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ABSTRACT: Visual inspection remains the most fundamental and widely used method for assessing the condition of bridges. 

This process involves observation of structural surfaces at a close distance to identify visible signs of deterioration such as 

cracking, spalling, corrosion, and delamination. Traditionally, human inspectors perform visual inspections manually. This labour-

intensive process is associated with many limitations, for example, subjectivity to an inspector’s interpretation, difficulty accessing 

structural components, management of large volumes of unstructured data and the lack of consistent historical records. Recent 

advancements in computer vision and artificial intelligence have enabled considerable progress toward automating visual 

inspections. However, the full automation of visual inspections in practical, real-world scenarios remains constrained by several 

challenges: (i) the continued need for human intervention, (ii) the limited availability of high-quality labelled datasets, (iii) the 

generalizability of existing models, and (vi) the lack of standardized inspection protocols. In this positioning paper, we present an 

overview of the current state of automated visual inspection for defects identification in bridges. It reviews key open-source 

datasets of defects and state-of-the-art deep learning models. We give our forward-looking perspective on fully automated defects 

identification systems that align with standardized visual inspection guidelines. 

KEY WORDS: Visual Inspection; Defects Identification; Condition Assessment; Automated Bridge Inspection; Computer Vision; 

Structural Health Monitoring (SHM); SHM at Local level.

1 INTRODUCTION 

Bridges are critical components of our transportation 

infrastructure. Rigorous and timely inspections are needed to 

ensure their long-term performance and operational safety, and 

to avoid catastrophic failures. In general, bridge inspections are 

classified as general, principal, and special inspections. Each 

type of inspection serves a distinct purpose, i.e., from basic 

visual checks, to more in-depth often involving touching 

distance examinations, to address specific concerns or unusual 

events such as accidents (e.g., collisions by heavy loads trucks) 

or natural disasters (e.g., earthquake, flooding) [1]. Among 

these, visual inspection is the most employed method, 

particularly during general and principal inspections. It 

involves systematic observation of the bridge’s surface to 

detect visible signs of deterioration such as cracking, corrosion, 

spalling, and delamination. These observable defects serve as 

initial indicators of potential structural issues and guide/suggest 

evaluation or maintenance actions. 

The traditional visual inspection, while primary for initial 

defects detection, is inherently labour-intensive and often 

requires close-proximity access to structural elements, which is 

frequently unfeasible in hard-to-reach locations [2]. The 

process is also highly subjective, relying heavily on the 

individual expertise and judgment of trained inspectors. 

Research indicates a substantial probability (approximately 

50%) of inconsistent classification of concrete defects when 

different inspectors evaluate the same defects [3]. This poses a 

significant challenge, as the availability of experienced 

personnel is steadily declining [4]. Inconsistencies often arise 

from the disconnect between the on-site surveyor and the off-

site expert who interprets and documents findings, leading to a 

potential mismatch between observed conditions and reported 

assessments. Also, inspections typically generate a huge 

amount of unstructured data, including images and reports. 

Historical inspection reports are rarely utilized in subsequent 

evaluations due to inadequate data organization and retrieval 

systems. This lack of continuity poses a challenge for 

inspectors to accurately visualize and locate previously 

identified defects, complicating re-localization of defects and 

trend analysis over time, which involves monitoring defects 

progression across inspections, identifying deterioration 

patterns, and anticipating future degradation or necessary 

interventions. These challenges collectively highlight the need 

for integrated, data-driven, and automated visual inspection 

workflows that improve consistency, traceability, and long-

term asset management of bridges.  

Recent advancements in computer vision (CV) and artificial 

intelligence (AI) have matured to a level that enables the 

enhancement and partial automation of visual bridge 

inspections [5], [6]. These technologies are promising for 

digitizing inspection workflows, making them significantly 

fast, reliable, and repeatable. By using AI-driven image 

analysis, defects identification, and data management systems, 

bridge visual inspections can be completely automated and 

independent of subjectivity. Previous literature reviews [7], [8] 

on CV and deep learning (DL) based bridge visual inspection, 

have provided foundational overviews of the field up to 2020. 

