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ABSTRACT: Vision-based vibrational monitoring aims to extract the modal parameters of civil structures—such as natural 

frequencies—from recorded video data for Structural Health Monitoring (SHM) purposes. The use of drones for vision-based 

vibrational monitoring is particularly promising, as drones can access vantage points for video recording that may otherwise be 

difficult to reach. However, certain drawbacks exist, including potential limitations in resolution, stability, and environmental 

sensitivity. This paper explores the capabilities, opportunities, and limitations of using drones for vision-based vibrational 

monitoring. To evaluate technological limits, a target with controlled displacement is used to test various combinations of target 

distances, displacement amplitudes, and displacement frequencies. Additionally, factors such as environmental conditions and 

drone hardware are considered. The study defines the practical limits of this approach, aiming to determine the minimum 

displacement of a vibrating bridge that can be detected by drones. Case studies from the literature are used as benchmarks to 

identify the dynamic properties of different types of bridges. 

KEY WORDS: drones, structural health monitoring, computer vision 

1. INTRODUCTION 

The deterioration of transportation infrastructure and the 

limited availability of resources have made Structural Health 

Monitoring (SHM) essential for supporting bridge 

management. Within the framework of SHM, vibrational 

monitoring relies on the global dynamic response of a structure 

—typically extracting modal parameters such as natural 

frequencies and mode shapes— to identify damage [1]. 

Traditionally, vibrational monitoring is performed using fixed 

systems installed on structures. However, the high cost of 

components and maintenance makes this approach viable only 

for a limited number of bridges [2] . Therefore, there is a 

growing demand for affordable, reliable, portable, and reusable 

SHM instrumentation to reduce monitoring costs. Among 

emerging sensing technologies, commercial devices such as 

smartphones, cameras, drones, and robotic sensors present 

promising applications [3]. For instance, smartphones can 

gather vibrational measurements with embedded 

accelerometers [4]. Moreover, advancements in computer 

vision techniques enable the extraction of displacement and 

vibrational data from videos recorded by commercial 

smartphone and drone cameras [5]. While smartphones and 

fixed cameras need the physical presence of an operator to 

record videos close to the target point, drones can be controlled 

remotely and can reach vantage viewpoints without 

compromising operator safety [6]. Moreover, in addition to 

vibrational measurements, drones can gather 2D images of 

multiple bridge components during the same inspecting 

session. When combined with advanced computer vision and 

machine learning techniques, these images can enable a fast 

and efficient system for surface damage and crack detection 

[7], [8] However, being flying objects, drones experience in-

flight vibrations and unwanted movements (referred as 

egomotion) that may interfere with their ability to record small 

structural vibrations of the bridge. As highlighted in [9], there 

is still the need to assess the field of applicability of commercial 

drone technology for bridge dynamic identification. The goal 

of this study is to evaluate the capabilities and limitations of 

drone-based vision systems for vibrational monitoring. The 

final scope is to define the practical limits of their application 

in identifying the dynamic behavior of bridges. Two stages are 

involved. Firstly, a literature survey identifies the typical range 

of frequencies and displacements for bridges with different 

materials, structural typology and span. Secondly, 

experimental tests are performed to assess the limits of 

applicability of vision-based approach using drones. The 

results of the tests are compared with the displacement and 

frequency range exhibited by real-scale bridges. 

This paper is structured as follows. Section 2 describes the 

typical range of vibrational displacements and frequencies for 

different types of bridges. These ranges are then compared in 

section 3 with drone vision-based system capabilities 

determined with laboratory tests. Results are critically 

discussed in section 4 while  section 5  presents conclusions. 

The overall flowchart is shown in Figure 1. 

 

 

Figure 1: flowchart of the paper. 
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2. LITERATURE SURVEY 

This section reviews existing literature to evaluate the typical 

behavior of bridges in terms of deflections and natural 

frequencies. This preliminary analysis, combined with the 

results presented in Section 3, will support the assessment of 

the feasibility of a vision-based approach using drones. Table 1 

presents displacement and frequencies data for various types of 

bridges, including pedestrian bridges, masonry bridges, 

concrete bridges, and cable-stayed bridges. The row of the table 

are organized in ascending order based on the length of the  

Table 1. Vibrational displacements and frequencies of different types of bridges, ordered by main span length. 

