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ABSTRACT: Physics-Informed Neural Networks (PINNs) seamlessly integrate the predictive capabilities of neural networks with 

established physical principles. By integrating constraints such as displacement and force boundary conditions alongside 

governing equations, PINNs can generate digital twins of physical systems and processes. This fusion allows for more accurate 

modelling and simulation of complex physical phenomena, bridging the gap between data-driven approaches and traditional 

physics-based methods. Nevertheless, the practical implementation of PINNs remains challenging, primarily due to numerous 

influential hyperparameters and the complex nature of modelling the governing physics through partial differential equations 

(PDEs). This challenge becomes especially critical in the context of dynamic loads, where higher-order PDEs encompassing both 

spatial and temporal domains, alongside relevant structural parameters and generalised (distributed) load’s function, must be 

carefully optimised during the PINNs training process. This study presents a novel application of PINNs model, developed, 

trained, and validated using real-world bridge monitoring data, for the inverse problem of predicting structural parameters of a 

girder subjected to moving loads. Two case studies are considered. In the first, PINNs model is utilised to estimate the structural 

parameters of a bridge girder under varying levels of noise in the data. In the second, the model is trained with actual field 

monitoring measurements to estimate structural parameters while predicting girder deflection and other internal forces. The 

findings advance the existing body of knowledge in structural health monitoring (SHM) by demonstrating a practical PINNs-

based solution for bridge girders under moving loads.  
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1 INTRODUCTION 

Bridges are critical components of transportation infrastructure, 

and ensuring their safety and longevity through structural health 

monitoring (SHM) is a top priority [1]. Over time, bridges are 

subjected to environmental deterioration and repetitive traffic 

loads that can induce damage or stiffness degradation, 

potentially reducing their service life [2]. A key aspect of SHM 

is structural parameter identification – determining properties 

such as stiffness (flexural rigidity) – which enables the 

assessment of a structure’s condition [3].  

Recently, physics-informed neural networks (PINNs) have 

emerged as a promising tool for tackling inverse modelling 

problems [4], [5]. PINNs are a type of deep learning framework 

that embeds physical laws—often expressed as partial 

differential equations (PDEs)—into the neural network’s 

training process. Instead of relying solely on labelled input-

output pairs, PINNs are trained to predict outputs that both fit 

observed data and satisfy governing physics. This is achieved 

by incorporating physics-based constraints, such as PDE 

residuals, into the loss function alongside data-fitting terms [6]. 

For instance, PINNs have been employed to enforce structural 

dynamics and damping evolution equations while matching 

measured responses [3]. 

In the context of inverse problems, the primary objective of 

PINNs is to estimate unknown parameters within partial PDEs 

based on observed data. PINNs have been applied to various 

domains, including fluid dynamics, where they determine 

density, velocity, and pressure fields for one-dimensional Euler 

equations from observed density gradient data [7]. Rasht et 

al.[8] utilised PINNs for seismic imaging, estimating wave 

speed from observed data in full waveform inversions. Current 

advancements have further extended the application of PINNs 

to SHM, particularly in civil engineering structures such as 

bridges and beams. For example, in the context of railway 

bridges, PINNs have been employed for structural analysis and 

monitoring, addressing challenges such as load distribution 

modelling, SHM, and failure prediction under dynamic train 

loads [9]. Moreover, studies have demonstrated the ability of 

PINNs to predict structural response from sparse sensor data, 

even in the presence of noise for Kirchhoff–Love plates under 

static loads [10]. These applications highlight the capability of 

PINNs to integrate data fidelity with physical consistency, 

making them particularly suitable for SHM tasks, where field 

measurements are often limited. 

However, a key challenge lies in applying PINNs to identify 

structural parameters of beams subjected to moving loads using 

real-world data. This research aims to address this challenge by 

proposing a novel approach that integrates physics-based 

modelling with real-world monitoring data to improve the 

accuracy and reliability of structural parameter identification. 

The main contributions of this study are as follows: 

• The development, training, and validation of PINNs to 

solve the problem of a bridge girder subjected to a 

moving load. In doing so, this work addresses the 

challenge of incorporating higher-order PDEs 

spanning both spatial and temporal domains.  
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• Demonstration of how PINNs can predict structural 

parameters, alongside other outputs such as deflection 

and its derivatives. 