While valuable, these reviews have limitations that necessitate 

an updated perspective. For instance, [7] comprehensively 

covers structural health monitoring (SHM) with an emphasis 

on CV-based defects detection (e.g., cracks, spalling, 

delamination, rust, and bolt loosening). However, its scope is 
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restricted to datasets and algorithms available prior to 2020, 

thereby omitting crucial post-2020 advancements in both novel 

defect types and state-of-the-art AI-driven techniques. 

Similarly, [8] offers a broad exploration of DL-based SHM, 

encompassing CV, unmanned aerial vehicles (UAVs), 

vibration-based methods, and physics-informed approaches, 

effectively linking traditional machine learning with modern 

DL strategies. Nevertheless, it lacks critical discussion on the 

practicalities of real-world applications of visual inspection, the 

availability of experimental/test datasets, and open-source 

implementations, thus highlighting a significant gap in 

addressing deployment challenges and reliability of automated 

visual inspection. This collective gap highlights the urgent need 

for a contemporary position that re-evaluates automated visual 

inspections considering recent research advances and emerging 

trends, with a focus on improvements in the enrichment of 

defects dataset, DL-based defects identification algorithms, and 

practical deployment strategies. 

In this positioning paper, we critically evaluate the current 

state-of-the-art in available defects datasets and DL-based 

defects identification algorithms, systematically identify the 

principal barriers to real-world implementation, and propose a 

forward-looking perspective on the future development of 

automated visual inspection of defects for bridges. The rest of 

the paper is organized as follows: Section 2 describes the 

dataset utilized for bridge defects detection, including data 

sources and characteristics. Section 3 details the baseline 

algorithms and the proposed enhancements for defects 

recognition. Section 4 provides a perspective on the future 

overview of automated visual inspection. Finally, Section 5 

summarizes the overall position paper and draws conclusions. 

2 RELEVANT DEFECTS DATASETS 

Most highway bridges are reinforced concrete (RC) bridges [9]. 

While a reliable identification of RC defects is essential, 

existing datasets are often limited in size and class diversity, 

raising concerns about their real-world applicability and 

suitability as benchmarks. Over the past decade, significant 

progress has been made through datasets enabling binary 

classification [13, 23, 24, 25], multi-class classification [1, 7, 

26], multi-label classification [16], binary semantic 

segmentation [8, 27], and multi-label semantic segmentation 

[10, 28, 29]. Each dataset contributes to advancing defects 

assessment methodologies reviewed in this section. 

2.1 Binary-class classification 

The Cambridge Bridge Inspection Dataset (CDS) [10] 

combines two primary data sources to enhance defects 

recognition in RC structures. The first source comprises 21,284 

high-resolution images captured from 10 RC highway bridges 

in Cambridge. The focus is on critical structural elements such 

as decks, columns, piers, and abutments. Since these bridges 

are in good condition, the dataset lacks sufficient diversity of 

defects. To address this limitation, a second set of 22,121 

images was incorporated from the U.S. Federal Highway 

Administration and the Georgia Department of Transportation, 

enriching the dataset with a variety of examples of defects. All 

images are categorized into two classes “healthy” and 

“potentially unhealthy,” providing a foundational binary 

classification benchmark for structural condition assessment. 

This hybrid approach ensures broad applicability. SDNET [11] 

is also a large-scale binary annotated image dataset designed to 

train, validate, and benchmark AI-driven crack detection 

models for concrete structures. Comprising over 56,000 images 

of cracked and non-cracked surfaces of diverse structural 

elements such as bridge decks, walls, and pavements. The 

dataset captures a wide range of crack widths, from 0.06 mm to 

25 mm, enhancing its applicability to real-world scenarios. 

