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ABSTRACT: In response to the issues of high cost, limited monitoring accuracy, and susceptibility to environmental factors in 
traditional hydraulic structure displacement automation monitoring methods, a non-contact intelligent monitoring method based 
on machine vision image super-resolution reconstruction is proposed. This method uses artificial targets as markers and combines 
a high-order image degradation model with a camera to analyze real monitoring scenarios, carry out image data collection, and 
perform displacement calculation. It innovatively introduces a feature fusion attention mechanism to improve the Real-ESRGAN 
network and generator, enabling the reconstruction of image contours and fine details to enhance displacement calculation 
accuracy. Laboratory and field test results show that this method can effectively improve image resolution and clarity, achieving 
sub-pixel and millimeter-level precise monitoring of hydraulic structure surface displacement. Compared with traditional super-
resolution algorithms and target tracking methods, the improved Real-ESRGAN algorithm performs the best, with a coefficient 
of determination (R²) of up to 0.9975, an average absolute error (MAE) as low as 0.5552, and residual errors controlled within 
5mm. The edge contours and details in the images are successfully reconstructed, effectively improving the displacement 
monitoring accuracy of hydraulic structures based on machine vision. 

KEY WORDS:  Machine vision displacement monitoring; Image super-resolution reconstruction; Real-ESRGAN improvement; 
Feature fusion attention mechanism; Hydraulic structure safety monitoring.

1 INTRODUCTION 
As critical infrastructure in water resource management 
systems, hydraulic engineering projects play a pivotal role in 
ensuring water security and sustaining watershed economic 
development. Efficient and stable operation of these structures 
not only guarantees essential water supply for socio-economic 
sustainability but also serves as a vital safeguard for regional 
ecological security [1,2]. In the field of structural health 
monitoring (SHM), accurate surface displacement 
measurement forms the basis for safety assessment and early 
warning systems [3]. However, existing monitoring 
technologies exhibit notable limitations: traditional 
displacement measurement methods are not only costly but also 
susceptible to environmental interference, while demonstrating 
inadequate responsiveness to sudden structural risks [4-6]. 
A further complication arises from the multi-physics coupling 
effects (including hydraulic loads, thermal stresses, and 
mechanical vibrations) that hydraulic structures endure during 
service. These complex interactions induce nonlinear 
deformation behaviors, potentially leading to progressive 
damage or even catastrophic failure, posing dual threats to both 
structural integrity and economic viability [7]. Consequently, 
there is an urgent need to develop intelligent, automated 
displacement monitoring methods and establish digitalized 
smart monitoring systems to enhance lifecycle safety 
management of hydraulic structures. 
Current displacement monitoring techniques for hydraulic 
structures can be broadly categorized into contact-based and 
non-contact approaches [8]. Contact-based methods, such as 
strain gauges and fiber-optic sensors, suffer from complex 
installation and environmental sensitivity, making them 
unsuitable for long-term monitoring [9, 10].  

In the field of non-contact structural monitoring, laser 
displacement sensors[11][12], machine vision[13][14], total 
stations[15][16], and Global Navigation Satellite Systems 
(GNSS) [17][18] have emerged as critical technologies for 
deformation monitoring of large-scale hydraulic structures 
such as sluice gates and dams, owing to their non-invasive 
nature and operational flexibility.   
Laser displacement sensors employ optical triangulation 
principles, utilizing photoelectric receivers including position-
sensitive detectors (PSD), charge-coupled devices (CCD), and 
complementary metal-oxide-semiconductor (CMOS) sensors 
to achieve high-precision displacement measurements. 
However, the measurement accuracy of this technology 
exhibits an inverse correlation with monitoring distance due to 
the inherent limitations of laser reflection-based triangulation, 
significantly reducing its suitability for long-range monitoring 
scenarios. Furthermore, the installation requirements for 
reflective targets impose additional constraints on deployment 
flexibility, particularly for vertical displacement monitoring of 
hydraulic structures[19].  
GNSS technology has demonstrated robust capabilities in 
dynamic displacement monitoring for structural health 
monitoring (SHM) and seismic engineering applications. 
Nevertheless, its sampling frequency is constrained by satellite 
signal update rates, limiting its effectiveness in high-frequency 
vibration monitoring. Compared to conventional sensors such 
as accelerometers, GNSS also exhibits inferior measurement 
accuracy in the vertical direction[20].   
Total stations, as multifunctional surveying instruments, 
integrate high-precision distance measurement, angular 
measurement, coordinate acquisition, and elevation 
determination, making them widely applicable in engineering 
surveying and structural monitoring[15][16][21]. However, in 
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practical applications for dam displacement monitoring, these 
instruments face challenges such as unfavorable cost-benefit 
ratios, line-of-sight obstructions at measurement points, and 
operational complexity, which hinder their widespread 
adoption in large-scale engineering projects. 
To address these challenges, machine vision-based 
displacement monitoring enhanced by image super-resolution 
reconstruction has emerged as a promising solution. By 
employing deep learning algorithms to recover fine details 
from low-resolution images, this method overcomes the 
precision constraints of traditional vision-based measurements 
while avoiding the range limitations of laser displacement 
sensors and the environmental dependencies of drone-based 
remote sensing. Compared to fiber-optic sensing and 
conventional SHM systems, this approach offers superior 
flexibility, cost efficiency, and adaptability, providing a novel 
pathway for high-precision, automated displacement 
monitoring of hydraulic structures. 
Recent advances in computer vision have demonstrated its 
potential in SHM applications. such as the Harris corner 
detection method[22], the Lucas-Kanade (LK) optical flow 
matching algorithm[23], and template matching algorithms[24] 
are employed.For instance, Yoon et al. [23] combined Harris 
corner detection with the Lucas-Kanade (LK) optical flow 
algorithm to achieve high-precision displacement tracking in 
building structures. Brownjohn et al.[25] deployed a vision-
based monitoring system on the Humber Bridge, validating its 
engineering applicability. Bocian et al. [26] extracted modal 
parameters of cable-stayed bridges using template matching 
and sparse LK optical flow, enabling vibration characteristic 
analysis. Kohut et al.[27] applied digital image correlation 
(DIC) to measure structural deflection, providing intuitive 
deformation indicators. 
Algorithmic optimizations have further enhanced performance: 
Wu et al. [28] improved computational efficiency in template 
matching for real-time monitoring; Molina-Viedma[29] 
integrated phase-based motion magnification with digital 
image processing techniques [30] to identify the modal shapes 
of a cantilever beam, thereby overcoming the limitation of 
conventional digital image methods in accurately capturing 
high-frequency structural vibrations. Khuc et al. [22] refined 
Harris corner extraction with FREAK descriptors for sub-pixel 
matching accuracy. Guo et al. [31] leveraged projection 
correction to enhance displacement measurement under 
seismic conditions. 
Despite these advancements, machine vision-based monitoring 
for hydraulic structures—particularly gates and dams—
remains underdeveloped due to complex operational 
environments and stringent safety requirements. Existing 
systems still face data acquisition constraints, lacking a mature 
framework for deformation monitoring. 
This study proposes a non-contact intelligent monitoring 
method integrating machine vision with image super-resolution 
reconstruction to address the cost, precision, and environmental 
limitations of conventional techniques. The methodology 
employs artificial targets as fiducial markers, coupled with 
high-resolution imaging and higher-order image degradation 
modeling, to achieve precise displacement data acquisition. At 
the algorithmic level, we innovatively introduce a feature 
fusion attention mechanism to enhance the Real-ESRGAN 

