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ABSTRACT: Although recent advances have been widely gained in UAV-based visual inspection for bridges, the accuracy and 

generalization ability of recognition model highly rely on sufficient, complete, and high-quality annotations. Current damage 

segmentation models are often trained in a fragmented manner based on substantial pixel-level labels for specific structural 

components and damage types, lacking universality and robustness under real-world open scenarios. This study establishes a 

universal unsupervised image segmentation model of multi-type component and damage for vision-based autonomous UAV 

inspection of bridges using a teacher-student network architecture. The inputs are unlabeled image pairs after data augmentation 

including random clipping, rotation, illumination transformation, and color transformation. The pre-trained backbone of original 

DINO is adopted as frozen image feature extractor to obtain high-level feature representations, and a CNN-based segmentation 

head with learnable parameters is designed to generate dense segmentation maps with strong point-wise correlations. A synthetic 

loss function, comprising a correlation loss and a contrastive loss, is proposed for model training. The proposed method is validated 

on a unified multi-scale imageset including various structural components and surface damage for cable-supported bridges and 

concrete bridges. The recognition accuracy, generalization ability, and robustness under complex background are demonstrated. 

KEY WORDS: UAV Bridge Inspection; Universal Unsupervised Segmentation; Teacher-Student Network; Cross-level Feature 

Alignment; Contrastive Learning. 

1 INTRODUCTION 

Maintaining safe operation throughout the entire life cycle of 

bridge structures is crucial. Timely and accurate identification 

of surface damage (such as cracks, corrosion, etc.) not only 

provides a basis for scientifically formulating maintenance 

strategies but also effectively prevents structural performance 

degradation, significantly reducing major safety risks like 

collapse and instability. For decades, bridge inspection has 

primarily relied on manual methods. However, this approach is 

not only time-consuming and labor-intensive but also 

susceptible to inspector experience, environmental conditions, 

and fatigue factors, resulting in issues such as strong 

subjectivity, low efficiency, and poor consistency, making it 

difficult to ensure reliability and timeliness in practical 

applications [1]. 

In recent years, computer vision technology has 

demonstrated significant advantages in image-based structural 

health monitoring and damage identification, providing an 

efficient and reliable alternative to traditional manual 

inspection methods. By integrating digital image processing 

with machine learning algorithms, computer vision enables 

automated identification and quantitative analysis of structural 

surface damage. Early research mainly focused on traditional 

image processing methods like edge detection and threshold 

segmentation, but their performance heavily relied on manual 

parameter tuning and showed limited generalization capability 

for damage features in complex environments. With 

breakthroughs in deep learning, data-driven methods 

represented by convolutional neural networks (CNNs) have 

exhibited outstanding performance in automatic feature 

extraction and damage pattern recognition, greatly improving 

the accuracy and adaptability of structural health monitoring 

systems. However, these methods still depend on manually 

designed features as input and face challenges in robustness 

across complex real-world scenarios and generalization across 

different damage types [2]. 

Deep learning achieves end-to-end automatic mapping 

between images and object annotations through deep neural 

networks, with CNNs as multi-level feature extractors being the 

most extensively studied [3-5]. Existing structural damage 

identification methods are typically developed based on 

specific datasets covering only limited damage types and 

application scenarios, resulting in constrained generalization 

capability for new damage categories or under disaster 

conditions [6-7]. Moreover, these methods often require large 

amounts of annotated data to achieve ideal performance, but the 

nonlinear and sparse nature of structural damage makes high-

quality annotated data difficult to obtain in practice [8-9]. 

Consequently, identification accuracy is easily affected by 

sample size, class balance, and damage diversity. However, 

real-world engineering applications demand models that 

maintain good generalization across diverse scenarios while 

achieving high-precision identification performance on 

unannotated data [10-11]. To overcome the limitations of 

existing methods trained separately on different datasets, it is 

necessary to develop a universal visual recognition model for 

structural damage that can accurately identify multiple damage 

types while maintaining stable performance in complex 

backgrounds and multi-scale real-world scenarios [12]. 

