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ABSTRACT: The inspection, maintenance and monitoring of existing infrastructure are critical aspects for ensuring a proper 

structural performance during their lifespan, also guaranteeing their capacity vs. the ultimate limit state. The use of structural 

health monitoring systems has become increasingly important for managing infrastructural assets, not only to detect structural 

damages and degradation phenomena but also to evaluate the performance of structures subjected to retrofit interventions. This is 

achieved using signal processing techniques that integrate statistical methods and machine learning algorithms within the 

framework of statistical pattern recognition. The proposed framework introduces a novel statistical analysis framework aimed at 

characterizing the normal behaviour of structures, detecting potential damage development. The method is applied to a suspended 

steel truss healthcare facility, demonstrating its effectiveness in characterizing its typical structural behaviour, detecting any onset 

of possible structural decay. While the method is demonstrated on a specific case study, it is designed to be adaptable to a wide 

range of structural systems. The ultimate objective is to develop a reliable analysis tool for the early detection of damage, thereby 

enhancing the efficiency of maintenance strategies and ensuring long-term structural safety. 

KEY WORDS: Structural health monitoring, statistical pattern recognition, damage detection, data analysis. 

1 INTRODUCTION 

Infrastructure systems play a crucial role in modern society, 

making it essential to ensure their functionality under both 

normal and extraordinary loading conditions. Maintenance, 

inspections, and structural monitoring are fundamental for 

preserving resilience [1]. In recent decades, traditional 

inspection systems have been increasingly replaced by 

structural health monitoring (SHM) systems, particularly for 

structures that are highly exposed to atmospheric actions and 

external loads, such as bridges and wind turbines [2], but also 

for historical buildings [3], [4]. SHM has been introduced to 

support owners and authorities to find optimal life-cycle 

management solutions and, ultimately, to prevent structural 

failures. This is achieved through a damage identification 

strategy, which encompasses the detection, diagnosis, and 

prognosis of damage [5]. 

These systems rely on the implementation of a monitoring-

based strategy, which includes real-time measurement of 

structural responses and data analysis to identify anomalies 

and/or damage at an early stage [6]. In this context, damage is 

defined as any alteration in the material and/or geometric 

properties of bridge components that negatively affect the 

bridge’s current or future service performance and safety [5]. 

Another significant application of SHM systems involves the 

assessment of retrofit interventions on existing structures. 

Specifically, SHM can be used to determine the most suitable 

intervention strategy, evaluate the structural response after the 

intervention, and monitor the structure’s behaviour throughout 

the different phases of the intervention [7], [8]. 

This study proposes a robust framework for processing SHM 

data from existing infrastructure, with the goal of enabling 

early detection of structural anomalies or damage. The 

proposed methodology combines time series modelling using 

statistical algorithms for the characterization of normal 

structural behaviour, filtering out environmental influences—

such as temperature—and identifying deviations indicative of 

potential structural issues.  

The manuscript is structured as follows: Section 2 describes 

the case study and presents the initial analyses conducted on the 

structure; Section 3 introduces the SHM data and provides 

preliminary evaluations; Section 4 details the proposed data 

analysis framework and its application to the case study; 

finally, Section 5 presents the conclusions and outlines 

directions for future research. 

2 DESCRIPTION OF THE CASE STUDY 

The analysed structure is a suspended steel truss that serves 

as the roof of a strategic infrastructure located in northern Italy. 

The building was completed in 2008. This structure is 

particularly complex because, as illustrated in Figure 1, the 

truss system supports the upper three floors through steel 

columns subjected to tensile stresses. The roof is directly 

connected to continuous concrete walls that extend from the 

foundations to the roof. 