• A thorough examination of the PINNs’ performance 

and predictive accuracy under varying levels of data 

noise. By testing the models across a range of signal-

to-noise ratios, the study evaluates their robustness, 

providing insights into their reliability and resilience 

in practical settings where data imperfections are 

common. 

• An investigation of the PINNs’ adaptability and 

generalisation capabilities when trained on real-world 

monitored data from a bridge.  

This paper is organised as follows: Section 2 introduces the 

problem definition and outlines the methodology. Section 

3 provides discussions on Case Studies 1 and 2, along with 

their respective results. Section 4 presents the conclusions 

and recommendations for future research. 

2 METHODOLOGY 

This section considers the architecture of a fully connected 

feedforward neural network and describes the PINNs setup for 

inverse problems. Specifically, it includes an explanation of 

PINNs model hyperparameters and the loss function terms for a 

bridge girder with a moving load. The analysis includes a 

detailed discussion on the training of PINNs, as well as the 

investigated and selected hyperparameters of the neural 

networks. 

 Neural networks Architecture  

The network consists of hidden layers (H), each formulated to 

process inputs recursively.  For each hidden layer h, where h 

ranges from 1 to H, the output f(h) is determined by Equation 

(1): 

𝑓(ℎ) = σ(𝑊(ℎ)𝑓(ℎ − 1) + 𝑏(ℎ)) (1) 

Here, 𝑓(0) signifies the initial input to the neural network. 

The function σ(⋅) denotes the nonlinear activation function, 

which is crucial for enabling the network to model complex 

patterns. The weight matrix 𝑊(ℎ) and the bias vector 𝑏(ℎ) 

pertain to the ℎ −th hidden layer respectively [11]. 

The output of the neural network, denoted as 

𝑢 (𝑖. 𝑒. , 𝑏𝑒𝑎𝑚′𝑠 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛), is derived from the last hidden 

layer’s output through the Equation (2): 

𝑢 = 𝑊(𝐻 + 1)𝑓(𝐻) + 𝑏(𝐻 + 1) (2) 

In this formulation, 𝑊(𝐻 + 1) and 𝑏(𝐻 + 1) represent the 

weight matrix and bias vector of the output layer, respectively. 

The entire set of parameters within the network, which includes 

all the weights and biases for each layer, is collectively denoted 

by (θ) as listed in Equation (3):  

  

θ = {𝑊(1), 𝑏(1), … , 𝑊(𝐻), 𝑏(𝐻), 𝑊(𝐻 + 1), 𝑏(𝐻 + 1)} (3) 

 

This parameter set  θ  encapsulates all elements necessary for 

the neural network’s function, facilitating a unified approach to 

training and adjustment during the learning process. 

The structure of this neural network combines linear 

operations and nonlinear activation functions. Utilising 

activation functions that are infinitely differentiable, such as 

hyperbolic functions, the architecture enables the calculation of 

derivatives of any order for the output relative to the input of 

the neural network via automatic differentiation [4], [5]. These 

derivatives are instrumental in incorporating basic physical 

principles into the loss functions used in PINNs. 

 

 Framework of PINNs for inverse problems  

PINNs presents an approach for addressing forward and inverse 

problems in partial differential equations (PDEs) across various 

systems [4]. A typical inverse problem for a simple beam 

(girder) subjected to a moving can be described by the following 

formulation: 

1. Governing Equation: The Bernoulli-Euler beam theory [12] 

is widely used to describe beam behaviour under bending. This 

theory neglects shear deformation and rotational effects [13], 

which are typically minor in mostly bending conditions. 

Previous studies [14], [15] have numerically modelled bridges 

using this theory, focusing on moving loads that simulate 

vehicular traffic. Therefore, this paper briefly presents only the 

essential PDE needed for developing PINNs.  

