam degradation 

measurement. A decision-level fusion technique using fisher's 

weighted discriminant ratio [13] is considered to aggregate the 

multiple estimated parameters and predict the RUL. 
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2 HIDDEN MARKOV REGRESSION MODEL (HMRM) 

This section provides the framework that captures the hidden 

state degradation processes. 

 HMRM Parameter estimation 

The unobserved degradation processes 
tu  represent a sequence 

of K  hidden states of data points, formulated at index time t  

in a particular state k  as: 

 2exp( ), ( 1, , )t t k tu U t T=  = ò  (1) 

where 
tU  represent the damage model that characterises the 

degradation process up till failure time T . To model the hidden 

Markov chain, we take the log-transform of equation 1 and put 

in matrix form as: 

 2logt t t k k ty u = = +x β ò  (2) 

ty  becomes degradation processes that follows a Gaussian 

distribution of mean 
t kx β  and variance 2

k , the parameter 

vector 2 2

1 1( , , , , , , , )K K  =  π A β β  defines the model of 

the degradation process. 
tò is a random variable that follows the 

standard Gaussian distribution (zero mean and unit variance) 

representing an additive measurement noise with standard 

deviation
k . 

tx  is the covariate vector at index time t  that 

translates scatter due to environmental/operational conditions 

and 
kβ is a 2 1 vector containing the regression coefficients. 

The hidden sequence (1, , )K= k  is assumed to be a 

homogeneous Markov chain (as shown in Figure 1) of the first 

order and parameterised by an initial state distribution π  and a 

transition matrix A .  

 
Figure 1. Schematic representation of the actual degradation 

process over a sequence of hidden states (HS), from 1  to K . 

 

As shown in Figure 1, the hidden state discretises the 

observation that is continuously measured, in a sequence. This 

sequence of discretization is irreversible since degradation 

process is progressive, except when a maintenance action is 

implemented. Figure 2 describes the probability of stay in a 

hidden state is defined by the transition probability ,k kA in the 

transition matrix A . Hence, ,k kA determines whether the 

degradation process is either staying or moving to the next 

degradation stage. 

 

 
 

Figure 2. Illustration of the possible sequence of transition 

path between hidden states. 

 

The vector   can be estimated using the limiting properties of 

consistency, and asymptotic normality of the so-called 

maximum likelihood method. Its efficiency is subject to a 

considerable number of data points, so the sample size is 

suitable for taking advantage of the limiting properties of the 

likelihood estimator. The log-likelihood is presented in the 

form: 
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The Baum-Welch algorithm is referred to as the expectation-

maximisation (EM) algorithm [11][16], which performs a 

recursive iteration over E-M steps while updating estimated 

parameters that govern the regression model. The regressor 

mean is: 
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where  

 
1, , [ ]'T= X x x  (5) 

is the 2T  regression matrix and ( )m

kW  is a T T  diagonal 

matrix of weights whose diagonal elements represent the 

posterior probabilities ( ) ( )

1( , , )m m

k Tkγ γ . On the other hand, the 

covariance matrices are updated as a weighted variant of the 

estimation of a Gaussian density with the polynomial mean 
( 1)ˆ m

t k

+
x β : 
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 Multiple HMRM (M-HMRM) 

Regarding the case of multiple signals, the model can be 

expanded as a set of q  time-series: 
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where the latent degradation state k simultaneously governs all 

of the univariate time series components. Having observed the 

multivariate degradation process with the M-HMRM in 

equation (7) and obtaining the estimated posterior distribution, 

the weighted discriminant type fusion technique [13] is used to 

re-define the regression parameters to a univariate process, and 

consequently the sampled distribution. The core concept of 

discriminant function analysis is to determine whether groups 

differ in terms of the mean of a variable, and then use that 

variable to predict which group the sample distribution might 

belong to. When dealing with a single variable, the final test to 

assess whether the underlying assumption of homogeneity of 

variance (i.e. homoscedasticity) distinguishes between groups 

is the F -test. This test is calculated by comparing the variance 

between groups to the pooled (average) variance within groups. 