network, specifically improving its contour detail 
reconstruction and texture recovery capabilities. This approach 
is expected to significantly elevate displacement calculation 
accuracy, offering a cost-effective, intelligent solution for 
hydraulic structure safety monitoring. 

2 DEEP LEARNING-BASED SUPER-RESOLUTION 
METHODS: OPTIMIZATION AND APPLICATION OF 
GENERATIVE ADVERSARIAL NETWORKS 

This study aims to transcend the limitations of conventional 
image resolution through deep learning techniques, thereby 
providing higher-precision machine vision measurement 
solutions for structural displacement monitoring in engineering 
applications.The following sections will focus on image super-
resolution algorithms based on Generative Adversarial 
Networks (GANs), offering in-depth analysis of their core 
principles, network architectures, and optimization strategies. 

 Image Super-Resolution Based on Generative 
Adversarial Networks 

The Super-Resolution Generative Adversarial Network 
(SRGAN) architecture primarily consists of two core modules 
engaged in adversarial competition: the Generator and the 
Discriminator, as illustrated in Figure 1. During model training, 
low-resolution (LR) images serve as input data to the generator 
network, which performs nonlinear transformations through 
deep neural networks to produce high-resolution (HR) images. 
Subsequently, both the generated super-resolution images and 
authentic HR images form the input sample space for the 
discriminator, which evaluates the authenticity probability of 
input samples through feature extraction and pattern 
recognition.Within this adversarial training framework, the 
generator optimizes its parameter space to minimize the 
distribution divergence between generated and real samples, 
aiming to produce super-resolution images with high visual 
fidelity. Concurrently, the discriminator continuously enhances 
its discriminative capability to maximize identification 
accuracy of generated samples. This minimax game process 
achieves dynamic equilibrium that ultimately enables the 
generator to produce super-resolution reconstruction results 
perceptually indistinguishable from genuine high-resolution 
images. 

Input Low-
Resolution Image Generator Generated Super-

Resolution Image

Real High-
Resolution Image

Discriminator

TRUE

FALSE

 
Figure 1. Architectural illustration of the Generative 

Adversarial Network framework 

 Image Super-Resolution Based on Generative 
Adversarial Networks 

The Enhanced Super-Resolution Generative Adversarial 
Network (ESRGAN) represents an advanced generative 
adversarial network for super-resolution that achieved state-of-
the-art performance in the field of image super-resolution at its 
time of introduction. This method primarily builds upon the 
aforementioned SRGAN architecture while implementing 
several key improvements. 
To enhance model stability and generalization capability while 
reducing computational complexity, ESRGAN eliminates all 
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batch normalization layers from the original SRGAN 
framework and replaces the basic residual blocks with 
Residual-in-Residual Dense Blocks (RRDBs). Each RRDB 
consists of three dense blocks, with each dense block 
comprising five convolutional layers. The RRDB architecture 
effectively combines the advantages of dense connections and 
multi-level residual networks while removing block 
normalization, thereby reducing computational overhead while 
simultaneously minimizing artifacts in generated images. 
ESRGAN further modifies the loss function to produce more 
realistic super-resolution outputs through two principal 
innovations: (1) replacing the original feature extractor with a 
VGG16 network, and (2) introducing a Relativistic average 
Discriminator (RaD) to substitute the conventional 
discriminator architecture.The BN-free residual block and 
Residual-in-Residual Dense Block (RRDB) structure are 
shown in Figure 2. 