For a linearly elastic beam, the vertical deflection, 𝑢(𝑥, 𝑡) 

along the z-direction satisfies the PDE shown in Equation (4) 

[14], [16]:  

𝐸𝐼
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑃𝛿(𝑥 − 𝑣𝑡) (4) 

Where: 
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4  is the beam’s curvature under bending, EI is 

the flexural rigidity, 
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2  represents beam acceleration due to 

vibration, 𝜇  is the constant mass per unit length, 𝑃 is the moving 

load magnitude, 𝑣 is the load's constant speed, 𝛿 is the Dirac 

delta function modelling the instantaneous position of the 

moving load. 

This paper employs a Gaussian-based approach to 

approximate the Dirac delta function, leveraging its smoothness 

and regularity [17]. The approximation is defined by Equation 

(5): 

𝑃𝛿(𝑥 − 𝑣𝑡) ≈
1

𝛽√𝜋
𝑒

−
(𝑥−𝑣𝑡)2

𝛽2 𝑎𝑠𝛽 → 0 (5) 

Where 𝛽 the regularisation parameter governs the 

approximation’s smoothness and accuracy. The 𝑣𝑡 term 

specifies the vehicle’s position as the product of speed and time 

since it entered the structure. 

2. Initial (IC) and Boundary (BC) conditions: The beam is 

assumed to be at rest initially. This is given in mathematical 

form in Equations (6) and (7). Equation (6) indicates that 

vertical deflection 𝑢(𝑥, 𝑡) is zero along the whole length of the 

beam at T = 0, while Equation (7) indicates the beam is perfectly 

still, experiencing no vibration, at T = 0 [14], [16]. 

𝑢(𝑥, 𝑡) = 0  𝑓𝑜𝑟 𝑥 ∈ [0, 𝐿], 𝑇 = 0 (6) 

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 0  𝑓𝑜𝑟  𝑥 ∈ [0, 𝐿], 𝑇 = 0 (7) 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-045 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 297 

For a simple beam supports at its two ends. The beam cannot 

move vertically but is free to rotate about y-axis at these 

locations, namely at x = 0 and x = L. The latter necessitates that 

the corresponding force quantity - the bending moment, which 

is directly proportional to the beam curvature and computed as 

the second derivative of 𝑢(𝑥, 𝑡), must always be zero at x = 0 

and x = L. Equations (8), and (9) mathematically represent these 

boundary conditions. 

𝑢(0, 𝑡)  =  0, 𝑎𝑛𝑑  𝑢(𝐿, 𝑡)  = 0,   𝑓𝑜𝑟  ∈ [0, 𝑇]       (8) 

𝜕2𝑢

𝜕𝑥2
(0, 𝑡)  =  0, 𝑎𝑛𝑑 

𝜕2𝑢

𝜕𝑥2
(𝐿, 𝑡)  = 0, 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇] (9) 

3. Loss function: In this study, we develop PINNs to predict 

structural parameters and internal forces—such as deflection 

and moment—in a bridge girder under a moving load of known 

magnitude and constant speed. Unlike traditional neural 

networks, which minimise the mean squared error (MSE) using 

training data, PINNs incorporate additional loss terms to 

enforce the governing partial differential equation (PDE), initial 

conditions, and boundary conditions, ensuring physically 

consistent predictions [18]. Accordingly, let us assume that  𝛾 

represents parameters related to the physics of the system—

some or all of which may be unknown and must be estimated in 

inverse problems.  To achieve this, PINNs are trained to 

minimise a composite loss function (ℒ), which can be expressed 

as in Equation (10).  

𝐿(𝛩) = 𝛼𝑓𝐿𝑓(𝛩) + 𝛼𝑖𝐿𝑖(𝜃) + 𝛼𝑏𝐿𝑏(𝜃) + 𝛼𝑑𝐿𝑑 (𝜃) 

 
(10) 

Where Θ = {𝜃, 𝛾}, with 𝜃 as neural network parameters 

defined in Equation (3) and  𝛾 as unknown physical parameters 

to be estimated (EI, flexural rigidity), ℒ𝑓 for the PDE, ℒ𝑖 for the 

initial conditions, ℒ𝑏 for the boundary conditions, and ℒ𝑑 for 

the measured data. Each term is scaled by a corresponding 

weight—𝛼𝑓 , 𝛼𝑖, 𝛼𝑏 , and 𝛼𝑑. With prediction of PINNs, 

𝑢(𝑥, 𝑡;  𝜃) , the individual loss terms are expressed by Equations 

(11-15): 