SDNET incorporates various challenging conditions such as 

shadows, surface roughness, scaling, edges, holes, and 

background debris, simulating shared challenges encountered 

in visual inspections. While the dataset covers many structural 

elements, its initial version suffered from labeling inaccuracies, 

which may require preprocessing or correction for reliable 

model training. Despite this limitation, SDNET remains a 

valuable resource for advancing automated structural defects 

assessment.  

The Image-based Concrete Crack Database (ICCD) [12] is 

developed using 1,455 high-resolution crack images captured 

via smartphone from suspension bridge towers and anchor 

chambers in Dalian, China. To ensure diversity, images were 

taken at varying distances (0.1 – 1.0 m) and under different 

lighting conditions (daylight, nighttime, direct sunlight, and 

shaded surfaces), simulating real-world inspection conditions. 

These images were then cropped into 256 × 256 px patches and 

manually labeled into two classes – cracked and uncracked 

concrete. Through data augmentation, the final dataset was 

expanded to 60,000 images, significantly enhancing its utility 

for training robust DL models in automated crack detection. 

This approach improves generalization and addresses 

variability in real-world visual inspection scenarios. The 

Bridge Crack Dataset (BCD) [13] is specifically designed for 

robust crack detection in bridge inspection scenarios. The 

original dataset consists of 2,068 images of bridge cracks, 

which were processed and augmented to generate 6,069 image 

patches, optimizing them for DL applications. To enhance real-

world applicability, the dataset intentionally includes 

challenging conditions such as bridge shading, water stains, 

and bright light reflections, common obstacles in field 

inspections. By incorporating these complexities, BCD serves 

as a valuable benchmark for developing generalizable and 

noise-resistant crack classification models, ensuring practical 

utility in automated visual inspection systems. While these 

datasets provide valuable benchmarks for binary crack 

detection, they suffer from critical limitations, for example, 

CDS [10] lacks natural defects diversity, SDNET [11] has 

labeling errors, ICCD [12] relies on artificial augmentation, and 

BCD’s [13] small scale and synthetic challenges may not 

reflect real-world complexity. 

2.2 Multi-class classification 

The Bearing Condition State Classification dataset [14] 

comprises 947 annotated images of structural bridge bearings. 

The annotations adhere to the condition state assessment 

guidelines outlined by the American Association of State 

Highway and Transportation Officials [21] and the Bridge 

Inspector's Reference Manual [22]. The dataset categorizes 

steel corrosion into four distinct condition states: good, fair, 

poor, and severe. Detailed annotation guidelines, along with 

explanatory examples, are provided to ensure consistent and 

accurate condition assessment. The dataset serves as a valuable 

resource for visual inspection and deterioration assessment of 
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bridge bearings. The Multi-classifier Dataset (MCDS) [3] 

consists of 38,408 annotated images capturing various 

deterioration patterns in concrete structures. Defects are 

classified into eight distinct categories including spalling, 

cracks, rust staining, efflorescence, scaling, abrasion/wear, 

exposed reinforcement, and general defects. This 

comprehensive taxonomy enables detailed analysis of concrete 

degradation assessment and supporting visual inspection. 

2.3 Multi-label classification 

COncrete DEfects BRidge IMage (CODEBRIM) dataset [16] is 

the largest and most realistic multilabel dataset for RC 

deterioration classification. The dataset categorizes defects into 

six distinct classes: crack, spalling, exposed reinforcement bar, 

efflorescence, corrosion, and background. The unbalanced 

version of CODEBRIM consists of 7,729 annotated image 

patches extracted from 30 bridges, selected to represent diverse 

deterioration levels, defects sizes, severity, and surface 

textures. High-resolution images were captured under different 

weather conditions and using multiple cameras at different 

scales. To address accessibility challenges, a subset of data was 

acquired via UAV for defects located at elevated positions. 