Reference Bridge Type 

and main 

span [m] 

Load type Static 

deflection 

[mm] 

Dynamic 

deflection 

[mm] 

First natural 

frequency 

[Hz] 

and mode 

type 

Second 

natural 

frequency 

[Hz] and 

mode type  

Measurement type 

[10] 

 

Masonry Arch 

Bridge, 7.7   

Train (weight 

of each boogie 

34 ton) 

< 1 n.a. n.a. n.a. Fibre Bragg Grating 

cables and Digital 

Image Correlation 

[11] Concrete 

bridge, first 

span 13.7  

2-axle truck a 

3-axle bus 

0.25 (truck) 

and 0.45 

(bus)  

< ±0.05 n.a. n.a. Fiber Optics and 

camera 

[12] Steel-concrete 

bridge, 19 

32-ton truck 3  < ±0.04 n.a. n.a. LVDT and 

accelerometers 

[13] Pedestrian 

bridge, 23 

Pedestrians 

(single jump) 

n.a. ± 2 3.86  5.87  Vision-Based on drone 

[14] Steel road 

bridge, 25 

Heavy trucks 6 ± 1.5 3 n.a. Vision-Based fixed 

[15] Pedestrian 

bridge, 27 

Single person 

jumping 

n.a. ± 2 2.98 

(bending) 

3.70 (torsional) Vision-Based 

[16] Concrete, 32  Heavy trucks < 5 ±1 3.48  n.a. Vision-Based 

[17] Continuous 

steel-concrete 

bridge, 40+40  

40-ton truck  < 41 ±1 2.7 (not 

specified) 

4.7 (not 

specified) 

Vision-Based, on 

drone, corrected with 

on-camera 

accelerometers 

[18] Continuous 

steel bridge, 

4x45 

30-ton and 40-

ton truck 

<5  < ±0.5 Between 2 

and 3 

n.a. Vision-Based 

[19] PC railway 

bridge, 50  

High-speed 

train 

1.5 < ±0.2 3.19 

(symmetric 

bending) 

3.87 (torsional) Laser velocity 

displacement 

transducer (LVDT) 

[6] Suspended 

pedestrian 

bridge, 67  

Pedestrians 

(jumping) 

n.a. ±15mm n.a.  0.5  Vision-Based on drone 

 

[20] Concrete 

Bridge, 110  

8-ton truck 5.65  n.a. n.a. n.a. Vision-Based on drone 

[21] Single tower 

suspension 

bridge, 248  

Heavy truck 40  n.a. n.a. n.a. Vision-Based 

[17] Cable-stayed 

railway bridge, 

432  

High-speed 

train and 

freight train 

30 (high-

speed) and 

75 (freight) 

<±3 0.336 

(vertical 

bending) 

0.764 (vertical 

bending) 

Vision-Based, 

corrected with on-

camera 

accelerometers, 

distance 150 m 

[22] Suspended 

bridge, 1410 

(main span) 

2x heavy 

trucks 

200  n.a. n.a. n.a. Vision-Based fixed 

camera 

 

 

main span. Deflections are divided into static and dynamic: 

static deflections are caused by the quasi-static presence of the 

load (for instance a truck when the truck itself is on the bridge), 

while dynamic deflections are the residual free-vibration 

amplitudes experienced around the static deflection baseline 

and once the load is released. This distinction is important 

because static deflections are typically an order of magnitude 

larger than dynamic deflections, making them easier to 

measure. However, static deflections are not suitable for the 

dynamic characterization of the bridge (i.e., extraction of 

natural frequencies). For this purpose, dynamic deflections 

during the transient period after unloading are typically used. 

