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ABSTRACT: This study presents an integrated intelligent framework for bridge inspection that synergizes Mixed Reality (MR) 
technology, deep learning-based object detection, and domain-specific engineering knowledge. Utilizing Microsoft HoloLens 2 
as the hardware platform, the system captures real-time 3D bridge surface imagery and deploys the optimized YOLOv11n-ZY 
model—enhanced with a ZZ convolutional module, YY attention mechanism, and SPPF-LSKA fusion module—to automatically 
detect and classify multi-category defects including cracks, corrosion, and spalling. Detection results are visualized within an MR 
interface and dynamically assessed through embedded expert knowledge. Validated on a custom dataset containing 4,176 images 
of 12 defect types under complex backgrounds, the proposed model achieves 40.3% mAP50 at 60 FPS with only 2.87 million 
parameters, outperforming existing YOLO variants. Implementation at the case study bridge  demonstrates real-time defect 
localization, 3D model updating, and closed-loop maintenance functionality. The framework advances intelligent infrastructure 
management by establishing a scalable pipeline for accurate defect assessment and lifecycle-oriented bridge maintenance. 

KEY WORDS: HoloLens 2; Object detection; YOLOv11; Visualization interface; Intelligent bridge operation and maintenance. 

 

1 INTRODUCTION 
As a critical component of modern transportation 

infrastructure, bridges are essential for maintaining socio-
economic stability and ensuring public safety [1]. 
Consequently, their structural safety, stability, and health status 
are of paramount importance.  

At present, traditional inspection methods, while capable of 
detecting visible defects such as cracks and corrosion, are 
constrained by inefficiency, heavy dependence on specialized 
knowledge, and challenges in handling complex environments, 
limiting their application in modern bridge inspection [2]. 
However, with the rapid development of computer vision 
technologies, deep learning-based object detection algorithms 
(e.g., YOLO, Faster R-CNN) have gradually been introduced 
into industrial defect detection, achieving significant 
improvements in efficiency and accuracy. 

In the field of bridge defect detection [3], Mixed Reality 
(MR) technology has also provided novel solutions to 
traditional inspection approaches. Utilizing devices like 
HoloLens 2, 3D models can be projected into the real world, 
enabling engineering personnel to observe bridge surfaces from 
multiple angles and dimensions, thereby enhancing defect 
identification accuracy. For instance, certain Chinese bridge 
institutes have integrated 3D laser scanning with BIM 
technology to control modeling errors within ±2mm [4]; 
however, algorithm robustness in complex environments still 
requires further improvement. 

The integration of emerging technologies such as deep 
learning, augmented reality (AR), and mixed reality (MR) has 
rendered bridge defect detection more efficient, precise, and 
intelligent [5]. At the same time, machine learning approaches 
have been integrated for defect detection in concrete structures 

in the past few years [6]. Nonetheless, adaptability to complex 
environments and capabilities for lifecycle management still 
need enhancement to better meet practical operational 
demands. 

This study aims to develop an intelligent bridge defect 
detection system by integrating multiple technologies. The 
research focuses on two main objectives.  

First, HoloLens 2 is leveraged to develop a mixed reality 
system that enables 3D visualization, virtual-physical 
integration, and multi-dimensional defect observation.  

Second, the system combines real-time scanning data 
processed by YOLOv11 with pre-constructed 3D virtual 
models to create an innovative bridge inspection framework 
supporting long-term intelligent operation and maintenance. 

 

2 UNITY-BASED 3D BRIDGE MODEL AND 
HOLOLENS 2 DEPLOYMENT 

 Case Study Bridge Information 
This study selects the Wenxi Bridge (Figure 1) in Suijiang 

New County, Yunnan Province, China,as the exemplar bridge 
for the visualized intelligent bridge inspection platform. By 
leveraging the 3D scanning capabilities of HoloLens 2, 
comprehensive structural information of the bridge was 
collected. Through comparison with preliminary design 
drawings, discrepancies between the actual bridge structure and 
the original plans—caused by on-site construction adjustments 
or undocumented modifications—were effectively resolved, 
enabling the successful creation of a 3D model of the Wenxi 
Bridge bridge in Unity. 
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Figure 1. Case study bridge - Wenxi Bridge. 