Despite its comprehensiveness, CODEBRIM present a key 

challenge for real-world transferability. The dataset is 

composed of cropped image patches, where original images are 

subdivided into rectangular segments based on maximum 

defects dimensions. This approach may disrupt contextual 

information, which is critical for holistic defects assessment. 

2.4 Binary-class semantic segmentation 

The UAV75 dataset [17] comprises 75 images featuring pixel-

wise manual annotations for binary semantic segmentation 

tasks. This dataset provides precise delineation of target 

features at the pixel level, enabling detailed analysis of 

structural characteristics. The fixed image dimensions and 

binary classification scheme facilitate consistent model training 

and evaluation, while the limited sample size positions this 

dataset as a specialized benchmark for targeted applications in 

structural assessment. Kulkarni et al. [18] introduced 

CrackSeg9k, currently the largest and most diverse binary crack 

segmentation dataset, comprising 9,255 images aggregated 

from ten preexisting sub-datasets including Crack500, 

Deepcrack, SDNET, CrackTree, GAPs, Volker, Rissbilder, 

Noncrack, Masonry, and Ceramic. The dataset addresses key 

limitations in individual source datasets (e.g., noise, distortion) 

through standardized preprocessing, while maintaining 

diversity in surface materials (concrete, masonry) and crack 

morphologies. Despite its focus on binary crack segmentation 

as shown in Figure 1, the dataset’s practical utility depends on 

recognizing at least nine distinct defect types. Notably, 

CrackSeg9k homogenizes acquisition conditions including 

camera pose, lighting, and hardware across sub-datasets to 

minimize confounding variables. This curation enhances its 

reliability for benchmarking semantic segmentation algorithms 

in visual inspection for RC defects applications. 

2.5 Multi-label semantic segmentation 

The Structural Defects Dataset (S2DS) [20] is the first multi-

class semantic segmentation dataset for RC defects analysis, 

containing 743 annotated images of RC bridges. It classifies 

five defect types: cracks, spalling, corrosion, efflorescence, and 

vegetation along with control points for georeferencing as 

shown in Figure 2. While the dataset is pioneering in enabling 

multi-class segmentation and features high-quality manual 

annotations by a trained expert, its limited size and diversity 

raise concerns about real-world applicability. The dacl10k 

dataset [5] represents the first large-scale benchmark for multi-

label semantic bridge defects segmentation, featuring 9,920 

annotated images sourced from bridge inspections in Germany 

between 2000 and 2020. Developed to support AI-assisted 

defects recognition and documentation, the dataset aligns with 

structural inspection guidelines, focusing on defects that can be 

legally assessed. It includes 19 classes as shown in Figure 3 

categorized into concrete defects, general defects, and objects, 

capturing complex real-world scenarios where multiple defects 

often overlap. The dacl1k dataset [19] addresses critical 

limitations in existing RC defects datasets by providing 1,474 

uncropped, real-world inspection images with multi-label 

annotations across five damage classes including Crack, 

Efflorescence, Spalling, Bars Exposed, Rust, and a No Damage 

category, derived from diverse sources including authorities 

and engineering offices. Unlike datasets such as CODEBRIM 

(which uses cropped patches) or MCDS, dacl1k preserves raw 

image heterogeneity varying in camera types, poses, lighting, 

and resolutions to better reflect real inspection challenges. 

However, while its diversity enhances practical applicability, 

the dataset's small size (1,474 images) and moderate label count 

(2,367 total labels) raise concerns about statistical robustness 

and class balance. Despite the shortcomings, dacl1k represents 

a step toward bridging the gap between controlled research 

datasets and actual field conditions, though larger-scale, more 

granular annotations and rigorous benchmarking remain unmet 

needs for reliable RC defects assessment. 