 

 
Figure 2. The BN-free residual block and Residual-in-

Residual Dense Block (RRDB) structure 

 High-Order Image Degradation Model 
This study innovatively proposes a high-order degradation 
modeling approach that overcomes the limitations of traditional 
first-order models, enabling more accurate simulation of 
complex, multi-stage and multi-factor coupled image 
degradation processes in real-world scenarios. 
Through systematic analysis of interaction relationships among 
various degradation mechanisms, we extend the conventional 
first-order model to a more expressive second-order 
degradation model. This model achieves precise simulation of 
real degradation processes through the following innovative 
designs: 
Incorporation of temporal characteristics in the degradation 
process to simulate multi-stage degradation in practical 
imaging systems; 
Establishment of an adaptive coupling mechanism for 
degradation parameters to reflect nonlinear superposition 
effects of different degradation factors; 
Achievement of optimal balance between computational 
complexity and model accuracy through a carefully designed 
second-order approximation scheme. 
As illustrated in Figure 3, the constructed second-order 
degradation model generates low-resolution images that better 
approximate real-world scenarios through meticulously 
designed degradation path combinations. Training datasets 
synthesized based on this model effectively enhance the 
generalization capability of super-resolution networks under 
complex degradation conditions. Experimental results confirm 
that compared to networks trained with traditional degradation 
models, those trained with the second-order degradation model 

demonstrate significant advantages across various real-world 
test datasets. 
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Figure 3. Advanced-order image deterioration model 

 Generator Architecture 
The generator network begins with a primary feature extraction 
module, which takes the low-resolution (LR) image obtained 
from the high-order degradation model as input and extracts 
shallow features using a 3×3 convolutional layer. This process 
is formulated as: 

 Fprimary=Conv(ILR) (1)
 

The advanced feature extraction module, located at the core of 
the generator, serves as a bridge between shallow and deep 
representations. It extracts multi-level high-level features 
through stacked fundamental blocks for subsequent 
reconstruction. Based on the original Real-ESRGAN network, 
we improve this module by introducing:Coordinate Attention 
Residual-in-Residual Dense Blocks (CARRDBs),a feature 
fusion layer and a global spatial attention block. 
The CARRDB is an enhanced version of the original RRDB, 
incorporating a Coordinate Attention (CA) submodule after 
each Dense Block to refine local feature extraction. All 
activation functions use Leaky ReLU for faster convergence. 
The output of each CARRDB is fed into the next residual group 
for deeper feature extraction while being directly propagated to 
the feature fusion layer. 
The feature fusion layer aggregates all CARRDB outputs 
through channel-wise concatenation, followed by a 1×1 
convolution for dimensionality reduction: 

 𝐹𝐹𝐺𝐺𝐺𝐺 = 𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺1, … ,𝐺𝐺𝐷𝐷)) (2) 

The first component of this module is an upsampling layer that 
performs convolutional operations on Fhigh, followed by pixel 
shuffling to generate high-resolution feature maps from low-
resolution inputs. This process can be mathematically 
represented as: 

 𝐹𝐹𝑢𝑢𝑢𝑢 = 𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣(𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ)) (3)
 

Where：Fprimary denotes the primary output features, ( )Conv ⋅

represents the convolutional operation, ILR indicates the input 
low-resolution image, FGF corresponds to the advanced fused 
features with output size of， ( )GFFH ⋅  stands for the 
convolutional operation, ( )Concat ⋅ signifies the feature 
concatenation operation, Gi refers to the output features of the 
i-th CARRDB (Cascaded Residual-in-Residual Dense Block), 
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Fup represents the upsampling output result, Shuffle() denotes 
the pixel shuffle operation. 

 
Figure 4. The architectural configuration of the conventional 

Real-ESRGAN generator 

 Attention Mechanism 
Building upon the Real-ESRGAN framework, this study 
incorporates two attention mechanisms—Coordinate Attention 
(CA) and Spatial Attention (SA)—to enhance the network's 
image reconstruction performance.The implementation details 
of these attention mechanisms are elaborated below. 
The Coordinate Attention (CA) mechanism  captures long-
range dependencies along two spatial directions while 
preserving precise positional information. This capability 
facilitates improved extraction of fine-grained features. 
Compared to alternative attention mechanisms, CA exhibits 
advantages such as fewer parameters and easier 
implementation. A schematic diagram of its structure is 
presented in Figure 5. 
The coordinate attention mechanism is implemented through 
two distinct computational stages. Initially, channel attention is 
decomposed into dual one-dimensional feature encodings 
along the orthogonal X-axis and Y-axis directions, thereby 
addressing the inherent limitation of conventional spatial 
pooling methods in preserving precise positional information. 
For an input feature map of dimensions C×H×W, directional 
average pooling operations are independently performed along 
each spatial axis, generating orientation-aware feature 
representations ( )h

cz h  and ( )w
cz w  , as formally expressed. 

Subsequently, the coordinate attention weights are generated 
through the following procedure: The output features from both 
directional encodings undergo concatenation, followed by 
channel dimensionality reduction via a 1×1 convolutional layer 
and nonlinear activation. These operations yield the 
intermediate feature representation m , formally expressed as: 

 𝑚𝑚 = δ(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑧𝑧ℎ , 𝑧𝑧𝑤𝑤]) (4) 
The intermediate feature m is then partitioned into two separate 
feature tensors, mh and mw, which subsequently undergo 
channel-wise dimensionality expansion via independent 1×1 
convolutional layers. These expanded features are activated 
using the Sigmoid function to generate coordinate-level 
attention weights. This process is formally expressed as: 

 �
𝑔𝑔ℎ = 𝜎𝜎�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑚𝑚ℎ)�
𝑔𝑔𝑤𝑤 = 𝜎𝜎�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑤𝑤(𝑚𝑚𝑤𝑤)�

 (5) 

Where：gh and gw denote the attention weight maps along the 
X-axis and Y-axis directions, respectively. By applying these 
weights to the input features, the calibrated output feature map 
is obtained as: 

 𝑦𝑦𝑐𝑐(𝑖𝑖, 𝑗𝑗) = 𝑥𝑥𝑐𝑐(𝑖𝑖, 𝑗𝑗)*𝑔𝑔𝑐𝑐
ℎ(𝑖𝑖) ∗ 𝑔𝑔𝑐𝑐𝑤𝑤(𝑗𝑗) (6) 

Where： ( , )cx i j  and ( , )cy i j  denote the values at coordinate 
( , )i j  in channel c of the input and output feature maps, 
respectively. 