 
The deck width of the case study Bridge is 9 m + 2×1.5 m 

(pedestrian walkways). The superstructure comprises 9×30 m 
prestressed concrete simply supported T-beams arranged in 
three-span continuous units. The substructure includes column 
piers, U-shaped abutments, and ribbed abutments, with 
foundation types consisting of spread foundations and pile 
foundations. 

 

 Characteristics of Mixed Reality (MR) Technology and 
HoloLens 2 

Mixed Reality (MR) technology digitizes physical 
environments and integrates them with virtual objects to create 
a visualized interactive space where physical and virtual 
elements coexist. Compared to Virtual Reality (VR) and 
Augmented Reality (AR), MR not only superimposes virtual 
entities into real environments but also achieves precise spatial 
mapping and real-time interaction between virtual objects and 
physical spaces, forming a spatially consistent mixed reality 
environment [7].  

Microsoft HoloLens 2 (Figure 2), the second-generation MR 
device released by Microsoft, demonstrates technical 
advantages in bridge defect detection [8].  
 

 
Figure 2. HoloLens 2. 

 
 
 
 
 

 Unity Model Deployment on HoloLens 2 
The mixed reality (MR) application development for 

HoloLens 2 is based on the following software and toolkits: 
Windows 10 SDK, Visual Studio 2023, HoloLens 2 Emulator, 
Unity 2022.3.53f1c1, Unity Hub, and MRTK 2.8. To ensure 
efficient development and deployment, the hardware 
configuration listed in Table 1 was adopted: 
 

Table 1. Computer Hardware Configuration. 

CPU GPU RAM Storage Display 
i9-
14900HX 

RTX 
4070 

64GB 3TB 
SSD 

2560x1600 
/ 240Hz / 
18-inch 

 
Deployment Workflow is described as follows. "Developer 

Mode" on both the host computer and HoloLens 2 within the 
Windows operating system is firstly enabled. And the 
following procedures are adopted.  

 
(1)Project Creation: 
Create a new project via the Unity Hub integrated 

development environment and access the Build Settings 
interface. Select Universal Windows Platform (UWP) and 
execute the "Switch Platform" operation. This process 
automatically performs platform compatibility checks and 
restructures project resource formats through the underlying 
engine to meet UWP-specific technical requirements. 

 
(2)MR Toolkit (MRTK) Integration: 
Import the Mixed Reality Toolkit using the Mixed Reality 

Feature Tool (MRFT). 
The core principle involves modifying 

the manifestation configuration file to guide the Unity engine 
in correctly identifying and loading MRTK modules. Upon 
returning to the Unity environment, the system automatically 
initiates dependency detection and resource loading. Compared 
to traditional methods, MRFT integration effectively avoids 
dependency conflicts [7], significantly reducing the complexity 
of managing mixed reality toolchains. 

 
(3)Unity Project Configuration: 
As mixed reality applications fall under the extended reality 

(XR) domain, activate Unity’s built-in XR framework. After 
configuring the Player module, navigate to the XR Plug-in 
Management section and install the plugin management 
component. Enable the "Initialize XR on Startup" parameter 
and activate "Windows Mixed Reality" to ensure precise 
hardware-software compatibility, laying the foundation for 
subsequent MR development. 

 
(4)Unity Project Export: 
Select the target scene file and configure parameters: (1) Set 

device compatibility to "Any Device" for universal platform 
support. (2) Select the x64 architecture for optimal runtime 
efficiency. (3) Optimize auxiliary parameters based on specific 
development requirements. Initiate the conversion of the Unity 
project to a Visual Studio solution via the Build button, 
establishing a standardized framework for application 
compilation and deployment. 
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(5)Deployment to HoloLens 2 Device: 
Open the completed project in Visual Studio 2023 and 

proceed to the deployment parameter configuration phase. 
Simultaneously, ensure that the host development environment 
and the target device are connected to the same wired or 
wireless local area network (LAN), with sufficient network 
bandwidth to meet real-time transmission requirements for 
application image files, thereby guaranteeing the validity of the 
deployment process. 

 
Within the Visual Studio integrated development 

environment (IDE), sequentially perform three critical 
configurations:(1) Program compilation using Debug mode;(2) 
Selection of the ARM64 instruction set architecture to align 

with the target device’s hardware specifications;(3) 
Configuration of remote computer deployment options. 

Subsequently, input the target device’s network IP address 
in the debugging parameters module and set the authentication 
protocol to Universal (Unencrypted) mode. After completing 
the above parameter configurations, initiate the compile-deploy 
automation process via the Start Debugging command.  