In the field of structural health monitoring, unsupervised and 

self-supervised learning paradigms are gradually becoming key 

technological pathways to address few-shot damage detection 
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challenges [13-14]. Currently, although contrastive learning-

driven unsupervised semantic segmentation methods have 

shown potential in general computer vision domains, their 

adaptation to bridge UAV visual inspection scenarios faces 

significant bottlenecks: on one hand, there is a need to develop 

a universal segmentation framework adapted to Transformer 

architectures; on the other hand, the challenge of pixel-level 

damage parsing in real-world environments with massive 

unannotated data must be overcome (although certain few-shot 

learning algorithms have been proposed [15-17], a proper 

number of samples with pixel-level annotations should be 

required in advance). To address these challenges, this study 

proposes a large vision model for universal structural damage 

segmentation. The main scientific contributions are 

summarized as follows: 

 (1) We propose an unsupervised structural damage 

segmentation method based on teacher-student network 

knowledge distillation, using unlabeled augmented image pairs 

as input. The dual-branch architecture incorporates pre-trained 

frozen Transformer backbones and fine-tunable CNN 

segmentation heads. 

(2) We design a dual-strategy collaborative mechanism 

combining cross-level self-supervised correlation learning and 

cross-network contrastive learning. The former achieves 

feature alignment through point-to-point correlations between 

high-level features and dense segmentation maps, while the 

latter maintains instance similarity and separability through 

feature vector comparison between teacher-student networks. 

(3) We construct a joint optimization objective integrating 

correlation loss and contrastive loss. The student branch is 

rapidly updated via gradient descent, while the teacher branch 

is stably adapted through momentum-based exponential 

moving average, achieving end-to-end fine-tuning of the 

segmentation head. 

The remainder of this paper is organized as follows. Section 

2 introduces the network architecture of the proposed universal 

unsupervised damage segmentation model. Section 3 describes 

the investigated imageset of multi-scale multi-type structural 

components and surface damage. Section 4 presents a series of 

test results to demonstrate the effectiveness, robustness, and 

generalization capability of the established model under real-

world inspection scenarios with complex background 

disturbances for cable-supported bridges and concrete bridges. 

Finally, Section 5 concludes this paper. 

2 METHODOLOGY 

The architecture of the proposed universal structural damage 

segmentation model is illustrated in Figure 1, employing an 

unsupervised learning paradigm based on collaborative 

optimization of teacher-student networks through an end-to-

end self-supervised knowledge distillation mechanism for 

effective feature learning. Distinct from conventional 

approaches dependent on manual annotations, our framework 

integrates three fundamental components: a data augmentation 

module, a Transformer-based frozen feature extraction 

backbone, and a tunable CNN segmentation head. A specially 

designed hybrid loss function combining feature-space 

correlation loss with instance contrastive loss enables the 

network to autonomously identify essential damage 

characteristics in unsupervised settings. During deployment, 

input images undergo sequential processing through the frozen 

feature extraction backbone, optimized segmentation head, and 

semantic clustering-based post-processing module to generate 

pixel-accurate structural damage segmentation results, with the 

complete pipeline demonstrating enhanced robustness for 

practical engineering applications. This integrated approach 

effectively bridges the gap between unsupervised learning and 

precise damage identification in complex real-world scenarios 

while maintaining computational efficiency throughout the 

segmentation process. 

 

Figure 1. Model architecture for universal unsupervised 

segmentation of multi-type structural component and damage. 

 

For each individual instance of input image, feature maps 

with the same dimensions of channel, height, and width are 

obtained before and after the segmentation head. For each 

branch of student and teacher networks, spatial points on 

feature maps before the segmentation head are noted as 𝑓𝑐ℎ𝑤 

and 𝑔𝑐ℎ′𝑤′ , while spatial points on feature maps after the 

segmentation head are noted as 𝑠𝑐ℎ𝑤  and 𝑡𝑐ℎ′𝑤′ , respectively. 

