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ABSTRACT: Civil structures inevitably experience anomalies and damage, especially during disasters like earthquakes, tsunamis, 

and hurricanes, causing performance degradation or even collapse. Identifying such anomalies plays an extremely critical role in 

the maintenance and life extension of civil structures. This study proposes a novel approach based on video data due to its 

accessibility and rich temporal-spatial information for anomaly detection in large-scale civil structures by integrating transfer 

learning (TL) techniques with optical flow. Given the low importance of structural Region-of-Uninterest (RoU) like windows and 

doors, TL with BEIT+UPerNet pre-trained models identifies them. The extended node strength network then leverages video data 

to focus on structural components and detect disturbances in the nonlinearity vector field. The approach was validated using open 

video data from E-Defense, capturing two large-scale structural shaking-table tests that featured both pronounced shear cracks 

and tiny cracks. The detection and quantitative analysis results confirmed the method’s effectiveness in detecting structural 

anomalies and improved computational efficiency by approximately 10%, with a positive correlation observed between this 

efficiency gain and the proportion of structural RoUs in the video. This study advances anomaly detection in large-scale structures, 

offering a promising approach to enhancing safety and maintenance practices for critical infrastructure. 
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1 INTRODUCTION 

Engineering structures often sustain damage throughout their 

service life, deteriorating over time due to various 

environmental and mechanical factors. Both immediate and 

prolonged damage contribute to the aging of structures and a 

subsequent reduction in their service life, highlighting the 

importance of the structural health monitoring (SHM) process 

[1].  

In recent years, the traditional reliance on manual inspection 

and scheduled maintenance has evolved with the integration of 

advanced imaging technologies and machine learning (ML) 

[2]. For instance, Ji et al. [3] proposed vision-based 

measurement methods for deformation estimation and cracks 

identification and demonstrate much higher efficiency and 

provide more useful information than the traditional 

measurement techniques. Wu et al. [4] developed an improved 

algorithm based on YOLOv5s which made mAP@0.5 (mean 

Average Precision when IoU equal 0.5) values improve by 

around 10%. Furthermore, Xiong et al. [5] proposed a novel 

computer vision model based on YOLOv8 for automated 

concrete bridge crack detection. Structural cracks, as a 

representative form of anomaly event, can serve as indicators 

of the deterioration in structural service performance. 

The authors previously conducted research on anomaly event 

detection, focusing on nonlinear occurrences, and validated the 

efficiency of their proposed methods through a small-scale 

frame model shaking table test [6]. This method detects 

nonlinearity in structural vibrations using video data, with 

feature extraction performed via optical flow techniques. 

However, a significant challenge persists across the field: the 

high computational costs associated with the analysis process. 

Addressing this issue is crucial for advancing SHM 

technologies and methodologies. 

This study introduces a novel method for detecting anomalies 

due to structural nonlinearity in video data, validated through a 

3-D full-scale shaking table test conducted by NIED. The 

method involves extracting nonlinear disturbances from 

anomaly events in the velocity vector field estimated by optical 

flow, constructing an extended node strength network, and 

applying a morphological opening operation for feature 

extraction and enhancement. This study presents two key 

advancements for applying the method to general video data. 

First, the developed algorithm, which was previously applied 

only to small-scale experimental models, is now tested on 

large-scale engineering structures to assess its effectiveness in 

real-world scenarios. Second, to address the challenge of 

excessive computational time, we integrate a transfer learning 

(TL) algorithm to initially identify and filter out the Region-of-

Uninterest (RoU), thereby enhancing identification efficiency. 

The remainder of this extended abstract is organized as 

follows: Section 2 presents the framework of the proposed 

algorithm, while the detailed mathematical formulations are 

omitted due to the page limit of the extended abstract. Section 

3 describes the 3D large-scale shaking table tests, including 

concrete and wooden building tests, followed by the 

identification results of TL for structural RoU. It also compares 

visualization results before and after anomaly events 

(pronounced shear cracks and tiny cracks) to demonstrate the 

feasibility of the proposed method. Additionally, a 

morphological opening operation is introduced to enhance 

features and denoise visualization results. Computational 

efficiency, with and without TL, is also compared in Section 4. 

Finally, conclusions are presented in Section 5. 

2 METHODOLOGY 

The proposed method for detecting structural anomaly events 

during earthquakes, relying solely on video data, integrates TL 

with an extended node strength network. Figure 1 illustrates the 

framework of this method and the flowchart detailing the 

subsequent steps. 
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Figure 1. Flowchart of the proposed method 

 

 Transfer learning for RoU identification 

Recently, Transformer-based models have gained attention for 

image recognition as alternatives to Convolutional Neural 

Networks (CNN). Transformers excel at capturing long-

distance dependencies, which partly accounts for their superior 

performance compared to CNN. However, Transformers 

generally require large amounts of training data. TL addresses 

this issue by allowing models trained on extensive datasets to 

perform effectively on specific tasks with smaller datasets. 

Consequently, BEiT [7], a transformer-based model, was 

employed, leveraging TL to segment the RoU components. 