 
Figure 5. Architectural illustration of the Coordinate Attention 

module 

The spatial attention mechanism captures critical spatial 
information within feature maps by dynamically weighting 
different regions of the image based on their relative 
importance. This enhances the model's ability to focus on 
semantically significant spatial locations, thereby improving 
the effectiveness of super-resolution reconstruction. The 
fundamental architecture of this mechanism is illustrated in 
Figure 6. 

 
Figure 6. Architectural illustration of the Spatial Attention 

Module 

For the input feature map X, a 1×1 convolutional layer is first 
applied to perform channel dimensionality reduction, yielding 
the output feature map X ′ , as formally expressed by: 

 𝑋𝑋ʹ = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) (7) 

Subsequently, a 7×7 max-pooling operation with stride 3 is 
applied to X’, followed by two 3×3 convolutional layers to 
extract spatial attention features. To restore the feature map to 
its original dimensions, bilinear interpolation Flinear is 
employed for upsampling. The resultant features are then 
element-wise summed with X’, yielding the intermediate 
feature representation Xmid, as mathematically formulated 
below: 

 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋′)���� + 𝑋𝑋′

 (8) 

Finally, a 1×1 convolutional layer is employed to restore the 
channel dimensionality of the output features to match the input 
feature map, followed by activation via the Sigmoid function σ 
to generate the final spatial attention weights. These weights 
are then multiplied element-wise with the input feature map X 
to produce the output feature map Z, as mathematically 
formulated below: 
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 𝑍𝑍 = σ�𝐹𝐹(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)�⊙X (9) 

 Discriminator Architecture 
The high-order degradation model employed in this study 
exhibits significantly greater complexity than conventional 
low-order degradation models, inevitably leading to an orders-
of-magnitude increase in computational demands. To address 
the consequent challenges in discriminator design, we propose 
an innovative U-Net architecture with spectral normalization 
(SN) to replace traditional VGG-based discriminators (as 
illustrated in Figure 7). This architectural modification offers 
two key advantages: 
First, the spectral normalization technique effectively 
constrains the Lipschitz constant of network parameters, 
ensuring convergence within a predefined parameter space, 
thereby significantly enhancing training stability. Second, the 
U-Net's fully convolutional architecture enables pixel-wise 
discrimination, which maintains global semantic coherence 
while facilitating refined evaluation of local texture details, 
ultimately improving the visual realism of generated images. 
Experimental results demonstrate that the proposed design 
achieves substantial improvements in modeling fine-grained 
features without compromising overall image quality. 

 
Figure 7. Spectral Normalization-incorporated U-Net 

Structure 

3 CASE STUDIES AND ANALYSIS 

 System Configuration and Dataset Composition 
To address the lack of specialized image datasets for hydraulic 
structure displacement monitoring, this study employs a 
transfer learning strategy. The model is pretrained on DIV2K, 
a widely adopted benchmark dataset in computer vision. 
DIV2K contains 800 high-quality 2K-resolution images (see 
Figure 8), encompassing diverse texture features and edge 
structures. This dataset has been proven to exhibit strong 
generalization performance in image super-resolution tasks, 
ensuring that the model learns robust generic feature 
representations before fine-tuning for hydraulic structure-
specific scenarios. 

 

  
Figure 8. Representative high-resolution images from the 

DIV2K dataset 

The network training strategy of the proposed algorithm is 
largely consistent with the original Real-ESRGAN model, with 
minor adjustments made to certain training parameters. In 
terms of global settings, the HR patch size is set to 256, the 
batch size to 48, and the Adam optimizer is employed. The 
network training process consists of two distinct phases. 
Initially, a Real-ESRNet model is trained using the L1 loss 
function based on a pre-trained ESRGAN model, with the 
iteration number set to 1×106 and the learning rate to 2×10-4. 
Subsequently, the trained Real-ESRNet model is utilized as the 
generator initialization for the enhanced Real-ESRGAN, which 
is further trained with a combination of three loss functions: L1 
loss, perceptual loss, and GAN loss. In this phase, the iteration 
number is set to 4×104 and the learning rate to 1×10-4. 