The feature correspondence 𝐹ℎ𝑤ℎ′𝑤′  between 𝑓𝑐ℎ𝑤 and 𝑔𝑐ℎ′𝑤′  

and segmentation correspondence 𝑆ℎ𝑤ℎ′𝑤′  between 𝑠𝑐ℎ𝑤  and 

𝑡𝑐ℎ′𝑤′  are obtained by calculating the point-wise cosine 

similarity as 

 𝐹ℎ𝑤ℎ′𝑤′ =
∑ 𝑓𝑐ℎ𝑤×𝑔𝑐ℎ′𝑤′
𝐶
𝑐=1

‖𝒇ℎ𝑤‖2×‖𝒈ℎ′𝑤′‖2

 (1) 

 𝑆ℎ𝑤ℎ′𝑤′ =
∑ 𝑠𝑐ℎ𝑤×𝑡𝑐ℎ′𝑤′
𝐶
𝑐=1

‖𝒔ℎ𝑤‖2×‖𝒕ℎ′𝑤′‖2

 (2) 

For N input images within an input batch, the feature 

correspondence tensors and segmentation correspondence 

tensors could be denoted as 𝐹1, … , 𝐹𝑁 ∈
ℛ𝐻×𝑊×𝐻×𝑊; 𝑆1, … , 𝑆𝑁 ∈ ℛ𝐻×𝑊×𝐻×𝑊  with four-dimensional 

elements of 𝐹ℎ𝑤ℎ′𝑤′  and 𝑆ℎ𝑤ℎ′𝑤′ . 

The dense semantic correlation loss L_corr is calculated 

based on feature correspondence tensors and segmentation 

correspondence tensors by 

𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶 = 𝐹ℎ𝑤ℎ′𝑤′ −

1

𝐻𝑊
∑ 𝐹ℎ𝑤ℎ′𝑤′ℎ′,𝑤′  (3) 

𝐿𝑐𝑜𝑟𝑟 = −∑ (𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶 − 𝑏)𝑚𝑎𝑥⁡(𝑆ℎ𝑤ℎ′𝑤′ , 0)ℎ,𝑤,ℎ′,𝑤′  (4) 

where 𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶  denotes the feature correspondence tensor after 

spatial centralization, b is a hyperparameter to avoid model 

collapse and ensure a positive correlation loss value for loss 

descending. 
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The contrastive loss between the teacher-student networks is 

defined as 

𝐿𝑐𝑜𝑛𝑡 = −∑ 𝑙𝑜𝑔 {
𝑒𝑥𝑝[𝑆𝑖𝑚(𝑞𝑖,𝑘+)/𝜏]

∑ 𝑒𝑥𝑝[𝑆𝑖𝑚(𝑞𝑖,𝑘𝑗)/𝜏]
𝐾
𝑗=1

}𝑁
𝑖=1  (5) 

where Sim denotes the cosine similarity between two vectors, 

𝑞𝑖  denotes the ith query feature vector obtained from the 

student branch for the ith image in a batch, 𝑘+  denotes the 

feature vector obtained from the teacher branch as the positive 

sample of the corresponding query image, N denotes the batch 

size, 𝑘𝑗 denotes the jth referenced feature vector in the feateure 

dictionary, K denotes the queue length of the preset feateure 

dictionary, 𝜏 denotes a temperature hyperparameter to enhance 

an exponential amplification effect. 

The synthetic loss function is defined by a weighted sum of 

correlation loss and contrastive loss as 

𝐿𝑜𝑠𝑠 = 𝛼𝐿𝑐𝑜𝑟𝑟 + (1 − 𝛼)𝐿𝑐𝑜𝑛𝑡  (6) 

where 𝛼 denotes the weight coefficient of the correlation loss.  

Upon completion of training, the system can directly 

generate predicted segmentation results for new test images 

using the frozen visual backbone network and optimized 

segmentation head. As shown in Figure 2, the prediction 

network incorporates a semantic clustering post-processing 

module consisting of K-means clustering and fully connected 

Conditional Random Field (CRF). Based on predefined label-

category mapping relationships, the system automatically 

associates pixel-level annotations with specific categories 

including structural components, surface damage, and 

background. For newly added categories, only a single 

annotated sample is required to update the label mapping table. 

It should be noted that as standard post-processing modules for 

unsupervised image segmentation, the specific 

implementations of K-means clustering, fully connected CRF, 

and label alignment can be referenced in existing literature. To 

highlight this study's core contribution - the construction of a 

large-scale model for universal structural damage segmentation 

- the relevant implementation details are omitted here for 

brevity. 

 

 

Figure 2. Schematic of prediction network structure with post-

processing of semantic clustering. 