The building, and specifically its roof, underwent a retrofit 

intervention aimed at enhancing the strength of the connections 

within the roof structure. Following the retrofit process, the 

installation of a SHM system was defined with the objective of 

assessing the effectiveness of the strengthening interventions, 

monitoring the real time safety conditions of the structure, and 

supporting infrastructure owners in identifying optimal life-

cycle management solutions. 
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 Operational modal analysis of the case study 

Before the design of the SHM system an operational modal 

analysis (OMA) was performed with the aim of identify 

dynamic parameters of the steel truss structure and better 

understand the complex behaviour of the entire steel structure. 

This type of analysis is commonly performed on various types 

of structures like bridges [9], historical buildings [10], and 

timber structures [11]. 

The OMA was performed by installing eight piezoelectric 

monoaxial accelerometers in different positions and 

configurations on the roof, resulting in a total of 33 

measurement locations. The results of the modal identification 

are presented in Figure 2.  

 

  
1.616 Hz 1.947 Hz 

  
2.539 Hz 5.078 Hz 

Figure 2. First mode shapes of the structure 

These results indicate that the longitudinal and transverse 

modes exhibit a behaviour involving the overall structure, 

whereas vertical modes are related to individual truss elements, 

without demonstrating a global structural response.  

Table 1 presents the modal frequencies and the corresponding 

complexity of the mode shapes obtained from the OMA 

analysis. The analysis was conducted using the frequency 

domain decomposition method with Artemis Modal Pro 

software. 

 

 

 

Table 1. Principal vibration frequencies 

Mode type 
Frequency 

[Hz] 

Complexity 

[%] 

1st Longitudinal 1.66 0.899 

1st Transversal 1,953 1,741 

2nd Transversal 2,539 5,886 

1st Vertical 5,078 18,075 

2nd Vertical 16.992 6.052 

3rd Vertical 17.969 19.657 

 Description of the monitoring system 

The SHM system was installed in 2021 to monitor both static 

and dynamic parameters, enabling the acquisition of the 

structure's modal characteristics and the evaluation of stress in 

the most heavily loaded elements of the truss roof. 

Additionally, thermocouples and ambient temperature sensors 

were implemented to assess the environmental conditions of 

the site, as temperature is one of the primary sources of 

variability in structural systems [12]. The setup for the analysis 

of vibration characteristics was based on the results of the 

OMA analysis reported in section 2.1. In this context, 11 

uniaxial piezoelectric accelerometers were installed on the steel 

truss elements.  

Ambient temperature sensors were installed in two different 

locations to assess variations in ambient temperature and 

humidity within the roof structure. Additionally, a wind sensor 

was used to investigate potential interactions between this 

external load and the structural behaviour of the building.  

The data acquisition system selected for the monitoring 

system is structured around a primary acquisition unit (master), 

which is connected to the infrastructure’s LAN for remote data 

transmission. This master unit is linked to two subordinate units 

(slaves) via a backbone running along the extrados of the roof, 

which, in turn, are connected to both static and dynamic 

sensors. Figure 3 shows the configuration of the SHM system 

implemented for the case study. 

The evaluation of stresses was conducted through the 

installation of 24 vibrating wire strain gauges on the truss 

elements, equipped with an internal temperature sensor, 

complemented by 4 steel thermocouples to assess the influence 

of temperature on the steel elements. Both types of sensors 

were welded onto the steel elements of the roof structure, as 

shown in the configuration presented in Figure 4. A relevant 

Figure 1. Schematic representation of the structure 
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number of sensors was installed on the vertical steel elements 

connecting the lower floors to the roof, as these components are 

critical to the floor stability. 

 

 

Figure 3. Configuration of the SHM system 

 

 

Figure 4. Typological configuration of vibrating wire strain 

gauges and thermocouple sensors in the truss structure 

3 ANALYSIS OF THE MONITORED DATA 

In this paper, only the data related to the static sensors are 

presented, with a particular focus on the analysis of strain 

sensor measurements.  

Figure 5 illustrates the strain behaviour over a three-year 

period for five sensors. In some of that, such as VW.01 and 

VW.03, strain variations closely follow seasonal temperature 

fluctuations. Conversely, in other cases, such as VW.02, the 

strain behaviour appears independent of temperature 

variations.  