BEiT utilizes the BERT approach [8], a widely used 

transformer-based model in natural language processing, for 

image recognition. BEiT treats images as sequences of words 

and learns to extract features through a masked part-prediction 

task.  

 
Figure 2. The overview of pre-training BEiT 

 

After pre-training BEiT using Masked Image Modeling 

(MIM) as shown in Figure 2, the BEiT+UPerNet model, pre-

trained for semantic segmentation, was further trained to 

segment the RoU, specifically targeting windows and doors. 
An example of RoU recognition for removing the window parts 

of a building using NIED video data is shown in Figure 3. 

These images depict the frames before and after RoUs 

recognition. In the detected area, pixel values are set to zero, 

allowing for the removal of these pixels in the subsequent 

anomaly event detection process. By successfully identifying 

the structural RoUs, video data that exclusively contains 

structural component information is utilized, thus improving 

the computational efficiency of the feature extraction process. 

       
(a)                                            (b) 

Figure 3. An Example for structural RoUs identification based 

on TL (a) original frame (b) processed frame  

 Anomaly events detection by proposed extended node 

strength network 

The anomaly event detection method for video data, as detailed 

in [6] is summarized here and shown in Figure 4. The method 

comprises three main steps: (1) estimating the velocity field 

using Farneback optical flow, (2) extracting anomaly features 

with the extended node strength network, and (3) enhancing 

features through a morphological opening operation. This 

approach allows for the visualization of the timing and location 

of anomalous events, which result from local disturbances in 

the vector field caused by nonlinear structural vibrations. 

 
Figure 4. Flowchart of the anomaly events detection method 

 

3 ANOMALY EVENT DETECTION FOR 3D SCALED 

SHAKING TABLE TEST 

In this section, the proposed method is validated using two 

cases from a full-scale shaking table test conducted by the 

National Research Institute for Earthquake Science and 

Disaster Resilience (NIED) in Hyogo, Japan. The test included 

a 1/3 scale model of a six-story Reinforced Concrete (RC) 

building and a three-story full-scale wooden house. The 

example frames for the two cases are shown in Figure 5. 

  
(a)                                          (b) 

Figure 5. Example frames for (a) RC building (b) wooden 

house  
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TL is first applied to identify the RoUs and the results are 

represented in the black area of Figure 6. Then, Farneback 

optical flow is employed to estimate the velocity field, the 

results for the damage frame of the two cases are shown in 

Figure 6. The length of the arrows represents the instantaneous 

velocity of the pixel points, while the direction of the arrows 

indicates the velocity direction. In Figure 6(a), It is observed 

that the occurrence of shear cracks caused a distinct nonlinear 

change in velocity within the affected area. However, Figure 

6(b) reveals that only short arrows are present in the area of the 

tiny crack, making it difficult to identify the crack solely by 

evaluating the velocity field. This limitation is due to the fact 

that changes in velocity cannot uniquely identify anomalous 

events, as other regions, such as window edges and areas 

around wires and bolts, also show velocity variations. 

     
(a)                                          (b) 

Figure 6. Results of velocity field estimation: (a) RC building 

(b) wooden house  

To represent the anomaly event and enhance its features, an 

extended node strength network, and a morphological opening 

operation are utilized. After feature enhancement, as illustrated 

in Figure 7, nearly all noise areas are effectively removed and 

only the highlighted area near the crack is retained. The results 

demonstrate the occurrence of anomalous events and indicate 

improved detection effectiveness. 

      
(a)                                     (b) 

Figure 7. Results of anomaly detection: (a) RC building (b) 

wooden house  

 

4 DISCUSSION FOR COMPUTATIONAL EFFICIENCY 

In this study, a key advantage of combining TL is the 

improvement in computational efficiency. Early identification 

and removal of RoUs reduce the number of input pixels needed 

for subsequent node strength network construction. Table 1 

compares computational efficiency before and after employing 

TL for structural RoU identification. Additionally, we 

expanded our dataset for comparison by incorporating data 

from the 4-story steel structure shaking-table test mentioned in 

Figure 3. Table 1 illustrates a positive correlation between 

improvements in computational efficiency and the proportion 

of structural RoUs. The selected test cases demonstrate an 

average efficiency improvement of approximately 10%. In 

practical applications, analyzing cases with a larger proportion 

of structural RoUs results in greater efficiency gains. 

 Table 1. Comparison of computational efficiency after using 

TL. 

 

5 CONCLUSIONS 

This study proposed a novel anomaly detection algorithm that 

focused on nonlinearity occurrence by combining deep learning 

techniques with an optical flow-based extended node strength 

network. The approach stems from the observation that such 

events cause nonlinear disturbances in the velocity vector field, 

which can be estimated from video data. Additionally, 

structural RoUs, such as doors and windows, are often not the 

primary focus of structural health monitoring. Pre-identifying 

these areas before initiating damage detection can significantly 

enhance the efficiency of the process.  
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Case 

Computing time 

sec/frame Improve-

ment ratio 

RoU 

proportion 
Before  After  

Four-story steel 

building 
64 59 7.81% 8.59% 

Six-story RC 

frame building 
159 144 9.43% 9.66% 

Three-story 

wooden house 
249 224 10.04% 10.21% 