3 IMPLEMENTATION DETAILS 

This study addresses the key scientific challenge of 

unsupervised semantic segmentation for multiple types of 

structural damage under complex engineering conditions, 

proposing an integrated analytical framework that combines 

multi-source environmental interference factors with intrinsic 

structural features. Specifically, by fusing multi-dimensional 

key characteristics—including environmental background 

noise interference, macro-structural morphological features, 

micro-component texture details, and spatial distribution 

patterns of cable systems—we developed a dedicated scene 

model for damage detection in typical bridge structures such as 

cable-stayed bridges and concrete bridges. As illustrated in 

Figure 3, representative damage samples from the two-level 

structural damage image database constructed in this study are 

presented. 

 

Figure 3. Representative images of hierarchical structural 

damage with multi-scale information for cable-supported and 

concrete bridges. 

A total of 20K images with varying resolutions were 

standardized to a uniform resolution of 1,024 × 1,024 pixels. 

Each resized image was subsequently partitioned into 224 × 

224 patches using a sliding window approach with a 100-pixel 

stride, thereby generating an extensive collection of image 

patches while circumventing potential feature degradation 

associated with direct downsampling. From this collection, 128 

patches were randomly sampled to constitute the input batches 

for the proposed methodology.  

It must be particularly emphasized that implementing 

traditional supervised CNN-based semantic segmentation 

models on such large-scale image patches inevitably 

encounters multiple computational challenges. Specifically, the 

exponential growth in computational complexity caused by 

high-resolution input space, coupled with the enormous manual 

annotation costs and time resources required for pixel-level 

labeling, constitutes two fundamental bottlenecks. These core 

limitations fundamentally undermine the feasibility of 

traditional supervised learning paradigms in the current 

application scenario, thereby significantly diminishing their 

practical value. 

Through extensive experimental validation and parameter 

tuning, this study has ultimately determined the 

hyperparameter configuration scheme for model training as 

shown in Table 1. It is particularly important to note that while 

the current parameter settings may not represent the global 

optimal solution, empirical research demonstrates that this 

configuration ensures the large vision model for general 

structural damage segmentation achieves satisfactory 

segmentation accuracy, maintains excellent robustness against 

complex background interference, and exhibits strong 

generalization capability for new scenarios. Based on this, the 

primary objective of this research is not to pursue the optimal 

combination of hyperparameters, but rather to systematically 

validate through experiments the technical feasibility and 

practical effectiveness of the proposed large vision model in 

achieving general structural damage segmentation in real-

world detection scenarios. 
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Table 1. Configurations of key training hyperparameters. 

Hyperparameter Variables Values 

Number of images included in each batch 128 

Dimension of feature representation after 

patch embedding 
512 

Length of query, key, and value vectors in 

attention mechanism 
64 

Number of multiple attention heads 8 

Number of stacked transformer blocks 6 

Dimensions of extracted feature maps by 

frozen visual backbone 
16, 16, 8 

Length of query and referenced feature 

vectors in preset feature dictionary 
64 

Number of feature queue size 12,800 

Positive parameter to avoid model collapse 

in correlation loss 
0.18 

Weight coefficient of correlation loss 0.67 

Temperature coefficient of contrastive loss 0.07 

Learning rate in stochastic gradient descent 

updating of student network 
5e-4 

Momentum in exponential moving average 

updating of teacher network 
0.999 

Number of training iterations 5,000 

 

To obtain quantitative evaluation metrics for semantic 

segmentation, a set of test images are pre-labelled with pixel-

level annotations, and the following pixel accuracy (PA), mean 

intersection-over-union (mIoU), and frequency-weighted 

intersection-over-union (FWIoU) are calculated by 

 PA
ii

i

ij

i j

p

p
=



 (7) 
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 (9) 

where ijp  denotes the number of pixels in the ith class (actual 

category) classified to the jth class (predicted category), the 

total number of pixel categories equals CN  + 1, including 1 for 

the background and CN  for the foreground, and CN  is 

determined by actual label categories of selected test images. 

The proposed large vision model for universal structural 

damage segmentation is trained and tested under the software 

environment of PyTorch 1.8 and Python 3.7 on a 48G GPU of 

NVIDIA RTX A6000, and the average training time with the 

reported hyperparameter configurations is about 48 hours to 

obtain a well-trained model. 