3 DFECTS IDENTIFICATION MODELS  

Dong et al. study [7] provide a detailed review of computer 

vision-based structural health monitoring at local level 

(CV‑SHM‑LL), outlining various applications and 

methodological approaches. The work scrutinizes a wide range 

of models designed for localized analysis, including both patch-

based and pixel-based techniques. Additionally, it discusses 

traditional methods alongside data-driven machine learning 

approaches. However, it is limited to approximately eight types 

of structural defects. Cha et al. [8] provides a broad overview 

of DL-based SHM techniques applied to various infrastructure 

systems, such as bridges, and different construction materials 

like concrete and steel. The study extensively reviews the 

historical development of DL architecture, as illustrated in 

Figure 4. However, it does not explore deeply into the precise 

 

Figure 1. CrackSeg9k's categorization of crack types [18] 
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application of visual inspection methods for bridges defects 

identification and their real-world implementation challenges.  

Hüthwohl et al. [10] proposed an automated method for 

detecting intact concrete areas using image segmentation and 

classification. By applying morphological operations to 

generate boundary masks, their approach filters out defects-free 

regions, optimizing inspection efficiency by concentrating 

analysis on potential damage zones. Dorafshan et al. [11] 

introduced SDNET dataset and benchmarked performance 

using AlexNet [23], validating the dataset's utility for algorithm 

development. Li et al. [12] developed a convolutional neural 

network (CNN) based crack detection method using an 

enhanced AlexNet [23], overcoming traditional limitations like 

noise sensitivity. Their model achieved 99.06% validation 

accuracy and was deployed as a smartphone app for real-world 

use. Xu et al. [13] developed an end-to-end CNN-based crack 

detection model. Achieving 96.37% accuracy without pre-

training, it outperformed traditional methods and showed 

potential as a versatile feature extraction module for other 

networks.  

Hüthwohl et al. [3] developed a three-stage multi-classifier 

system for concrete defects detection in bridges using fine-

tuned deep neural networks trained on multi-source inspection 

data. Their approach first identifies five defect types along with 

defects-free areas, then detects exposed reinforcement, and 

finally recognizes rust staining. The approach achieves 85% 

average classification accuracy. Mundt et al. [16] developed a 

meta-learning approach for automated CNN design targeting 

multi-defects concrete classification. Using their CODEBRIM 

dataset containing images with overlapping defects, they 

employed MetaQNN [24] and ENAS [25] reinforcement 

learning methods to generate optimized architectures. The 

resulting CNNs achieved higher multi-target accuracy than 

manually designed models while using fewer parameters, with 

validation accuracy serving as the reinforcement learning (RL) 

controller's reward signal. Benz et al. [17] presents 

CRACKNAUSNET, a transfer learning-based CNN for crack 

detection in unmanned aircraft system (UAS) imagery, 

 

Figure 3. dacl10k dataset and labels [5]. The font size of the caption has been adjusted for clarity. 
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Figure 2. S2DS Classes and Labels: crack (black), 

spalling (red), corrosion (orange), efflorescence (blue), 

vegetation (green), and control point (purple) [20] 
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adapting TernausNet [26] with VGG16's [27] first 16 layers as 

a pre-trained encoder. The model addresses UAS-specific 

challenges (low resolution, faint cracks, planking artifacts) 

using the novel UAV75 dataset, which includes a dedicated 

class to mitigate planking-induced false positives, where 

inspection planks were mistakenly identified as defects. While 

achieving 75% average accuracy on UAV75 outperforming 

existing approaches, the model's performance declined on 

external datasets, indicating dataset-dependent effectiveness.  

Kulkarni et al. [18] proposed an advanced crack 

segmentation framework combining YOLOv5 [28] for 

detection, DINO for unsupervised feature extraction, and FPN-

based models [29] for precise segmentation. Their approach 

utilizes self-supervised transformer attention to enhance CNN 

performance, overcoming challenges like crack variability and 

background noise. The method was validated on a newly 

compiled, meticulously annotated dataset demonstrating 

improved generalization across diverse crack types and 

surfaces.  