This observation is further emphasized by analysing the 

correlation between strain sensor data and temperature 

variations. In Figure 6 the strain measurements are plotted 

against ambient temperature fluctuations to assess the extent to 

which thermal effects influence structural behaviour. This 

comparative analysis helps distinguish temperature-dependent 

responses from other potential factors affecting strain 

variations. 

 

 

Figure 5. Strain sensors behaviour – block A 

 

 

 Figure 6. Representation of the strain observation against the 

temperature value 

The behaviour of some sensors exhibits a linear correlation 

with temperature, whereas others do not show this dependence, 

as observed in the cases of VW.02 and VW.06. Noticeably, 

VW.02 appears to be completely uncorrelated with 

temperature; however, distinct patterns can still be identified. 

Specifically, its behaviour reflects a horizontal translation of an 

inclined line along the horizontal axis. 

This pattern is influenced by temperature variations 

occurring during specific periods of the year. When analysing 

the behaviour of an individual sensor in relation to temperature, 

with measurements categorized by month (Figure 7), it 

becomes evident that each period of the year corresponds to a 

distinct structural state of the element. Furthermore, after one 

year, the sensor's behaviour tends to return to a state similar to 

that of the previous year, indicating a recurring annual trend. 

After an on-site inspection, it was found that this behaviour 

was likely caused by friction grip bolted connections which, 

due to possible loss of preload, converted into standard shear 

connections. As a result, the structural elements exhibited a 

different behaviour compared to the expected response of roof 

elements subjected to daily and seasonal temperature 

variations. It emerged that some sensors exhibited a typical 

linear relationship with temperature variations, while others 

displayed a distinct behaviour characterized by multiple linear 

trends that were temperature dependent.  
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Figure 7. Representation of strain sensor respect to external 

temperature, divided by period 

4 STATISTICAL ANALYSIS OF THE STATIC SENSORS 

The adopted methodology consists of several phases. First, a 

data-cleaning process is performed on the raw data and the 

entire timeseries was divided in three different groups: train 

dataset, covering two years, in which the statistical algorithm 

was trained; validation dataset, spanning in the next ten months, 

used to define the warning and the alarm boundaries for the 

control chart; and the test dataset consisting on thirty days, 

using to validate the entire statistical process. In this phase also 

an under sampling was performed and the median of each four 

hours was assumed like the values. 

Then, for each sensor, a time series model is estimated to 

capture the natural variations in the data while accounting for 

daily and seasonal cycles. By employing this approach, the 

estimated model effectively represents the expected sensor 

behaviour under normal operating conditions. Additionally, the 

model enables the removal of the influence of steel 

temperature, from the signal. 

The developed monitoring system is designed to track real-

time prediction errors generated by each estimated model. 

Specifically, a control chart is implemented for each sensor, 

based on a statistical control metric and equipped with alert and 

alarm thresholds. The control chart triggers an alarm when 

deviations from the expected behaviour are detected. 

Furthermore, it is designed to differentiate between temporary 

anomalies and structural anomalies, as specified in the system 

requirements. 

 Statistical model development 

The forecasting methodology used in this study is based on 

the seasonal autoregressive integrated moving average with 

exogenous variables (SARIMAX) model. This class of 

autoregressive models is extensively applied in SHM to detect 

structural anomalies, particularly in time series data analysis for 

damage identification [5], [13]. By leveraging past 

observations and incorporating external influencing factors, 

SARIMAX models effectively characterize the expected 

behaviour of a system over time [14].  