 Image Super-Resolution Reconstruction Quality 
Evaluation 

The proposed algorithm is trained to achieve a 4× super-
resolution model, meaning it reconstructs input images at four 
times their original resolution. To evaluate the algorithm's 
performance, high-resolution (HR) images were first captured 
using a high-definition camera in several small- and medium-
scale hydraulic engineering machine vision displacement 
monitoring scenarios. These images served as the reference HR 
images. Artificial targets within the images were cropped and 
selected as regions of interest (ROIs) for super-resolution 
reconstruction. The cropped images were then subjected to a 
high-order degradation process to generate low-resolution (LR) 
images. Subsequently, the trained model was applied to 
perform 4× upsampling, producing super-resolution (SR) 
reconstructed images. 
To assess the quality of the super-resolved images, two metrics 
were employed: Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM). The definitions of these 
metrics are as follows: 
Peak Signal-to-Noise Ratio (PSNR) measures the ratio between 
the maximum possible signal power and the mean squared error 
(noise power). A higher PSNR value indicates less distortion 
and better image quality, with the unit expressed in decibels 
(dB). 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑙𝑙𝑙𝑙 𝐹𝐹2

𝑀𝑀𝑀𝑀𝑀𝑀
 (10) 

Where: F denotes the maximum grayscale value of the image, 
MSE represents the mean squared error of the image. 
The Structural Similarity Index (SSIM) provides a 
comprehensive quality assessment by evaluating three key 
attributes: luminance, contrast, and structural fidelity. The 
SSIM metric is bounded within the range [0, 1], with higher 
values indicating better preservation of image integrity and 
lower distortion. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑙𝑙(𝑥𝑥,𝑦𝑦)𝛼𝛼 ∙ 𝑐𝑐(𝑥𝑥,𝑦𝑦)𝛽𝛽 ∙ 𝑠𝑠(𝑥𝑥,𝑦𝑦)𝛾𝛾 (11) 

Where： l(x,y) 、 c(x,y) 、 s(x,y) represent the luminance, 
contrast, and structural measure functions, respectively; 
α β γ、 、  denotes the adjustment parameter. 
To validate the superiority of the proposed method, five super-
resolution approaches - BIC, SRCNN, SRGAN, SRFBN, and 
Real-ESRGAN - were applied to the LR images for 
comparative performance evaluation, with the results 
illustrated in Figure 9. 
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(a) Scenario 1: Machine Vision Surveillance Imagery of a 
Control Gate 

 
(b) Scenario 2: Machine Vision Surveillance Imagery of a 

Reservoir 

 
(c) Scenario 3: Machine Vision Monitoring Image of a Ship 

Lock 

 
(d) Scenario 4: Machine Vision Monitoring Image of a 

Reservoir1 

Figure 9. Super-Resolution Reconstruction Results for the 
Four Scenarios 

The figure provides an intuitive comparison of the image 
reconstruction performance among different super-resolution 
methods. Among them, the interpolation-based BIC method 
performs poorly, merely enlarging the original low-resolution 
image without effectively restoring the texture and edge details 
of the target in the image. In contrast, several deep learning-
based methods yield significantly better results, though with 
notable variations in performance. While the four other 
algorithms (excluding the proposed method) can reconstruct 
the main contours of the image reasonably well, they still fall 
short in recovering fine textures and edge details.  
By comparison, the proposed algorithm demonstrates the best 
performance. When compared to the original high-resolution 
(HR) image, the super-resolved (SR) image generated by our 
method achieves a more realistic restoration in terms of both 
overall visual quality and fine texture details. Moreover, owing 
to the improvements in feature fusion and attention 
mechanisms, our approach delivers more refined edge and 
contour reconstruction.  
To further quantify the performance differences, the PSNR and 
SSIM evaluation curves of images reconstructed by different 

super-resolution algorithms are plotted in Figure 10. The results 
clearly indicate significant disparities among the algorithms, 
with the proposed method exhibiting superior performance in 
both metrics. 

 

(a) Image Quality Assessment for Scenario 1 

 
(b) Image Quality Assessment for Scenario 2 

 
(c) Image Quality Assessment for Scenario 3 
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(d) Image Quality Assessment for Scenario 4 

Figure 10. Quality validation of super-resolution reconstructed 
images across four distinct scenarios 

 Verification of Displacement Monitoring Accuracy 
Improvement 

The purpose of image super-resolution reconstruction is to 
compensate for insufficient resolution from an algorithmic 
perspective when the hardware capabilities of machine vision 
cameras are limited or the available image resolution is low, 
thereby improving displacement monitoring accuracy. 
Therefore, it is necessary to validate the effectiveness of image 
super-resolution through machine vision displacement 
monitoring experiments.   
To accurately quantify and analyze the improvement in 
displacement monitoring accuracy, this study selects an open-
source experimental dataset for investigation. In 2018, the 
University of California, San Diego conducted a series of shake 
table tests to study the lateral response characteristics of cold-
formed steel frame building structures. The related design 
schemes, test reports, videos, and data were all publicly 
released. This experiment provides comprehensive video 
recordings and measured data from various sensors, making it 
highly suitable for verifying displacement monitoring accuracy 
in this study.   
For this research, a specific shear wall specimen from the test 
series was selected, and its dynamic test video data under 
seismic loading were analyzed. The vibration input was scaled 
from the recorded ground motion of the 1994 Northridge 
earthquake in Los Angeles, USA, ensuring the specimen 
remained elastic throughout the test. The experimental setup of 
the shake table test is illustrated in Figure 11. Specifically:   
Displacement sensors were installed on the side of the load-
transfer beam at the top of the specimen to measure lateral 
displacements induced by horizontal loading.   
A machine vision camera** was positioned directly in front of 
the specimen to record the entire dynamic testing process.   
This configuration allows for a comparative evaluation of 
displacement measurements obtained from traditional sensors 
and machine vision-based methods, facilitating an assessment 
of the accuracy enhancement achieved through super-
resolution reconstruction. 

 
Figure 11. Overview of the Shaking Table Field Test 

The checkerboard-pattern artificial target installed on the load-
transfer beam at the top of the specimen served as the region of 
interest (ROI) for machine vision-based displacement 
monitoring. The specific geometry and dimensions of this 
target are illustrated in Figure 12.The sensor-measured 
displacement data recorded during the vibration test are 
presented in Figure 13. 