The study [20] proposed a hierarchical multi-scale attention 

(HMA) model for multi-label semantic segmentation using an 

HRNet-OCR backbone to oversee objects of varying sizes. The 

model employs contrastively learned attention maps to 

dynamically fuse multi-scale features, enhancing pixel-level 

and contextual representations through transfer learning from 

Cityscapes. A significant contribution is the line-based tolerant 

IoU metric designed specifically for crack detection, 

addressing the shortcomings of conventional area-based 

metrics (IoU/F1). The evaluation compared CNN-based 

architectures (DeepLabV3+, FPN with MobileNetV3 / 

EfficientNet encoders, some with auxiliary losses) and 

Transformer-based SegFormer (trained with Dice loss). All 

models used Adam optimization with cosine learning rate 

scheduling, ImageNet initialization, and 512×512 input 

resolution over 30 epochs, demonstrating the approach's 

effectiveness particularly for challenging crack segmentation 

tasks. 

The dacl-challenge [6] aimed to advance automated defects 

identification in bridges using its large, real-world dataset. It 

benchmarked CV models as shown in Figure 5 for accurate, 

detailed detection and classification of bridge defects and 

components. 

a) Baseline Model: The dacl-challenge baseline employed 

SegFormer [30] MiT-b1, pre-trained on ImageNet-1k [23]. 

This model features a multi-label segmentation head and a 

compact encoder with 13.1M parameters. For the 

challenge, SegFormer was trained for 10 epochs on the 

development set and 30 epochs on the final test set. 

b) First Place Approach (Sheoran): The top-performing 

solution by Sheoran utilized an ensemble of predictions 

from several models. Initially trained with 

MMSegmentation, the models were adapted to the 

segmentation-models-pytorch library for multi-label 

handling. The training process incorporated diverse 

augmentations and the RangersLars optimizer. Predictions 

from six distinct models were aggregated for specific 

classes, leading to enhanced overall performance. 

c) Second Place Approach (Bridge Protector): Bridge 

Protector's approach involved training the Mask2Former 

model [31] with an InternImage-H [32] backbone using the 

MMSegmentation framework. Pre-trained weights from 

the ADE20K dataset [33] were utilized. To address the 

multi-label nature of the data, the problem was divided into 

19 individual binary segmentation models, one for each 

class. The outputs of these 19 models were then combined. 

d) Third Place Approach (Winning Wieners): Winning 

Wieners combined a feature pyramid network (FPN) [29] 

with a multi-axis vision transformer (MaxViT) [34] as the 

backbone. MaxViT integrates convolutional blocks with 

the attention mechanism of vision transformers. The xlarge 

version of MaxViT, pre-trained on ImageNet, was used. 

The model was trained using a five-fold cross-validation 

strategy, resulting in an ensemble of five models. 

Prediction-level threshold optimization was performed for 

the final ensemble. 

Top-performing approaches heavily used transfer learning 

and adapted existing architectures, potentially limiting 

exploration of novel structural defects segmentation 

techniques. Their performance is more sensitive to training 

configurations than architectural innovation. While ensemble 

learning improved the results (see Figure 5) their computational 

cost warrants investigate efficient high-performance strategies. 

The bar chart presented here shows only the top performance 

values for defects (objects excluded), compared to the baseline 

performance. While many deep learning-based approaches for 

structural defects identification in bridge infrastructure achieve 

high accuracy using CNNs, transformers, and ensemble 

methods, their generalizability is often constrained by dataset 

dependency, high computational demands, and reliance on pre-

trained architectures. Future research should prioritize the 

development of specialized models and training strategies 

tailored to visual structural assessment, moving beyond generic 

transfer learning paradigms. 

4 FUTURE OVERVIEW OF VISUAL INSPECTION 

Over the past decade, different AI and CV-based 

methodologies have been proposed for the identification of 

 

 

Figure 4. Popular architectures of DL over the years [8] 
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local-level defects [7], [8], [36], [37], [38], [39], [40], [41]. 