ℒ𝑓(𝛩) =
1

𝑁𝑓

∑‖𝐹[𝑔(𝑥𝑖 , 𝑡𝑖; 𝜃); 𝛾]‖2

𝑁𝑓

𝑖=1

 (11) 

𝑔(𝑥𝑖 , 𝑡𝑖; 𝜃) = 𝐸𝐼
𝜕4𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)

𝜕𝑥4
+ 𝜇

𝜕2𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)

𝜕𝑡2

− 𝑃𝛿(𝑥𝑖 − 𝑣𝑡𝑖) 

(12) 

ℒ𝑖(𝜃) =
1

𝑁𝑖

∑ ‖𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃) +
𝜕𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)

𝜕𝑡
‖

2
𝑁𝑖

𝑖=1

 (13) 

                            

ℒ𝑏(𝜃)  =  
1

𝑁𝑏

 ∑ ‖𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃) +
𝜕2𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)

𝜕𝑥2
‖

2

   

𝑁𝑏

𝑖=1

 (14) 

ℒ𝑑(𝜃) =
1

𝑁𝑑

∑‖𝐷(𝑥𝑖 , 𝑡𝑖; 𝜃) − 𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)‖2

𝑁𝑑

𝑖=1

 (15) 

Where 𝑁𝑓 , 𝑁𝑖 , 𝑁𝑏 , and 𝑁𝑑 are the number of data points 

(collocation points) in training datasets:   

• PDE residual: {(𝑥𝑖 , 𝑡𝑖) ∶  0 ≤ 𝑖 ≤ 𝑁𝑓 ,   0 ≤ 𝑥𝑖 ≤ 𝐿, 0 ≤

𝑡𝑖 ≤ 𝑇} 

• Initial condition: {(𝑥𝑖 ,   0) ∶  0 ≤ 𝑖 ≤ 𝑁𝑖 , 0 ≤ 𝑥𝑖 ≤ 𝐿}, 

• Boundary condition:{(0, 𝑡𝑖)𝑎𝑛𝑑(𝐿, 𝑡𝑖): 0 ≤ 𝑖 ≤ 2𝑁𝑏 , 0 ≤

𝑡𝑖 ≤ 𝑇}, and 

• Data points: {(𝑥𝑖 , 𝑡𝑖) ∶  0 ≤ 𝑖 ≤ 𝑁𝑑 , 0 ≤ 𝑥𝑖 ≤ 𝐿, 0 ≤

𝑡𝑖 ≤ 𝑇}, respectively.  

The minimiser of ℒ (Θ) can be expressed by Equation (16): 

𝛩∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛩

ℒ (𝛩) (16) 

where 𝛩∗  =  {𝜃∗, 𝛾∗} with 𝜃∗ and 𝛾∗ being the optimal 

parameters and the estimated unknown parameters, 

respectively, and arg min (·) is the arguments of the minimum.  

 

Figure 1.Physics-informed neural networks (PINNs) 

Schematic for an inverse problem of a beam with moving 

loads. 

 Training of PINNs 

Figure 1 presents a schematic overview of the PINNs 

framework configuration. The setup consists of a fully 

connected feed-forward neural network (NN) that takes spatial 

and temporal inputs (x, t) to predict the solution u (x, t)—

representing the expected deflection at a given location and time 

on the bridge’s girder—and to estimate unknown physical 

structural parameters (γ). The training process is guided by the 

composite loss function defined in Equation (10) and optimised 

as shown in Equation (16). The training of the PINN is guided 

by the combined loss function given in Equation (10) and 

optimised as showed in Equation (16). Training the PINNs 

involves careful tuning of various hyperparameters, including 

the number of hidden layers, the number of neurons per layer, 

the choice of activation functions, the number of collocation 

points in the training dataset, optimiser configurations, and loss 

weighting factors.  