 
Figure 12. Shape and Dimensions of the Artificial Target 

 
(a) Accelerometer measurement data 

 
(b) Displacement sensor measurements 

Figure 13. Experimental sensor data recorded during vibration 
testing 

During the experimental testing process, the images were 
captured at close range using a high-quality camera, resulting 
in high-resolution footage that meets the requirements of 
machine vision-based displacement monitoring under normal 
conditions. Therefore, the actual captured monitoring images 
were treated as high-resolution (HR) images, and displacement 
monitoring was performed on the HR image sequence. The 
tracking target was a checkerboard-pattern artificial target, and 
the calculated results are presented in the following figures and 
tables. The results demonstrate that the machine vision-based 
displacement monitoring using high-resolution images 
achieved high accuracy, closely matching the measured 
displacement values from sensors, thereby validating the 
effectiveness of the machine vision approach. 
To evaluate the accuracy improvement effects of different 
super-resolution methods, the original HR images (120×120 
pixels) of the target region were first degraded according to the 
higher-order degradation model proposed in this study, 
generating corresponding low-resolution (LR) images (30×30 
pixels) as the baseline LR images for the accuracy enhancement 
validation experiment (all super-resolution algorithms were 
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applied to these LR images for enhancement). Subsequently, 
the bicubic interpolation (BIC) method was employed to 
perform 4× upsampling super-resolution reconstruction on the 
LR images, producing corresponding BIC super-resolution 
(SR) images (120×120 pixels) for comparative analysis with 
other super-resolution algorithms. The entire process is 
illustrated in Figure 14 below. 

 
Figure 14. Processing results of artificial target images 

For the low-resolution (LR) images, the proposed algorithm in 
this study was employed to perform super-resolution (SR) 
reconstruction, and the results were compared with those of 
other SR methods, as illustrated in the following figure. As 
shown in Figure 15, the visual differences among the outputs 
of different methods can be easily observed. Among them, the 
BIC and SRCNN super-resolution algorithms exhibited the 
poorest performance, with noticeable blurring visible to the 
naked eye. The other four algorithms achieved better 
reconstruction results, but the proposed method outperformed 
them all, achieving the highest scores in both PSNR and SSIM 
metrics. When comparing the super-resolved images generated 
by the proposed method with those obtained from the original 
Real-ESRGAN (before improvements), it is evident that the 
proposed method produces images with sharper edges and 
more detailed textures, demonstrating the effectiveness of the 
introduced feature fusion and attention mechanism 
enhancements. 

 
Figure 15. Super-resolution reconstruction results of the target 

region 

To further analyze the quality improvement effects of image 
super-resolution, corner detection was performed on different 
types of images using OpenCV’s goodFeaturesToTrack 
detector, followed by cornerSubPix refinement for sub-pixel 
accuracy. All detection parameters remained consistent 
throughout the process, and the resulting corner detection 
outcomes are illustrated in Figure 16. Given the noticeable 
differences in performance among the algorithms, the 
superiority of each method can be clearly determined based on 
the number and positional accuracy of detected corners. 
Taking the original high-resolution (HR) image as a reference, 
a total of 16 inner checkerboard corners and 5 outer corners 
were detected, with their positions precisely aligned to the 
edges and intersections of the checkerboard pattern. The 

comparison among different super-resolution algorithms 
revealed significant discrepancies. For instance, BIC and 
SRCNN exhibited evident corner misalignment and missing 
detections, failing to fully capture the expected number of 
corners. In contrast, the proposed method demonstrated the best 
performance, detecting the same number of corners as the HR 
image while maintaining accurate positional correspondence, 
further validating its effectiveness. 

 
Figure 16. Corner detection results for images reconstructed 

using different super-resolution methods 

Subsequently, target tracking and displacement calculation 
were performed on the reconstructed image sequences obtained 
from the aforementioned super-resolution methods, yielding 
the corresponding displacement time-history curves for each 
method, as illustrated in Figure 17. The results demonstrate that 
the low-resolution (LR) images without any processing 
exhibited degraded tracking performance due to substantial loss 
of effective information and noise contamination, leading to 
unsatisfactory displacement monitoring results. Specifically, 
the displacement curve of the LR images displayed significant 
fluctuations and drift phenomena, particularly in the 
intermediate segment with larger vibration amplitudes (as 
clearly observed in the zoomed-in subplot). The resulting errors 
substantially exceeded the acceptable threshold, rendering the 
displacement monitoring results unreliable. 
In contrast, the six curves derived from super-resolution-
processed images exhibited significantly improved 
performance, mitigating the accuracy degradation caused by 
image resolution reduction to varying degrees. Among these, 
the Bicubic Interpolation (BIC) algorithm demonstrated 
relatively inferior performance, while the proposed feature-
fusion-enhanced Real-ESRGAN algorithm with attention 
mechanisms achieved the best results. The displacement curve 
generated by the proposed method closely aligned with both the 
sensor-measured displacement curve and the vision-based 
measurement curve obtained from high-resolution (HR) 
images, outperforming even the original Real-ESRGAN 
algorithm. This comparative analysis further validates that the 
proposed model improvements contribute effectively to 
enhancing displacement monitoring accuracy. 
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Figure 17. Vibration displacement monitoring results using 
different super-resolution methods 