However, despite promising results in controlled research 

settings, many of these solutions have not yet achieved the 

robustness or scalability approaches for deployment in real-

world environments. Most current approaches fall short of 

industrial standards and remain insufficient for fully 

automating visual inspections under diverse operational 

conditions. Thus, while foundational technologies are in place, 

further developments, validations, and standardizations are 

necessary to enable their widespread adoption in bridge 

inspection practices. 

Despite all current advancements, the complete automation 

of visual bridge inspection remains unrealistic at present. This 

is primarily due to the complexity of standardized inspection 

protocols such as NEN 2767 in the Netherlands [42], AASHTO 

in the United States [21], CS 450 in the UK [43], CSA-S6 in 

Canada [44], AS5100.7 in Australia [45]. These standards 

define a multi-layered assessment framework, spanning from 

general structural classification to detailed defects evaluation. 

For example, NEN 2767 organizes infrastructure assessment 

across five hierarchical levels. Figure 6 represents inspection 

levels with an example decomposition for a RC bridge. 

Level-1. Element Group (i.e., type of bridge such as 

reinforced concrete) bridge,  

Level-2. Elements (i.e., main parts of that bridge such as 

handrail),  

Level-3. Building Components (i.e., sub-parts of element such 

as the structural frame of a handrail and protective 

coating),  

Level-4. Materials (i.e., material type of each building 

component (e.g., steel for the structural frame and 

paint for the protective coating),  

Level-5. Defects (i.e., defect types of building component, 

like corrosion and rust in case of steel handrail, color 

peel off in case of paint coating).  

During visual inspection, inspectors primarily interact with 

bridge at material and defects levels. For each observed defect, 

the inspector manually assigns three critical parameters 

including severity, extent, and intensity. These judgments, 

informed by domain expertise, are used to calculate the 

condition score for each building component (Level-3), which 

are then aggregated to yield scores for Elements (Level-2) and 

the overall condition index for the entire Element Group 

(Level-1). In the NEN 2767 standard the condition score ranges 

from 1 (very good) to 6 (very poor). It quantifies the current 

condition of inspected components of the inspected bridge 

based on observed defects. 

While CV techniques have made substantial progress in 

defects identification (i.e., detection, localization, and 

classification of defects such as cracks, corrosion, or spalling), 

the current state of approaches are not yet capable of reliably 

performing the significant evaluation required by inspection 

standards. Specifically, automatic quantification of defects 

parameters (severity, extent, and intensity), contextual cause 

analysis, and risk assessment still require manual 

measurements and expert’s (e.g., inspector’s) interpretation. As 

a result, human oversight remains essential, and existing 

AI‑based inspection systems are best viewed as decision-

support tools rather than fully autonomous solutions. 

To fully understand the current limitations in automating 

bridge inspections, it is important to examine the fundamental 

challenges associated with defects identification across 

multiple levels. In SHM, first Rytter in 1993 [46] and then 

Worden et al. in 2004 [47] outlined hierarchical levels of 

damage identification including damage detection, 

localization, classification, assessment, and prediction. While 

damage refers to changes in structural properties that adversely 

affect performance, defects in the visual inspection refer to 

observable surface-level anomalies. An equivalent framework 

of object detection as previously highlighted in [48] and now in 

further extended form, as shown in Figure 7,can be applied to 

CV-based defects identification. The following levels for 

 

Figure 5. dacl-challenge: state-of-the-art performance achieved vs. baseline algorithm accuracy (% IoU) [6] 
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object (or defects, in this case) identification are defined: 

detection, localization, classification (or segmentation), 

quantification, and propagation. Currently, most CV-based 

approaches [6] in bridge inspection have achieved automation 

up to the classification (or segmentation) level, identifying and 

labelling regions of interest such as cracks or corrosion patches 

[7], [8]. However, progressing to quantification is essential to 

comply with inspection standards, which require precise 

evaluation of defects parameters (severity, extent and intensity) 

to calculate the condition score of a component (refer to Figure 

6). 