Table 1 provides a summary of these hyperparameters, 

detailing their respective ranges and final selected values. The 

NN architecture, comprising five hidden layers and 64 neurons 

per layer, was chosen after testing various configurations. The 

Tanh activation function was selected due to its non-linear 

characteristics, outperforming others such as ReLU, SiLU, and 

Sigmoid. The collocation points, set at 2500 for the PDE, 2000 
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for the boundary conditions, and 1000 for the initial conditions, 

provide a balance between computational efficiency and the 

resolution needed to accurately enforce the underlying physics. 

Adam optimiser was employed for its reliable convergence 

characteristics, and the learning rate was scheduled to decrease 

quadratically with epochs, starting from an initial value of 10-2. 

Additionally, an adaptive loss-weighting strategy was used to 

balance the various terms, scaling each component relative to 

the smallest observed loss. Furthermore, the number of training 

iterations (epochs) was chosen to be 60,000, from a tested range 

of 10,000–100,000, to achieve robust convergence and accurate 

results.  

The code presented in Table 2 is written in Python [19] and 

leverages PyTorch [20], a robust deep learning library. The 

PINNs in this implementation employ the 32-bit single-

precision floating-point (FP32) format, which serves as 

PyTorch’s default precision. The training process takes place on 

a computer system featuring an NVIDIA RTX A4000 GPU and 

an Intel Core i9-14900K processor. 

Table 1.  Hyperparameters for PINNs: Tuning ranges and 

selected values. 

Hyperparameter Range Chosen Value 

No. of Layers 3-9 5 

No. of Neurons 32-186 64 

Activation 

function 

ReLU, SiLU, Sigmoid, 

Tanh 
Tanh 

Collocation 

points 

PDE: 1500-3000 

BC: 1200-2400 

IC: 600-1200 

2500 

2000 

1000 

Optimiser 
SGD, Adam, L-BFGS-B, 

Adagrad 
Adam 

Optimiser 

Learing rate 

Decays quadratically over epochs, based on 

the following scheduler: 

𝜑0 =  10−2, 𝜑1  =  0.70𝜑0 

𝜑𝑖 =  (1 − (
𝑖

𝑁
)

2

) 𝜑0  + (
𝑖

𝑁
)

2

𝜑1, 𝑖 =  0, … , 𝑁 

N being the number of epochs. 

loss weighting 

factors 

An adaptive weighting strategy is used [18]:  

𝛼𝑓  =  
ℒ𝑓

ℒ𝑚𝑖𝑛

 , 𝛼𝑖  =  
ℒ𝑖

ℒ𝑚𝑖𝑛

, 𝛼𝑏 =  
ℒ𝑏

ℒ𝑚𝑖𝑛

, 𝛼𝑑  =  
ℒ𝑓

ℒ𝑚𝑖𝑛

,  

ℒ𝑚𝑖𝑛    𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑚𝑜𝑛𝑔 ℒ𝑓 , ℒ𝑖 , ℒ𝑏 , ℒ𝑑 .  

Iterations 

(Epochs) 
10,000-100,000 60,000 

3 CASE STUDIES 

The Bascule Bridge in Exeter, as shown in Figure 2, is 

investigated in this study. The bridge features a 17.28-metre 

simply supported lifting span, a 6.7-metre-wide carriageway, 

and a 2-metre-wide footway along the parapet. Its structural 

configuration includes two longitudinal girders, 17 cross beams, 

and a composite aluminium deck. This research focuses on the 

east girder, where sensors measure vertical stiffness. Since the 

girders are pinned at both ends, each can be approximated as a 

simply supported beam. The cross beams, bolted to the vertical 

web stiffeners, primarily transfer shear forces and provide 

lateral resistance, contributing little to the girders’ vertical 

stiffness. Parameters in Equation (4), outlined in Table 3, are 

based on section properties derived from structural drawings 

supplied by Exeter City Council, Devon, UK, as described in 

[21]. 

Table 2.  PINNs Pseudo-code for the identification of 

structural parameters in a beam under moving loads. 

Algorithm  

Input: Spatial and temporal collocation points and 

measured data (xi, ti). 

Output: Optimal parameters 𝜃∗ and estimated unknown 

parameters 𝛾∗ ∶  𝛩∗  =  {𝜃∗, 𝛾∗}.  