This mechanism synchronously executes the generation of 
application binary files, their transmission, and device-side 
loading, establishing a complete end-to-end deployment 
pipeline. Through the above workflow, the Unity-based 3D 
model of the case study Bridge was successfully deployed on 
HoloLens 2, achieving 3D visualization as demonstrated in 
Figure 3. 

 
 

 
Figure 3. 3D Model layout diagram of case study Bridge. 

 
To accurately simulate defect morphologies under real-

world conditions and enable interactive analysis of damage 
data within the HoloLens 2 digital model, high-fidelity defect 
simulations were integrated into the case study bridge model. 
Leveraging HoloLens 2’s augmented reality system, 3D defect 
visualization and spatial mapping were implemented [10]. This 
framework, combined with depth perception and multi-source 
data fusion algorithms, supports three critical technical 
requirements: on-site auxiliary defect diagnosis, remote 
collaborative structural assessment by experts, and dynamic 
coupling analysis of multidimensional human-machine 
interaction  

 

3 DATASET CONFIGURATION 
This work referenced and adapted the data collection 

standards of the VisDrone2021 [11] dataset, employing 
methods including web crawling, video frame extraction, and 
filtering of multiple publicly available bridge defect datasets 
[12]. Simultaneously, to enhance the model’s generalization 
capability and prevent overfitting, data augmentation 
techniques—such as random rotation [13], random occlusion, 
color jittering, Gaussian blur, and noise addition—were applied 
to the dataset [14], as shown in Figure 4.  
 
 
 
 
 

 

 
Figure 4. Defects on the bridge. 
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The experimental dataset for this study was ultimately 
compiled and generated, containing 4,176 images. Label files 
for the dataset were created using the labelimg tool, with a total 
of 32,201 annotated bounding boxes. These annotations 
encompass bridge defect information across multiple 
categories, including exposed reinforcement, spalling, 
corrosion, water seepage in wet joints, mold growth, and 
cracks, as illustrated in Figure 5. The dataset aligns with the 
simulated defect conditions previously generated on the Unity 
bridge model. 
 

 
Figure 5. Spalling & Exposed reinforcement. 

 

Distinct from traditional bridge defect datasets that focus on 
one or several common types of surface-level defects, the self-
constructed dataset employed in this study—"Small-Target 
Detection Dataset for Multi-Category Bridge Defects under 
Complex Background Interference"—simultaneously 
incorporates 12 bridge defect types, including those with low 
occurrence frequencies. To replicate real-world inspection 
scenarios and simulate the scanning and observational 
perspectives of inspectors wearing HoloLens 2 for subsequent 
comparative analysis and digital model superimposition tasks, 
no image or semantic segmentation [15] is performed on bridge 
defects in this dataset, preserving full panoramic small-target 
detection and recognition. Furthermore, unlike conventional 
small-target datasets, bridge defect images in real-world 
scenarios exhibit challenges such as blurred backgrounds, high 
inter-defect similarity, strong deceptive features, and extremely 

small defect targets. These characteristics lead to core technical 
detection challenges, including weak multi-scale target 
sensitivity, significant complex background interference, 
insufficient fine-grained feature representation, and high inter-
category similarity. Through the aforementioned diverse image 
augmentation methods, the dataset is further enriched and 
expanded to enhance robustness. The highly challenging 
"Small-Target Detection Dataset for Multi-Category Bridge 
Defects under Complex Background Interference" imposes 
greater demands on subsequent target detection and recognition 
tasks. 
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4 YOLOV11 ALGORITHM 

 YOLOv11 Model Introduction and Advantages 
Ultralytics recently released YOLOv11, designed as a detection 
model achieving state-of-the-art (SOTA) performance across 
multiple tasks. The architecture of previous models has been 
optimized, enabling YOLOv11 to attain cutting-edge 

performance in diverse tasks (object detection, segmentation, 
pose estimation). The overall network architecture is illustrated 
in Figure 6.  

 
 
 
 

 

 
Figure 6. Overall network architecture diagram of YOLOv11. 