If the variance between groups is significantly higher, it 

indicates significant differences in the prediction. The 

weighting process is influenced by the respective F -values. 

The F -value indicates how statistically significant a variable 

is in distinguishing between groups, reflecting its unique 

contribution to predicting group membership or fusion. 

Here, the estimated covariance 2ˆ( )k of the M-HMRM is a q q  

matrix. Since F -value is a measure of the extent to which a 

variable makes a unique contribution to the prediction of group 

membership, one can easily obtain the F -value of the different 

sensors from 2ˆ( )k  to be: 

 
variance between groups 

variance within groups
jkF =  (8) 

The final fusion becomes a weighted linear combination, as 

follows: 
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and the estimated bivariate coefficients are then integrated into 

the failure function. Integrating these coefficients into the 

degradation process facilitates the consideration of time-

varying dynamics of systems, making it a preferred approach 

among researchers. 

3 REMAINING USEFUL LIFE PREDICTION 

Having established the single and multiple signal HMRM 

degradation process, in this section the PDF of the RUL of their 

underlying damage models are formulated using a derived 

closed-form expression. As stated in the previous sections, the 

degradation is modelled by a random process ˆ{ ( ); 0}ku    , 

assumed Gaussian for simplicity. Under the concept of first 

hitting time (FHT), the conditional RUL ˆ( )k of the system on 

the observation ˆ ( )ku   at degradation rate  of state k  is 

defined as the time from the initial state of performance 

degradation until the failure threshold ( ) is reached for the 

first time, as:   

  ˆ ˆˆ ˆinf : ( ) ( )k k ku u    = +  ∣  (10) 

A simple system architecture of the approach is presented in 

Figure 3. The HMRM parameters are obtained by sampling the 

observed data over the underlying state-based damage model 

 

 
Figure 3. Remaining useful life flowchart. 

 

 Power model 

Consider that multiplicative measurement error in equation 1 

can be approximated as 2 2ˆ ˆexp( ) 1k k   +ò ò  and the variability 

in sampling the observation is very small, i.e., ( )ˆ 2 2ˆ ˆ ˆ~kb

k k kc    , 

then the failure function becomes: 

 
ˆ2 2ˆˆ ˆ ˆ ˆ( ) ( ) kb

k k k k ku U c     + +== ò ò  (11) 

 controls switching between one degradation point ( )u   and 

another across the K  hidden states. From the log-linear 

transform, ( ) [1 log ] =x  and ˆˆ ˆ[log  ]'k k kc b=β . Since the 

FHT of the nonlinear degenerate model at the current rate   

satisfies the inverse Gaussian distribution [17][18]. The 

degradation path upon hitting   can be expressed as the PDF 

of the system RUL as: 
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 (12) 

 

Where ˆ
k  equal to one [19].   

 Exponential model 

Under the measurement error condition of log-normal 

distribution as assumed in the power model, the exponential 

failure function is presented as: 

 
ˆ 2ˆ ˆ ˆ( ) kb

k k keu c


 = + ò  (13) 

From the log-linear transform, ( ) [1 ] =x  and 

ˆˆ ˆ[log  ]'k k kc b=β . The degradation path upon hitting   can also 

be expressed in terms of the PDF of the system RUL: 
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 Performance error 

The threshold   is chosen based on expertise judgement. 

However, since this degradation dataset lacks historical data, as 

typical for bespoke components, the value of the last data point 

will be used as the threshold. In the second case study (for 

multiple sensor information), the mean of the signals’ last data 

points is considered as the threshold. 

Since the true internal states of degradation are not available, 

the number of states for the lifetime of either case is unknown. 

However, any chosen number of discrete states should be able 

to capture the degradation effects, encompassing material 

degradation, loading, environmental conditions and 

maintenance regimes. For prediction performance accuracy, we 

compute the root mean square error (RMSE) metric over each 

state k  of the RUL, given as: 

 ( )
2

1

1 ˆRMSE
K

k k

kK =

= −  (15) 

where 
k

 and ˆ
k  represents the actual and predicted RUL 

respectively. 