Finally, four evaluation metrics—Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), Root Mean 
Square Error (RMSE), and the Coefficient of Determination 
(R²)—were employed for further quantitative assessment. The 
corresponding residual box plots and evaluation metric radar 
charts are presented in Table 1 and Figure 18, respectively. The 
results demonstrate that the proposed method consistently 
outperformed all other approaches across all evaluation 
metrics, achieving an R² value of 0.9975, which is remarkably 
close to the monitoring results obtained from the high-
resolution (HR) images. Although the proposed method cannot 
fully compensate for the degradation caused by image 
downsampling, it significantly mitigates the impact of 
resolution reduction compared to other methods, exhibiting 
superior performance. 
The residual box plots reveal that the monitoring results based 
on HR images exhibited the highest accuracy, with residuals 
fluctuating only within a very narrow range. Considering that 
this case involves large-amplitude vibration displacement, 
which inherently introduces error drift in target tracking, the 
BIC super-resolution algorithm displayed the largest residual 
fluctuations, while the residuals of other algorithms also 
exceeded 5 mm. In contrast, the proposed method effectively 
confined the residuals within 5 mm, demonstrating a substantial 
improvement in monitoring accuracy over competing 
approaches. 

Table 1 Displacement monitoring accuracy evaluation across 
different super-resolution methods 

Test Category MAE MAP
E RMSE R2 

Visual HR 0.101
6 

0.316
5 

0.233
0 

0.999
8 

Visual LR 3.822
2 

0.495
9 

6.697
7 

0.918
2 

BIC 1.954
9 

0.416
5 

3.355
9 

0.972
1 

SRCNN 1.488
2 

0.393
0 

2.522
1 

0.982
8 

SRGAN 1.114
9 

0.373
0 

1.856
8 

0.991
0 

SRFBN 0.928
3 

0.362
6 

1.525
4 

0.993
0 

Real-ESRGAN 0.741
8 

0.351
9 

1.195
9 

0.995
5 

Proposed 
Method 

0.555
2 

0.340
9 

0.870
1 

0.997
5 

 

Figure 18. Error evaluation visualization across different 
super-resolution methods 

4 CONCLUSION 
Departing from conventional approaches that rely on hardware 
upgrades (e.g., higher-resolution cameras, precision optical 
lenses) or subpixel algorithm refinement, this research 
innovatively explores image super-resolution (SR) 
reconstruction based on deep learning, proposing a software-
algorithm-level solution for breakthrough accuracy 
enhancement in displacement monitoring. The key research 
contributions and findings are systematically summarized as 
follows: 
A thorough analysis of image degradation processes and super-
resolution reconstruction principles was conducted. An SR 
reconstruction model was innovatively developed using a 
generative adversarial network (GAN) architecture. By 
establishing a multi-factor coupled higher-order degradation 
model, the study accurately simulates complex imaging 
processes in real-world engineering environments, 
significantly improving the algorithm's adaptability to various 
degraded images. 
The study innovatively integrates Coordinate Attention (CA) 
and Spatial Attention (SA) mechanisms into the Real-
ESRGAN framework, constructing a feature fusion attention 
network. The CA mechanism enables channel-space feature co-
optimization, while the SA mechanism enhances the 
representation of critical regions. Without modifying hardware 
configurations, this approach significantly improves target 
feature discriminability, providing a reliable foundation for 
high-precision displacement monitoring. 
The proposed method was rigorously validated through 
engineering case studies, assessing both image quality metrics 
and displacement monitoring accuracy. Comparative 
experiments with five state-of-the-art algorithms demonstrate 
the superior performance of the proposed method, which 
effectively restores edge and contour details in reconstructed 
images. Moreover, the displacement monitoring results derived 
from the SR-enhanced image sequences exhibit significantly 
improved accuracy, offering an innovative technical pathway 
to overcome the precision limitations in machine vision-based 
monitoring of hydraulic structures. 

REFERENCES 
[1] Zhao, Y., Wang, H., Ma, H., et al. (2022). Construction concept 

of China's "Double T" water network economic pattern. Journal 
of Hydraulic Engineering, 53 (11), 1271-1279, 1290. 

[2] Wang, J., Zhao, H., & Ye, Y. (2018). Smart water network 
engineering: The engine driving China’s water governance 
modernization. Journal of Hydraulic Engineering, 49(9), 1148–
1157. 

[3] YANG L, SU H, WEN Z. Improved PLS and PSO methods-
based back analysis for elastic modulus of dam[J]. Advances in 
Engineering Software, 2019, 131: 205–216. 

[4] Ban, Y., Liu, Y., Wang, N., et al. (2024). A review of 
measurement methods for the main reflector surface of radio 
telescope antennas. Scientia Sinica: Physica, Mechanica & 
Astronomica, 54(1), 23–37. 

[5] WANG X, ZHAO Q, XI R, et al. Review of bridge structural 
health monitoring based on GNSS: from displacement 
monitoring to dynamic characteristic identification[J]. IEEE 
Access, 2021, 9: 80043–80065. 



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-057 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 372 

[6] Liu, Y. (2023). Research on construction monitoring technology 
for the swivel bridge of the overpass crossing Yanshi Railway 
[Master's thesis, North China University of Technology]. 

[7] Li, G. (2023). Thoroughly implement the spirit of the 20th CPC 
National Congress and solidly promote high-quality 
development of water conservancy in the new stage: Speech at 
the 2023 National Water Conservancy Work Conference. China 
Water Power & Electrification, 2023(2), 1–11. 

[8] Liu Z.P., Fu H., Guo X.L., et al. 2017. Integrated dual-
frequency radar measurement system for ice-water conditions. 
Journal of Hydraulic Engineering 48(11): 1341-1347. 

[9] ZHOU Q, LI Q-S, HAN X-L, et al. Improvement of GPS 
displacement measurement accuracy for high-rise buildings by 
machine learning[J]. Journal of Building Engineering, 2023, 78: 
107581. 