4 RESULTS AND DISCUSSION 

Figure 4 shows some representative prediction results on 

coarse-grained segmentation of main bridge structures: (a) for 

cable-supported bridges and (b) for concrete bridges. The test 

PA, mIoU, and FWIoU are 97.17%, 91.47%, 94.64% for cable-

support bridges and 92.72%, 82.46%, 86.98% for concrete 

bridges. The results show that main components of pylon, 

cable, girder, deck, and pier can be generally identified from 

entire images of bridge structures. 

 

    

    

    

    

 

Figure 4. Representative predictions on coarse-grained 

segmentation of main bridge structures. 

 

Figure 5 shows some typical prediction results of fine-

grained damage segmentation on bridges, including concrete 

cracks, spalling, exposed rebar, seepage, salt damage, rebar 

fatigue cracks, coating peeling, and corrosion. Table 2 lists the 

evaluation metrics. The results show that this method can 

effectively detect various bridge damages from close-range 

images. Moreover, it can distinguish between combined 

concrete spalling and rebar exposure, as well as separate severe 

and slight corrosion areas. 
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Figure 5. Representative predictions on fine-grained multi-

type structural damage for bridges. 

Table 2. Evaluation metrics for multi-type structural damage 

segmentation of bridges. 

Bridge structural 

damage type 
PA mIoU FWIoU 

Concrete crack 96.19% 69.85% 93.35% 

Concrete spalling/rebar 

exposure 
98.97% 74.12% 98.30% 

Water seepage/saltpetering 88.28% 75.15% 79.21% 

Steel fatigue crack 96.21% 68.07% 94.69% 

Coating spalling/steel 

corrosion 
91.07% 75.39% 84.83% 

Fire burning 95.85% 76.22% 93.02% 

 

Figure 6 shows some representative prediction results on new 

bridge components and ship collision damage, and Table 3 

shows the corresponding evaluation metrics. The results 

suggest that the proposed method have achieved generalization 

capacity on unseen categories of bridge components and 

damage apart from the existing structural components and 

surface damage included in the training imageset. Figure 12(a) 

shows that despite some misrecognitions of background boats 

with similar color to cable clamp, key components of cable-

suspension bridges such as cable, suspender, cable clamp, and 

bolts on steel plate can be individually recognized. Figure 12(b) 

demonstrates that even for a never-appeared emergency of ship 

collision, the deck scratch, buckling and deformation of steel 

plate, coating spalling, and handrail failure fragments could be 

generally identified. It should be noted that some 

misrecognitions have been observed between the cable plane 

and distant background and that spurs-like pixels occur along 

the boundary of damage regions. Possible reasons might 

attribute to similar material and morphological features with 

indistinguishable member edges. Geometrical constraints of 

different component and damage regions would be further 

considered to address these issues in future study. 
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Figure 6. Representative predictions on new bridge 

components and ship collision damage. 

Table 3. Evaluation metrics for segmentation of new bridge 

components. 

New bridge component 

type 
PA mIoU FWIoU 

Bolt 81.39% 63.88% 70.97% 

Steel plate 82.25% 69.24% 70.21% 

Cable 96.23% 78.87% 93.84% 

Suspender 96.70% 81.51% 94.37% 

Cable clamp 95.19% 61.46% 90.96% 

 

Furthermore, the effectiveness and necessity of the proposed 

method are demonstrated via performance comparisons 

between the proposed model and SCSegamba [18], a recently-

reported supervised structural damage segmentation model. 

The model architecture of SCSegamba is shown in Figure 7. 

The core architecture incorporates a structure-aware visual 

state space (SAVSS) module and a multi-scale feature 

segmentation (MFS) head. The SAVSS captures continuous 

textures of multi-directional cracks through an innovative 

structure-aware scanning strategy and dynamically enhances 

crack features using a lightweight gated bottleneck convolution 

(GBC). Meanwhile, the MFS integrates multi-scale 

information to generate refined segmentation maps. Using a 

unified dataset (containing both concrete cracks and 

spalling/exposed reinforcement damages), we trained 

SCSegamba for 100 epochs using the default training setups 

and selected the optimal model (with minimal validation loss) 

for evaluation. Quantitative results demonstrate that our 

method outperforms SCSegamba across all three metrics (PA, 

mIoU, and FWIoU) for both crack and spalling/rebar exposure 

damage types (see detailed values in Table 4). 