In Table 1, static deflections are presented with a positive sign, 

meaning they are pointing downwards, while dynamic 

deflections are reported with the ± sign, referring to their 

oscillation around the static deflection. It is possible to observe 
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the significant variation of the displacement range (from <1 

mm to ≈200 mm) for different combinations of span and 

stiffness. All the deflections are caused by defined forcing 

loading conditions (for instance a truck or a train). Conversely, 

vibrations caused by environmental solicitations are generally 

too small to be detected by a vision-based system [23]. This 

poses a challenge for dynamic extraction, as the time frame 

valid for the extraction of modal parameters is just limited 

within a few seconds after the excitation. Moreover, the loading 

itself may present some peculiar periodicity that is not related 

to the bridge, therefore affecting the result with spurious peaks 

in the spectral content. This is the case of trains passing over a 

bridge, where the periodicity is given by boogies passing over 

the sampling point [19], or of people walking over a pedestrian 

bridge, where walking has specific frequency. 

Table 1 also presents the first two identified frequencies, when 

available. The peaks of the bridge frequency spectrum should 

be compared with the dominant peaks of the drone egomotion 

spectrum. If the bridge frequency peak overlaps with the drone 

egomotion peak, it becomes more difficult to accurately capture 

the dynamic behavior of the bridge using drones. 

From Table 1, it emerges that, when a conventional load such 

as a heavy truck passes, static deflections are between 1/20000 

and 1/5000 of the bridge span, while dynamic deflections are 

between 1/50000 and 1/10000 of the bridge span. These 

estimates provide a useful reference for the expected vibration 

amplitudes of a bridge and help define the range of applicability 

of the vision-based approach using drones presented in Section 

3.  

3. LABORATORY TESTS 

The laboratory tests were conducted using a commercial DJI 

MINI 2 drone, which was directed at a moving target oscillating 

vertically. Two experimental setups were tested. In the first 

setup, the moving target was simulated on a screen, 

representing a concrete-like surface with a sinusoidal 

displacement time history in the vertical direction, controlled 

by user-defined displacement amplitude and frequencies. In the 

second setup, the target was a physical point subjected to 

vertical sinusoidal displacement driven by a pre-programmed 

shaker, see Figure 2. The tests aim to determine under which 

conditions the input (known) oscillation frequencies can be 

identified from the resulting time-domain and frequency-

domain plots. For the video-target case, displacements ranged 

from ±0.25 mm to ±10 mm, with frequencies between 0.5 Hz 

and 15 Hz. For the physical-target case, displacements ranged 

from ±0.5 mm to ±2.5 mm, with frequencies between 1 Hz and 

5 Hz. In both cases, the drone, with its camera recording the 

target, was flown at varying distances between 1.5 m and 10 m. 

Different video lengths were tested, ranging from 10 to 60 s. 

Videos were recorded in 4K resolution (3840 × 2160) at 30 

frames per second (fps). Tests were conducted both indoors and 

outdoors, yielding similar results. Under outdoor conditions, 

the increased drone oscillations caused by gentle wind gusts 

were compensated for by more accurate positioning provided 

by the Global Navigation Satellite System (GNSS). In both 

cases, also a fixed target was tracked for the sake of measuring 

the drone egomotion. 

From the recorded video, a script using Kanade-Lucas-Tomasi 

tracking [24], [25], was employed to extract the time history of 

vertical and horizontal displacements. From these displacement 

data, velocities and acceleration were also computed. Finally, 

the Fast Fourier Transform (FFT) algorithm was applied to the 

displacement, velocity, and acceleration data to analyze their 

frequency content. 

Figure 2 presents the results of a test conducted in the second 

setup. In the test, the drone was flown at a distance of 10 m, 

recording the vertical oscillation of the target, which had an 

amplitude of ± 2.5 mm (total range 5 mm) and a frequency of 

3 Hz. In Figure 3, time histories of displacements, velocities 

and accelerations of a fixed reference target (orange) and the 

oscillating target (blue) are shown, in both horizontal (X) and 

vertical (Y) direction. The displacement of the fixed target is 

exclusively due to drone egomotion. The low-frequency  

 

 
Figure 2. Experimental setup: (a) Drone and targets; (b) Detail of targets. 
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Figure 3. Time histories for a point with 5 mm / 3 Hz oscillation; drone camera at 10 m distance. Time histories of: 

displacement, (a) x direction and (b) y direction; velocity, (c) x direction and (d) y direction; acceleration, (e) x direction and (f) 

y direction.