 

Figure 6. Decomposition and example of levels of inspection 

process in NEN 2767 standard 

 

 
Figure 7. An identification analogy between damage 

identification [24], [25] and object (or defects in this case) 

identification 

While limited success has been achieved in quantifying 

specific types of defects (e.g., crack width and length) [49], 

[50], [51], [52], [53], the methods are not generalized across the 

wide spectrum of defects encountered in practice. For instance, 

NEN standard alone defines approximately 128 distinct defect 

types relevant to bridge visual inspection, each with distinct 

characteristics and assessment criteria [42]. This diversity 

presents a significant challenge for developing universal 

quantification algorithms. Once automated systems can 

reliably assign defects-level (Level-5) condition scores as 

shown in Figure 6, this would enable near-complete automation 

of the visual inspection process and facilitate systematic and 

periodic data collection at the local (defects) level. 

To address these limitations and pave the way for practical 

CV-SHM implementation, this paper proposes an automated 

visual inspection system with a future direction, as 

conceptually illustrated in Figure 8. The proposed system is 

envisioned as a continuously evolving ecosystem, driven by 

progressive enhancements in defects identification capabilities 

and adherence to established inspection standards, such as the 

Dutch NEN2767 standard. It is initially trained on a 

comprehensive dataset synthesized by merging existing state-

of-the-art datasets, specifically curated to encompass a diverse 

range of defect types. A user-friendly application is developed 

in close collaboration with visual inspection experts to ensure 

seamless integration with current inspection workflows. Once 

it achieves a satisfactory level of performance, the system is 

deployed across various on-site inspection platforms, including 

mobile devices, tablets, drones, and augmented reality (AR) 

headsets. In its operational phase, the system functions as a 

semi-autonomous tool for human inspectors. It provides real-

time defects predictions, allowing inspectors to contribute their 

expertise through manual annotations and comments. All data, 

including system predictions and human input, are securely 

stored on a cloud platform, facilitating continuous expert 

evaluation and ongoing system refinement. Furthermore, the 

system integrates AR tools to analyze historical defects data, 

including location and characteristics, to predict future defects 

propagation over time. This predictive capability empowers 

initiative-taking maintenance strategies and enhances the long-

term sustainability of bridges and other civil infrastructures. 

5 CONCLUSION 

This paper reviews RC defects datasets for bridges and state-

of-the-art algorithms and proposes an automated visual 

inspection system for computer vision-based structural health 

monitoring at local level (CV-SHM-LL) that integrates deep 

learning methodologies with standardized inspection protocols 

and human expertise to advance bridge inspections. Addressing 

current limitations in data availability, holistic component-

level defects evaluation, and deployment feasibility, this study 

aims to translate theoretical advancements into practical 

solutions for enhanced SHM. The following conclusions can be 

drawn from this positioning paper:  

• To improve the reliability, robustness, and resilience of the 

inspection systems, it is necessary to utilize and integrate 

comprehensive and diverse datasets with unique types of 

defects, and state-of-the-art prediction models. 

• For the inspection system to be useful in real-world 

scenarios, it must be able to quantify defects by 

determining their extent, severity, and intensity. This will 

allow for a step-by-step approach to reach level of 

quantification as shown in Figure 7. 
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• Inspection standards must be applied to connect surface-

level observations with a deeper understanding of overall 

structural behaviour. This will bridge the gap to achieving 

insights into global structural performance. 

Future research should focus on the deployment of 

lightweight neural networks and integration of augmented 

reality (AR) features on handheld edge devices. This interface 

should enable the visual overlay of previously identified 

structural anomalies onto the physical infrastructure. This 

capability would facilitate targeted inspection efforts and the 

identification of how defects propagate over time. By 

leveraging computational models, such an AR-enhanced 

system should aim to provide inspection personnel with 

intuitive, real-time data to enable efficient and comprehensive 

structural evaluations. 
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