 
 
 
Compared to YOLOv8, YOLOv11 reduces parameters by 

22% on the COCO dataset while achieving higher mean 
Average Precision (mAP), as shown in Figure 7. 
Simultaneously, its inference speed is approximately 2% faster 

than YOLOv10, reaching 60 frames per second (FPS), making 
it one of the fastest object detection models and providing 
enhanced support for real-time applications. 
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Figure 7. Performance comparison diagram between YOLOv11 and previous versions. 

 
 

This study innovatively proposes the YOLOv11n-ZY model, 
an optimized and improved framework based on YOLOv11, to 
address core technical challenges in bridge defect detection 
tasks, including weak multi-scale target sensitivity, significant 
complex background interference, and insufficient fine-grained 
feature representation. 

By deeply integrating the new ZZ convolutional module, new 
YY attention mechanism module, and SPPF-LSKA fusion 
module, a collaborative optimization system is constructed. 
The model adopts a hierarchical feature processing 
architecture, embedding three innovative modules into the 
feature extraction layer, attention enhancement layer, and 
multi-scale fusion layer, respectively, thereby establishing a 
complete technical chain from microscopic feature analysis to 
macroscopic semantic correlation. The three modules achieve 
compatible deep integration through granular allocation of 
computational resources and functional positioning: The ZZ 
module focuses on enhancing multi-granularity extraction 
efficiency of low-level features. The YY module implements 
domain-adaptive calibration during feature transmission. The 
SPPF-LSKA module accomplishes complementary fusion of 
multi-level semantic features. These three components 
collectively establish a progressive optimization pathway of 
“feature encoding → attention enhancement →pyramid 
fusion.”  

At the parameter optimization level, the three modules 
respectively introduce learnable convolutional kernel scale 
ratios [17], dynamic attention weights [18], and large-kernel 
decoupled computation mechanisms. Through joint 
backpropagation, these components synergistically optimize 
the detection loss function. This hierarchically deployed 
collaborative paradigm provides a technical solution that 
combines theoretical innovation and engineering value for 
intelligent bridge defect detection. 

 

 Simulation Environment 
The simulation was conducted on a Windows 11 operating 
system with 3T memory and an RTX 4070 GPU (64GB 
VRAM). Python 3.8 was utilized, with the PyTorch framework 
(Torch 1.12.0 version). The YOLOv11n-ZY model was trained 

for 200 epochs with a batch size of 32 and a learning rate of 
0.01. 
To evaluate the comprehensive performance of the model, this 
experiment adopts the following quantitative evaluation 
metrics: parameter count, precision (P), recall (R), mean 
average precision (mAP), frame rate (FPS), and F1-score. 
These metrics collectively characterize the model’s robustness 
across detection accuracy, computational efficiency, and 
multiple confidence thresholds [16]. 
The mathematical definitions of precision and recall are given 
in Equations (1) and (2), where TP (True Positives) denotes the 
number of correctly detected positive samples, FP (False 
Positives) represents the number of positive samples 
incorrectly classified as negative, and FN (False Negatives) 
indicates the number of undetected positive samples. The F1-
score is defined by Equation (3), which is essentially the 
harmonic mean of precision and recall. In the field of object 
detection, mAP serves as a core evaluation metric, quantified 
through the weighted average of precision values across 
confidence thresholds, with its computational methodology 
detailed in Equations (4) and (5). 
 

 𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (1) 

 

 𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (2) 

 

 𝐹𝐹1 = 2 ∙ 𝑃𝑃∙𝑅𝑅
𝑃𝑃+𝑅𝑅

 (3) 

 

 𝐴𝐴𝐴𝐴 = ∫ 𝑝𝑝(𝑟𝑟)𝑑𝑑𝑑𝑑1
0  (4) 

 

 𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑛𝑛
∑ 𝐴𝐴𝐴𝐴(𝑖𝑖) × 100%𝑛𝑛
𝑖𝑖=1  (5) 
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In the equations, the mAP reflects the balance between the 
detection precision and recall of the model across all categories 
(unit: %); mAP50 refers to the mAP value when the IoU is 0.5; 
APi is the average precision of the i-th category; and n is the 
total number of categories. 

 

4.2.1 Comparison Experiments 
To further validate the detection performance of the improved 
YOLOv11n-ZY model proposed in this paper, the algorithm is 
compared and analyzed with common algorithms in this field, 
and the results are shown in Table 2. 

 

Table 2. Comparative Experimental Results. 