 

oscillations, especially in the X direction, are due to drone 

egomotion. Conversely, high frequency vibrations of the 

moving target are due to the shaker user-defined vibrations. 

Figure 3 shows spectra of displacement (a), velocity (b) and 

acceleration (c) in horizontal and vertical direction, for the time 

histories shown in Figure 2. In Figure 3, a prominent peak in 

the frequency spectrum of the vertical acceleration and velocity 

corresponds to the shaker's oscillation frequency. 

 

Results from all the tests provide valuable insights. In 

particular, some quantities have proven more effective for 

analyzing the results. Spectra of acceleration and velocity are 

less sensitive to low-frequency disturbances, resulting in sharp 

and easily detectable peaks. Conversely, spectra of 

displacement tend to present less distinct peaks near the 

frequency of interest. As the frequency of the input excitation 

increases, the spectrum of acceleration becomes clearer, while 

the spectrum of velocity becomes less distinct. As a general 

rule, if the spectrum of acceleration does not allow for 

capturing the peak, the spectra of velocity and displacement are 

unlikely to succeed either. For this reason, the spectrum of 

acceleration is used as the primary means for identifying the 

frequency of interest.  

The results are summarized in presence of moderate noise, yet 

low enough to avoid missing real and distinguishable peaks. 

Results confirm that for the range of frequency above 3 Hz the 

performance of vision-based tracking is optimal, and sub-

millimetric displacements can be captured. On the other hand, 

at lower frequencies, the drone non-compensated egomotion 

(which typically falls within the 0–2 Hz range) negatively 
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affects the results. In this low-frequency range, only 

displacements with larger amplitudes are detectable if 

egomotion compensation are applied. Drones with better optics 

might have a wider range of detectable displacements, while 

heavier drone might suffer less from egomotion disturbance. 

Table 2, where the comparison is shown for a distance of 1.5 

m, that is a compromise between optical precision and safety 

distance to avoid collision, using data from both setups. For 

simplicity, the results have been categorized into two groups: 

Yes (Y) when the peak in the acceleration spectrum was clearly 

visible, and No (N) when the identification was uncertain. 

There are several criteria for peak detection [26]. In this study, 

the criterion used to distinguish between Yes and No involved 

calculating the ratio between the peak value and the average 

signal in the spectrum. If the ratio exceeded 5, the result was 

marked as Yes; otherwise, it was marked as No. The threshold 

of 5 was selected because it is high enough to allow clear 

identification of the peak even in the 

 

Figure 4. Spectra of (a) displacement, (b) velocity, (c) 

acceleration, for horizontal (X) and vertical (Y) displacement, 

calculated using FFT algorithm, for a point with 5 mm / 3 Hz 

oscillation; drone camera at 10 m distance. 

presence of moderate noise, yet low enough to avoid missing 

real and distinguishable peaks. Results confirm that for the 

range of frequency above 3 Hz the performance of vision-based 

tracking is optimal, and sub-millimetric displacements can be 

captured. On the other hand, at lower frequencies, the drone 

non-compensated egomotion (which typically falls within the 

0–2 Hz range) negatively affects the results. In this low-

frequency range, only displacements with larger amplitudes are 

detectable if egomotion compensation are applied. Drones with 

better optics might have a wider range of detectable 

displacements, while heavier drone might suffer less from 

egomotion disturbance. 

Table 2. Range of detectability of frequencies. 

 
Frequency [Hz] 

0.5 1 2 3 7 10 13 

D
is

p
l.