In this application, temperature readings from thermocouples 

served as exogenous inputs. The autoregressive (AR) 

components define the present response as a function of 

previous observations, while the moving average (MA) 

components refine predictions by accounting for past errors. To 

enhance accuracy, the model also integrates seasonal 

components to capture periodic fluctuations occurring on both 

daily and annual scales. The generalized formulation of this 

model is expressed as: 

(1 − 𝐵)𝑑(1 − 𝐵)𝐷𝑦𝑡

= 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝

+ Φ1𝑦𝑡−𝑠 + Φ2𝑦𝑡−2𝑠 + ⋯
+ Φ𝑃𝑦𝑡−𝑃𝑠 + θ1𝜖𝑡−1 + θ2𝜖𝑡−2

+ ⋯ θ𝑞𝜖𝑡−𝑞 + Θ1𝜖𝑡−𝑠 + Θ2𝜖𝑡−2𝑠

+ ⋯ Θ𝑄𝜖𝑡−𝑄𝑠 + 𝜖𝑡 + 𝛽𝑋𝑡 

(1) 

Where: 

▪ B is the lag operator, such that: 

(1 − 𝐵)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 
(1 − 𝐵𝑠)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑠 

(2) 

▪ 𝜙1, …, 𝜙𝑝 are the autoregressive parameters. 

▪ 𝜃1, …, 𝜃𝑞 are the moving average parameters. 

▪ Φ1, …, Φ𝑃 are the seasonal autoregressive 

parameters. 

▪ Θ1, …, Θ𝑄 are the seasonal moving average 

parameters. 

▪ 𝜖 represents an error term, assumed to follow a 

Gaussian distribution. 

▪ 𝑋𝑡 represents the temperature recorded by the 

temperature. 

The selection of the model, including the determination of 

the parameters p, d, q, P, D, Q, as well as the subsequent 

estimation of model coefficients, was guided by the second-

order Akaike information criterion. This criterion was 

employed to optimize model selection by balancing goodness-

of-fit and complexity, ensuring an optimal trade-off between 

model accuracy and overfitting.  

The results of the models for the sensor VW.01 are presented 

in Figure 8 were the entire time series was reported, and in 

Figure 9 were only the results for the test dataset is presented. 

The figures show the relatively low and uncorrelated behaviour 

of the residuals that’s denotes the good behaviour of the 

algorithm for this type of analysis. 

 

Figure 8. Representation of the results of the SARIMAX 

model for the entire time series for sensor VW.01 
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Figure 9. Representation of the SARIMAX model for the test 

dataset for sensor VW.01 

In Table 2, different metrics are presented to compare the 

model’s performance for the analysed sensors. The used 

metrics include root mean square error (RMSE), mean absolute 

error (MAE), median absolute error (MedAE), and the 

coefficient of determination (R²) for the test dataset residuals. 

The model's performance demonstrates generally strong 

predictive capability, with high R2 values in most cases. A 

subset of three sensors exhibits optimal performance, 

characterized by minimal error metrics and an R2 of 0.99, 

indicating an excellent model fit. Another group of ten sensors 

shows good performance, with moderate error values yet 

maintaining high R2, suggesting the model effectively captures 

underlying patterns. However, five sensors present higher error 

values, with some displaying lower R2, particularly those with 

RMSE exceeding 2, which may indicate limitations in the 

model’s predictive accuracy for these cases. 

Table 2. Residuals metrics values 

Sensor RMSE MAE MedAE R2 

VW.01 0.81 0.63 0.52 0.86 

VW.02 0.94 0.69 0.55 0.99 

VW.03 0.93 0.71 0.56 0.92 

VW.04 1.35 0.98 0.73 0.94 

VW.05 0.62 0.42 0.25 0.99 

VW.06 0.60 0.38 0.25 0.99 

VW.07 1.08 0.85 0.70 0.99 

VW.08 1.17 0.83 0.61 0.99 

VW.09 2.26 1.74 1.36 0.97 

VW.10 2.68 1.95 1.41 0.77 

VW.11 0.37 0.29 0.23 0.99 

VW.12 1.08 0.78 0.51 0.95 

VW.13 2.64 1.90 1.47 0.88 

VW.14 2.02 1.48 1.08 0.93 

VW.15 1.53 1.20 1.01 0.99 

VW.16 1.03 0.75 0.61 0.99 

VW.17 1.31 0.97 0.68 0.88 

VW.18 1.25 0.95 0.74 0.80 

VW.19 1.77 1.30 0.81 0.96 

VW.20 0.69 0.52 0.40 0.99 

 