4 FATGIUE CRACK GROWTH (FCG) 

A FCG degradation process in a structural component has 

been simulated based on the Paris law of fracture mechanics 

described in [20], and the synthetic data is shown in Figure 4. 

The synthetic data will be used as the available data for the both 

models discussed in the previous section. 

 Results 

Since RUL prediction solely depends on the available data, 

signals were continuously updated at every 25 cycles until 

failure. The advantage of this is to capture the heterogeneity of 

the degradation process. Typical for damage propagation in 

FCG, 2 and 3 state has been considered [21]. The parameter 

estimation procedure in section 2 and the PDF of RUL in 

section 3 is repeated recursively per inspection points.  

 

The estimated PDF of RUL in terms of recursion in 2-state 

HMRM by power model is shown in Figure 5. At early stages 

of prediction (i.e., 25, 50 cycles), the prediction is dominated 

by uncertainty (high variance) due to limited degradation 

process, which does not clearly indicate the propagation trends. 

As failure approaches, the degradation process becomes more 

predictable and the variance shrinks. In addition, states 

switches is seen to adjust continuously as more data is 

introduced. However, the model seems to suffer a positive bias 

in predicting the RUL, as these models are conservative and 

obviously may not match the growth dynamics of Paris’ law.  

 
Figure 4. Fatigue crack length measurements ( )u n  versus 

magnitude of cycles n . 

 

 
 

 
 

Figure 5. 2−state power HMRM reliability characteristics 

showing the predicted degenerate slope and the accompanying 

PDFs of RUL for real-time monitored information from the 

populated 25 initial cycles, updated by a populated 50, 75, and 

100 cycle of monitored information. 

 

 
Figure 6. Reliability characteristics showing predicted 

degenerate slope and the accompanying PDFs of RUL for 100 

cycles of monitored information in 3−state power (left) and 

exponential (right) HMRMs. 
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Figure 6 shows the complete (100 cycles of) predicted 

degenerate slope and the accompanying PDFs of RUL for 3-

state HMRMs. It compares the prediction by power and 

exponential model. From the PDF plots, it shows that 

prediction from power model suffers more uncertainty than of 

the exponential model, especially at the late stage of damage 

propagation. This uncertainty is associated with the regressor 

parameter ˆ
kb , which is gradual in the power model than in 

exponential model. 

 

Figure 7 presents the RUL prediction based on the PDF of 

RUL plots. From the plot, it is observed that 2-state hidden 

states satisfy the heterogeneity in the datasets, and an additional 

state does not contribute to the dynamical distribution in the 

dataset. This is reasonable since FCG simulation is quasi-static, 

and rarely models the micro-cracks at grain levels. As time 

passes, it is shown that the predicted RUL converges towards 

the actual RUL in the absence of a prior degradation. The RUL 

distribution of the 2- state exponential model are observed to 

converge best than the power model. This is evident as the 

model follows damage accumulation scenario, which is a 

typical exponential. An EKF model based on the power model 

is also presented, for comparison. The EKF-power model 

converges to the true RUL better than 2-state power model. 

This is because, for an inspection routine with HMRM, the 

variance of estimating the regressor parameters over a sequence 

of observed data is higher than that of an EKF monitoring 

process. Along the true RUL is a 95% confidence interval.  

 

 
Figure 7. RUL prediction versus magnitude of cycles. 

 

Figure 8 shows the corresponding RMSE using equation 

(15). Since error is cumulative, the model’s performance is 

conditioned on state’s discretisation and its ability to 

effectively capture the heterogeneity due to any dynamic 

effects by the switch operation mechanism of HMRM. The 

cumulative RMSE for 2−3 states of power model are 2.51×104 

and 1.50×104 cycles; of exponential model are 3.12×104 and 

2.60×104 cycles. The RMSE of EKF is 2.86×104 cycles. 

 

 
Figure 8. RMSE performance accuracy. 

 

5 STRUCTURAL BEAM DEGRADATION 

The second case study presents the corrosion degradation 

problem of a structural beam (see Figure 9). Sensors are 

deployed at intervals across the beam length to monitor the 

degradation process. For this study, synthetic measurements of 

signals from [20]  were also considered which obey the power 

model in equation 11, with assumed log-normal state 

distribution and normal multiplicative measurement error as 

detailed in the mentioned reference. 