Model mAP50/% P/% R/% Params/106 
YOLOv5s 33.8 37.0 39.7 7.82 
YOLOv8n 33.4 40.5 36.7 3.01 
YOLOv8s 35.1 40.7 39.1 11.13 

YOLOv11n 34.9 44.6 37.8 2.58 
YOLOv11s 36.3 43.0 41.1 9.41 

Ours 40.3 49.3 41.1 2.87 
 
 
 
According to the experimental results in Table 2, compared 

to the detection results of previous official Yolo series models 
(Yolov5s, Yolov8n, Yolov8s), the proposed Yolov11n-ZY 
algorithm in this study achieves significant improvements in 
mAP50 by 6.5%, 6.9%, and 5.2%, while reducing parameter 
sizes by 4.95 MB, 0.14 MB, and 8.26 MB, respectively. 
Compared to the baseline model YOLOv11n and its series 
counterpart YOLOv11s, the Yolov11n-ZY algorithm achieves 
accuracy improvements in mAP50 of 5.4% and 4%, 
respectively, despite a slight increase in parameter size. In 
summary, the proposed algorithm outperforms other methods 
in the accuracy of "multi-category bridge defect small target 
detection under complex background interference," including 
mAP50, precision (P), and recall (R), while maintaining real-
time performance and achieving an optimal balance in model 
size. 

5 VISUALIZATION INTERFACE DESIGN 
The visual interactive interface of the proposed detection and 

recognition system integrates the YOLOv11n-ZY model for 
bridge defect detection and recognition, featuring multi-modal 
input source processing capabilities (including static images, 
video streams, real-time camera capture, and batch file 
processing). A multi-threaded parallel processing mechanism 
is adopted to ensure real-time responsiveness of the human-
machine interaction interface. Detection results are visualized 
in real-time through the graphical interface, with dynamic 
parameter adjustment functions (confidence threshold, IoU 
threshold) and detection process control interfaces (start, pause, 
terminate detection, and result storage). The specific visual 
interface system is shown in Figure 8. 
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Figure 8. Visualization interface for bridge defect object detection. 

 
 
 
In the input source selection unit, specify the camera capture 

device or local file path; dynamically configure the confidence 
threshold (Conf) and Intersection over Union threshold (IoU) 
of the target detection model through slider controls. The 
background processing thread is automatically initialized upon 
configuration completion. 

The system routes the processing results to the main thread, 
transmitting bounding box-annotated detection images via 

the (send_detect_img) signal and category statistics via 
the (send_detect_info) signal. Finally, the streaming inference 
approach governs the actual inference loop, as illustrated in 
Figure 9, which includes: reading input sources (images, 
videos, camera streams, etc.), preprocessing, executing model 
inference, processing post-inference results, and transmitting 
final recognition outcomes to the visualization main interface 
through signals. 
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Figure 9. Flowchart of the visualization interface system operation. 

 
 

6 CONCLUSION 
Aiming at the bottleneck problems of low efficiency and 
insufficient accuracy in traditional bridge inspection methods, 
this paper proposes a “Comprehensive Visual Intelligent 
Bridge Inspection Platform” that integrates Mixed Reality 
(MR) technology, deep learning algorithms, and domain-
specific bridge engineering knowledge. By leveraging the high-
precision spatial perception capabilities of the HoloLens 2 
device, the optimized architecture of the YOLOv11n-ZY 
model, and multimodal human-computer interaction 
technologies, a bridge defect detection system with real-time 
inspection, dynamic visualization, and full lifecycle 
management functions has been successfully established. 
Experimental results demonstrate that the improved 
YOLOv11n-ZY model significantly outperforms existing 
mainstream algorithms in detecting multi-category small-target 
defects under complex background interference, achieving a 
detection precision (mAP50 of 40.3%). Simultaneously, the 
MR technology facilitates closed-loop management of defect 
localization, remote collaboration, and dynamic 3D model 
updating. This study not only provides an efficient and reliable 
technical pathway for intelligent bridge operation and 
maintenance but also offers theoretical support and practical 
exemplars for the deep integration of mixed reality and deep 
learning in infrastructure inspection. Future work will focus on 
optimizing the lightweight deployment capability of the model, 
further enhancing the precision of the algorithm, expanding 
multi-source sensor data fusion mechanisms, and exploring a  

 
digital twin-based predictive system for bridge performance 
throughout its lifecycle to advance the engineering application 
and standardized development of intelligent infrastructure 
inspection technologies. 
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