 Control chart development 

For the monitoring phase, an adaptive exponentially 

weighted moving average (AEWMA) control chart is proposed 

[15], [16]. This type of control chart integrates exponential 

smoothing with an adaptive mechanism that allows for a faster 

response to significant changes. As a result, the control statistic 

is dynamic and adjusts based on observed variations.  

The mathematical formulation of this adaptive statistic is 

given by: 

 

𝑆𝑖 = 𝑆𝑖−1 + 𝜑(𝑥𝑖 − 𝑆𝑖−1) (3) 

 

Where 𝜑 is defined as: 

 

𝜑(𝑒) = {
𝑒 + (1 − 𝜆)𝑘      𝑠𝑒 𝑒 < −𝑘
𝜆𝑒                𝑠𝑒 − 𝑘 ≤ 𝑒 ≤ 𝑘
𝑒 − (1 − 𝜆)𝑘         𝑠𝑒 𝑒 > 𝑘

 (4) 

 

The advantage of this generalization lies in its ability to 

enable the control statistic to respond more rapidly to abrupt 

and high-intensity deviations, specifically when |e| > k. In this 

case the values used for the analysis are λ = 0.1 e k = 3 [15]. 

By incorporating exponential smoothing, the AEWMA 

control chart is able to detect anomalies that develop gradually 

over time. However, its adaptive nature also allows for the 

identification of sudden, unexpected deviations. 

This adaptability will later be leveraged to distinguish 

transient anomalies, which return to a normalized operational 

state within a short time frame. In essence, this type of control 

chart enables differentiation between structural anomalies, 

which persist over time, and transient anomalies, which resolve 

naturally after a brief period. 

 Definition of warning and alert boundaries 

To determine the warning and alarm thresholds associated 

with the control statistic described in the equation (3), a 

statistical approach is employed based on the concept of mean 

time to false alarm. Specifically, the average run length (ARL₀) 

represents the expected number of observations that occur 

before a false alarm is triggered. 

The selection of alert thresholds is carried out by specifying 

a predefined ARL₀ value. Once this value is established, the 

corresponding threshold can be determined using statistical 

simulation techniques. 

In particular, the thresholds are computed to ensure 

compliance with the ARL₀ criterion through the bisection 

method, as discussed in Qiu (2013) [17]. This approach ensures 

that the alarm system maintains a controlled balance between 

sensitivity and reliability. 

 Results of the analysis 

In this section the results for the application of the AEWMA 

control chart for different sensors are shown. Figure 10 reports 

the results of the AEWMA control chart and the boundaries 

definition for the test dataset of the sensor VW.01. It shows a 

good behaviour that has value around zero, even if in the last 

part the behaviour of the control chart denotes a linear trend 

that is contained into the defined boundaries elsewhere. 
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Figure 10. Control chart for VW.01 test dataset 

In Table 3 the boundaries for all the vibrating wire sensors 

are reported. It shows that the value of the boundaries is 

different one to each other and, clearly, the higher value is 

related to the timeseries that shows more difficulties for the 

model to fit the data and determine higher residuals value also 

in Table 2. But, caused by the limits were defined with the same 

ARL₀, we aspect that the resilience of the control chart is the 

same for all the sensors. 