 

 
Figure 9. Multi-sensor condition monitoring scenario of a 

structural beam under progressive spatial varying damage 

accumulation, specific to the red "dotted" location. 
 

Figure 10 illustrates the degradation distribution of the 10 

sensor locations which were placed at 400mm sensor-sensor, 

numbered from left to right. Each degradation data point 

approximates the degradation level per year. 

 

 
Figure 10. Synthetic sensor-based monitoring datasets of a 

structural beam subjected to damage accumulation. Observed 

dataset over the 10 sensor locations. 
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Figure 11. Combined distribution of the datasets. 

 

As in the previous example, the sensor signals are inspected 

in 25 years’ intervals until failure, when available, which was 

observed to be a minimum data points for a 2-state M-HMRM 

regression parameter estimation problem, according to the 

model. The same procedure of sequential updating of degraded 

sensor measurements applies to track the RUL change with 

time.  

 

In Figure 11, the observed degradation in equation 7 is a 𝑡 × 

10 matrix for 𝑡 −year cycle, which is used to estimate the 

degradation parameters by adopting the decision-level fusion 

in equation 9. A 𝑡 × 1 predicted degenerate slope is obtained 

and the accompanying PDFs of RUL for 2 and 3-state M-

HMRM are also obtained. The sensitivity of the concave 

degenerate slope is captured in the PDF distribution, in the 

hidden states, respectively. Whereas, a mean distribution of the 
thj sensors is the assumed observation for the EKF. 

 

 
Figure 11. Multi-Sensory monitoring of a structural beam 

based on 2-state (left) and 3-state(right) segmentation process.  

 

Figure 12 describes the RUL prediction at different times and 

its corresponding prediction performance accuracy. The 

prediction performance is influenced by the number of states 

used per observed cycle. The result shows that the 3-state 

predicted RUL converges better towards the actual RUL, 

consequently posing a better confidence of RUL prediction. 

The RUL for The RMSE for the prediction performance 

accuracy of both models is also presented. Figure 13 shows the 

cumulative RMSE for 2 and 3 states to be 10.47 and 10.94 years 

which is twice more accurate, in absolute terms, than 20.09 

years of EKF. 

 

 
Figure 12. RUL prediction versus duration of degradation. 

 

Figure 13. RMSE performance accuracy. 

 

LIMITATION IN PRACTICAL APPLICATION 

The models discussed in this paper are generalized empirical 

power models to approximate self-accelerating crack growth 

behaviour and corrosion damage in a structural beam. While 

corrosion in reinforced concrete beam obey empirical power 

laws [22], crack growth may require differential or rate-based 

power laws, such in Paris or NASGRO equation [23], to 

capture multiple parameters (or uncertainties) which 

characterizes real-world systems. Crack growth phenomenon 

are influenced by multiple factors (or uncertainties) such as, 

material variability, environmental, and operational effects. 

Provided that these laws can be approximately linearised and 

adapted into hidden-state process to quantify these parameters 

or uncertainties, a closed form solution of it FHT to predict the 

remaining useful life distribution can be obtained. Although, 

the solution may not follow closely a similar trend as discussed 

in this paper, but the principle is the same. 
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CONCLUSIONS 

A framework to estimate the RUL of bespoke components was 

presented and illustrated on two examples. A regression-based 

hidden Markov model was proposed for degradation process 

prediction and two power failure functions were used to 

illustrate the state-dependent degradation scenarios for each 

problem. A case of multiple sensor measurements has also been 

presented.  

 

Both cases presented address the situation where the system's 

prior lifetime dataset is unavailable, which makes it difficult to 

estimate RUL using traditional methods. The observations are 

modelled as sets of data that become available, and the 

parameters of the failure function are updated. Finally, the 

PDFs of RUL can be evaluated based on the re-estimated 

parameters of failure function, for each state. Compared to 

extended Kalman filter method, the model demonstrates its 

ability to estimate the RUL of a structural component in the 

absence of failure history. 
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