Figure 8 presents typical comparative results between the 

proposed method and SCSegamba in structural damage 

segmentation. The experimental results demonstrate that 

compared to the blurred boundaries and missed reinforcement 

detections generated by SCSegamba, our method can more 

accurately capture fine crack branches and complex boundary 

contours of spalling areas. Particularly in the identification 

tasks of concrete spalling and exposed reinforcement damage, 

the proposed teacher-student network architecture effectively 

enhances recognition robustness in weak-texture regions 

through the synergistic optimization mechanism of feature 

distillation and contrastive learning. Experimental results 

indicate that this method can precisely capture edge 

irregularities in spalling areas while maintaining high 

sensitivity to exposed reinforcement textures in low-contrast 

environments, ultimately achieving pixel-level precision in 

damage segmentation. 

 

Figure 7. Model architecture of SCSegamba as comparative 

validation (reproduced from [18]). 

Table 4. Performance comparison with supervised crack 

segmentation model SCSegamba on multi-class damage. 

Method 
Bridge structural 

damage type 
PA mIoU FWIoU 

SCSegamba 

[18] 
Concrete crack 

96.11% 65.20% 92.77% 

Ours 96.19% (↑) 69.85% (↑) 93.35% (↑) 

SCSegamba 
[18] Concrete spalling/ 

rebar exposure 

82.38% 60.47% 85.43% 

Ours 95.19% (↑) 61.46% (↑) 90.96% (↑) 

 

Input Ours SCSegamba [18] 

   

   

Figure 8. Some representative comparative results of 

structural damage segmentation between the proposed method 

and SCSegamba. 
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5 CONCLUSIONS 

This study proposes an unsupervised structural damage 

semantic segmentation framework based on relational learning 

and contrastive learning. By constructing a cross-scale feature 

interaction mechanism and a dynamic negative sample mining 

strategy, the framework achieves robust recognition and pixel-

level localization of multiple types of structural damage in 

complex engineering scenarios without manual annotation. It 

effectively addresses the strong dependency of traditional 

supervised segmentation paradigms on large-scale fine-grained 

annotated data and the resulting limitations in model 

generalization. The main research conclusions are as follows: 

(1) Based on a teacher-student network knowledge 

distillation framework, a unified semantic segmentation 

architecture for multiple types of structural components and 

surface damages was constructed. Each branch of the teacher-

student network contains a pre-trained Transformer visual 

backbone and a fine-tunable CNN segmentation head. 

(2) Using randomly augmented unlabeled image pairs as 

input, a pre-trained DINO backbone is employed as a frozen 

feature extractor to generate high-level feature maps. A CNN 

segmentation head with learnable parameters is designed to 

produce dense segmentation maps that maintain strong point-

wise correlations with the high-level feature maps. 

(3) Proposed an inter-layer correlation learning strategy 

between high-level feature maps from the frozen backbone 

network and dense segmentation maps from the fine-tuned 

segmentation head, achieving cross-level feature alignment for 

different structural components and damage regions within a 

single image. Developed a contrastive learning module with 

normalized feature aggregation between teacher-student 

branches to quantify intra-instance similarity and inter-instance 

discriminability across different images. 

(4) A synthetic loss function comprising a correlation loss 

and a contrastive loss is designed. The segmentation head is 

efficiently fine-tuned by fastly optimizing the student network 

with direct error backpropagation by gradient descent and 

stably adapting the teacher network with exponential moving 

average by momentum updating. 

(5) This study constructs a multi-scale image dataset 

encompassing various types of bridge structures and their 

damage patterns. Through systematic comparative experiments, 

the proposed model has demonstrated outstanding 

segmentation accuracy, strong generalization capability, and 

excellent robustness under complex background interference. 

The experimental results indicate that the large-scale visual 

model developed in this study has successfully achieved deep 

visual understanding of unlabeled bridge component damage 

images and effectively mastered their unsupervised learning 

mechanism. 
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