 

Table 3. Evaluation of the boundaries of each sensor 

Sensor RMSE MAE MedAE R2 

VW.01 0.607 1.156 0.607 1.156 

VW.02 3.735 8.950 3.735 8.950 

VW.03 1.258 2.729 1.258 2.729 

VW.04 8.620 10.540 8.620 10.540 

VW.05 0.878 6.292 0.878 6.292 

VW.06 0.318 1.150 0.318 1.150 

VW.07 4.264 5.465 4.264 5.465 

VW.08 15.821 35.360 15.821 35.360 

VW.09 5.335 7.336 5.335 7.336 

VW.10 7.513 20.983 7.513 20.983 

VW.11 0.372 0.542 0.372 0.542 

VW.12 1.624 3.294 1.624 3.294 

VW.13 11.633 16.041 11.633 16.041 

VW.14 7.964 9.995 7.964 9.995 

VW.15 6.237 8.872 6.237 8.872 

VW.16 5.176 9.579 5.176 9.579 

VW.17 3.223 7.446 3.223 7.446 

VW.18 21.752 37.891 21.752 37.891 

VW.19 7.421 10.413 7.421 10.413 

VW.20 3.031 6.434 3.031 6.434 

 

 Manual introduction of external perturbations 

This paragraph analyses the behaviour of the control chart 

when different outliers appear in the time series.  

In this case, an outlier was manually introduced into the test 

measurements. The variation was added at observation number 

50 in the test dataset, with a value equal to twice the standard 

deviation of the validation dataset (12.0με). The control chart 

(Figure 11) shows two consecutive outliers at the point where 

the anomaly was introduced, indicating an isolated change in 

sensor behaviour. 
 

 

Figure 11. Control chart found with introduction of instant 

changing of the timeseries 

 

Instead, if a constant shift or a linear trend occurs at the same 

point in the time series, the variation in the control chart differs 

from the previous case. In Figure 12 a constant shift equal to 

twice the standard deviation of the validation dataset was 

introduced. Notably, in the subsequent observation of the time 

series, there is no opposite variation in the values. 

 

Figure 12. Control chart found with introduction of shift in the 

observations  

This analysis demonstrates how different types of anomalies 

can be detected using this statistical approach and how 

variations in the control chart can help distinguish between 

them. Specifically, it allows for the differentiation between 

instantaneous sensor variations and constant offsets or linear 

trends in the time series. These distinctions can differentiate 

appropriate maintenance strategies for both the structure and 

the SHM system itself. 

Moreover, this type of control, associated with the first data 

cleaning phase, makes it possible to differentiate issues related 

to data acquisition—such as corrupted signals—which may 

result in uncorrelated spikes within the time series. These 

anomalies can be separated from other types of perturbations, 

such as constant shifts, linear trends, and correlated spikes, 

which are more likely to be associated with structural 

phenomena.  

5 CONCLUSIONS 

This article proposes a statistical approach for continuously 

evaluating data collected from SHM systems, supporting 

infrastructure authorities in making informed decisions for the 

life-cycle assessment of their assets. The proposed framework 

individually analyses static sensors along with their associated 
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external variables—in this case, thermocouples—to define the 

system's normal behaviour.  

A SARIMAX model is applied to identify both long-term and 

short-term patterns in the sensor measurements, assess 

correlations with external variables, and filter out their effects 

from the data. Subsequently, the residuals are monitored using 

an AEWMA control chart, which does not only consider the 

current residual value but also accounts for deviations from 

previous residuals. This method further enables the 

differentiation of various types of anomalies.  

The control chart within the proposed framework enables the 

differentiation of various types of signal perturbations 

associated with different forms of structural degradation. 

Additionally, the data cleaning process and the control chart 

allow for the distinction between these structural anomalies and 

those arising from data acquisition issues. 

For this case study, the framework demonstrated effective 

performance. The next phase of this research involves 

extending the framework to groups of sensors, ensuring that 

potential sensor-specific issues do not trigger unnecessary 

alarms or warnings for infrastructure authorities, thereby 

improving the robustness of the monitoring system. In the 

future, it will also be necessary to apply this type of control to 

various types of structures to verify and confirm its 

effectiveness under different conditions and with varying input 

parameters. This will help assess the system's reliability and 

adaptability across various structural and environmental 

scenarios. 
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