 [
m

m
] 

±0.25 N N N Y Y Y Y 

±0.50 N N N Y Y Y Y 

±0.75 N N N Y Y Y Y 

±1.00 N N Y Y Y Y Y 

±5 N N Y Y Y Y Y 

±10 N Y Y Y Y Y Y 

 

4. CRITICAL DISCUSSION 

The results obtained in section 3 can be critically compared 

with the data presented in section 2. When a heavy load passes 

over a bridge, the resulting static displacement is typically a 

few millimeters; once the load is released, the amplitude of free 

vibrations usually falls below 2-5 mm. In a controlled 

laboratory test, a low-cost drone demonstrated the ability to 

detect the dynamic behavior of vertically oscillating targets 

even for oscillations of less than 1 mm, provided that the free 

vibration frequency is above 2 Hz — allowing for the 

decoupling of drone egomotion from target vibrations. Based 

on these findings, drones might be capable of identifying the 

first frequency of selected bridges, provided that (i) the bridge 

is loaded by a heavy vehicle, (ii) the bridge is sufficiently 

flexible, and (iii) its first natural frequency does not coincide 

with the dominant frequencies of the drone's egomotion. Given 

those constraints, bridges that might be suitable for the 

capability of the existing drone technology are: 

• Pedestrian bridges spanning more than 20 m, as those 

presented in [13], [15]; 

• Slender mid-span concrete and steel bridges, spanning  

more than 40 m, as those presented in [16], [17]. 

Conversely, short-span bridges and arch bridges of all materials 

are typically too stiff to exhibit significant displacement. 

Moreover, long-span suspended and cable-stayed bridges 

typically have low frequency modes that overlap with drone 

egomotion peaks, hindering vision-based dynamic 

identification with drones. It must be remarked that results from 

Table 2 are based on a controlled environment with sinusoidal 

oscillations; in contrast, the free vibrations of real bridges are 

less regular and, therefore, more challenging to be captured. 

It must also be noted that the experiment was performed using 

an entry level commercial drone, weighing less than 250 g and 

costing less than 500€. Using a superior category drone could 

improve the results for three key reasons: (i) higher quality 

camera,  (ii) reduced oscillations due to increased weight, and 

(iii) more stable hovering with enhanced gimbal stabilization. 

A list of suitable drones with their specifications is provided in 

Table 3. It must be remarked that drone weighting less than 250 
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grams can be flown with less restrictions in European Union, 

while heavier drones typically require pilot training.  

 

Table 3. Commercial drone specifications. 

Model Year Weight 

(g) 

Camera Obstacle 

Avoidance 

Cost (€) 

DJI 

Mini 2 

2020 249 12 MP, 

4 K/30 fps 

Downward ~450 

DJI 

Mini 4 
Pro 

2024 249 48 MP, 

4 K/60 fps; 
HDR 

Omni-

directional 

~800 

Autel 

Evo 
Nano + 

2023 249 50 MP, 

4 K/30 
 fps 

Forward/ 

Backward 

~800 

Potensic 

Dreamer 

Pro 

2022 745 12 MP, 

4 K/30 fps 

None ~500 

DJI Air 3 2023 720 24 MP wide + 

5 × tele 

Omni-

directional 

~1,100 

DJI 

Mavic 3 
Pro 

2022 895 4/3″ 20 MP + 

tele + wide 

Omni-

directional 

~2,100 

 

Results could be improved by applying inertial-based 

egomotion compensation using data from accelerometers [6] or 

vision-based egomotion compensation using external reference 

points, such as background features [27]. However, most 

commercial drones, including the DJI MINI 2, do not allow 

access to accelerometric data, making inertial-based egomotion 

compensation unfeasible. 

 

5. CONCLUSIONS  

This study presented a comparison between bridge dynamic 

behavior and capabilities of drone vision-based dynamic 

monitoring. The literature review assessed the typical dynamic 

displacement ranges of bridge with varying length, material and 

static scheme. Laboratory tests validated the usage of vision-

based dynamic monitoring on drones for vibrations happening 

with frequencies above 2 Hz and displacement ranges above 1 

mm. These values match with properties of pedestrian bridges 

and of slender mid-span concrete and steel bridges. Further on-

field tests should be conducted to verify the applicability to real 

cases. Improving egomotion compensation is expected to 

enhance the accuracy of dynamic identification using drones.  

The need to perform dynamic monitoring, with the constraint 

of the presence of a passing vehicle, introduces new challenges, 

such as the need to perform vibrational monitoring using very 

short and transient time histories, which falls outside the 

traditional framework of operational modal analysis.  
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