[10] NURKOWSKI J, NOWAKOWSKI A. Inductive sensor for 
measuring linear displacement and velocity – Version with 
stationary magnetic core[J]. Measurement, 2023, 222: 113675. 

[11] HAN J, XIONG G, LIU J. Detection and analysis of pavement-
section based on laser displacement sensor[J]. Sensors, 2023, 
23(15): 6758. 

[12] SUH Y S. Laser sensors for displacement, distance and 
position[J]. Sensors, 2019, 19(8): 1924. 

[13] LIU T, LEI Y, MAO Y. Computer vision-based structural 
displacement monitoring and modal identification with subpixel 
localization refinement[J]. T.-C. Huynh. Advances in Civil 
Engineering, 2022, 2022: 1–11. 

[14] LUO L, FENG M Q, WU Z Y. Robust vision sensor for multi-
point displacement monitoring of bridges in the field[J]. 
Engineering Structures, 2018, 163: 255–266. 

[15] KARSZNIA K, OSADA E, MUSZYŃSKI Z. Real-time 
adjustment and spatial data integration algorithms combining 
total station and GNSS surveys with an earth gravity model[J]. 
Applied Sciences, 2023, 13(16): 9380. 

[16] ZHOU J, HE L, LUO H. Real-time positioning method for uavs 
in complex structural health monitoring scenarios[J]. Drones, 
2023, 7(3): 212. 

[17] LI X, ZHONG B, LI J, et al. Inversion of GNSS vertical 
displacements for terrestrial water storage changes using slepian 
basis functions[J]. Earth and Space Science, 2023, 10(2): 
e2022EA002608. 

[18] CAO S, LU X, SHEN S. GVINS: tightly coupled gnss–visual–
inertial fusion for smooth and consistent state estimation[J]. 
IEEE Transactions on Robotics, 2022, 38(4): 2004–2021. 

[19] KIM K-H, JUNG H-K. Development of a remote displacement 
measuring laser system for bridge inspection[J]. Sensors, 2022, 
22(5): 1963. 

[20] PAZIEWSKI J, STEPNIAK K, SIERADZKI R, et al. Dynamic 
displacement monitoring by integrating high-rate GNSS and 
accelerometer: on the possibility of downsampling GNSS data 
at reference stations[J]. GPS Solutions, 2023, 27(3): 157. 

[21] FA G, LI K, CAO T. Improving vibration monitoring of 
structures using theodolites with built-in image sensors[J]. 
International Journal of Structural Stability and Dynamics, 
2023, 23(11): 2350125. 

[22] KHUC T, CATBAS F N. Completely contactless structural 
health monitoring of real-life structures using cameras and 
computer vision: structural health monitoring using computer 
vision[J]. Structural Control and Health Monitoring, 2017, 
24(1): e1852. 

[23] YOON H, ELANWAR H, CHOI H, ET al. Target-free approach 
for vision-based structural system identification using 
consumer-grade cameras: Target-Free Vision-based structural 
system identification[J]. Structural Control and Health 
Monitoring, 2016, 23(12): 1405–1416. 

[24] DONG C Z, YE X W, JIN T. Identification of structural 
dynamic characteristics based on machine vision technology[J]. 
Measurement, 2018, 126: 405–416. 

[25] BROWNJOHN J M W, XU Y, HESTER D. Vision-Based 
bridege deformation monitoring[J]. Frontiers in Built 
Environment, 2017(3): 23. 

[26] BOCIAN M, NIKITAS N, KALYBEK M. Dynamic 
performance verification of the Rędziński Bridge using portable 
camera-based vibration monitoring systems.[J]. Archives of 
Civil and Mechanical Engineering, 2023(23): 1–19. 

[27] KOHUT P, HOLAK K, MARTOWICz A, et al. Experimental 
assessment of rectification algorithm in vision-based deflection 
measurement system[J]. Nondestructive Testing and Evaluation, 
2017, 32(2): 200–226. 

[28] WU T, TANG L, SHAO S, et al. Cost-effective, vision-based 
multi-target tracking approach for structural health 
monitoring[J]. Measurement Science and Technology, 2021, 
32(12): 125116. 

[29] MOLINA-VIEDMA A J, FELIPE-SESÉ L, LÓPEZ-ALBA E, 
et al. High frequency mode shapes characterisation using digital 
image correlation and phase-based motion magnification[J]. 
Mechanical Systems and Signal Processing, 2018, 102: 245–
261. 

[30] Wang J., Huang Y., Deng Y., et al. 2021. Study on fracture 
characteristics of Yellow River ice based on digital image 
correlation method. Journal of Hydraulic Engineering 52(9): 
1036-1046. 

[31] GUO J, XIANG Y, FUJITA K, et al. Vision-Based Building 
Seismic Displacement Measurement by Stratification of 
Projective Rectification Using Lines[J]. Sensors, 2020, 20(20): 
5775. 


	1 Introduction
	2 Deep Learning-Based Super-Resolution Methods: Optimization and Application of Generative Adversarial Networks
	2.1 Image Super-Resolution Based on Generative Adversarial Networks
	2.2 Image Super-Resolution Based on Generative Adversarial Networks
	2.3 High-Order Image Degradation Model
	2.4 Generator Architecture
	2.5 Attention Mechanism
	2.6 Discriminator Architecture

	3 Case Studies and Analysis
	3.1 System Configuration and Dataset Composition
	3.2 Image Super-Resolution Reconstruction Quality Evaluation
	3.3 Verification of Displacement Monitoring Accuracy Improvement

	4 Conclusion
	References