Initialisation:  

1: Initialise neural network architecture parameters 𝜃  

2: Generate random dataset for Nf, Ni and Nb  

3: Prepare the measured data points Nd  

4: Define the total loss functions:  ℒ(𝛩) = 𝛼𝑓ℒ𝑓(𝛩) +

𝛼𝑖ℒ𝑖(𝜃) + 𝛼𝑏ℒ𝑏(𝜃) + 𝛼𝑑ℒ𝑑 (𝜃) 

5: Initialise the loss weights:  𝛼𝑓 , 𝛼𝑖 , 𝛼𝑏 𝛼𝑑 

6: Initialise the structural parameters 𝛾 

Training: 

7: Set the optimiser: Adam.  

8: Set N:  Define the maximum number of training 

iterations  

9: WHILE converge not reached DO 

9.1: FOR k = 1 to N DO  

9.2:    FOR each batch of points in Nf, Ni, Nb, Nd DO 

9.3:         Compute loss function: 

⎯ ℒf(Θ): PDE residual at Nf 

⎯ ℒi(θ): Initial condition at Ni 

⎯ ℒb(θ): Boundary condition at Nb 

⎯ ℒd (θ): Measured data mismatch at Nd 

9.4:          Update loss function weights 𝛼𝑓 , 𝛼𝑖 , 𝛼𝑏 𝛼𝑑 

9.5:      END FOR 

9.6:      Compute the total loss  ℒ(𝛩) 

9.7:      Update parameters 𝛩 =  {𝜃, 𝛾} using Adam 

optimiser based on the gradient of ℒ(𝛩) 

9.10:   END FOR 

9.11: END WHILE  

10: Save the trained model: Store the optimised 

parameters Θ∗  =  {θ∗, γ∗}  

11: Deploy the model: Use the trained PINNs to predict 

the structural response. 

Table 3.  Dimensions and properties of the Bascule bridge 

main girder (symmetrical I-section). 

Dimensions  Value Properties  Value 

Length  17.28 m  Elastic 

Modulus (E1) 

205 GPa 

Depth  926.60 

mm 

Moment 

inertia (I) 

50.40×108 

mm4 

Flange width 307.70 

mm 

Mass per unit 

length (µ) 

289 kg/m 

Flange thickness  32 mm   

Web thickness 19.50 mm   
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Figure 2. Bascule bridge, constructed in 1972, carrying the 

A379 over the Exeter Canal in Devon, England, UK.  

 

 Case Study 1 

In this case study, PINNs are trained to model the effects of a 

37 kN axle load, representing the front axle of a truck. This axle 

load magnitude corresponds to those used in a controlled 

loading test previously conducted on the Bascule Bridge, as 

detailed in [22]. The truck’s total load consisted of front axles 

weighing 67.20 kN and rear axles weighing 89.80 kN each. 

Axle spacing was 2.00 metres between the first and second 

axles, 3.10 metres between the second and third, and 1.40 

metres between the third and fourth. During the test, the truck 

crossed the bridge in 3.342 seconds, travelling in the lane 

closest to the east girder, which was estimated to bear 

approximately 55% of the total load. For the time configuration, 

the front axle is estimated to take a total of 2.43 seconds to cross 

the bridge. This timing reflects the sequence and delay with 

which each of the four axles engages with the bridge as 

observed during the field tests. Based on these observations, the 

first front axle enters the bridge at t = 0, and the fourth rear axle 

exits at t = 3.342 seconds. The truck’s speed is calculated using 

the span length of the bridge (17.28 m), the distance between 

the first and fourth axles (6.50 m), and the total crossing time of 

3.342 seconds. This yields a vehicle speed of 7.115 m/s. Using 

this speed and the known axle spacings, the times at which the 

first front axle entered and exited the bridge are determined. 

 Synthetic data under varying signal-to-noise ratios  

In this case study, the objective is to estimate the bridge’s main 

girder flexural stiffness (EI), deflection, and its derivatives. This 

requires generating training data for the PINN model, as 

described in Section 2. To achieve this, we developed a finite 

element (FE) model comprising 10 beam elements in ANSYS 

APDL [23]. The model was solved using a transient analysis 

with 1,000-time steps, providing the synthetic data needed for 

training. A total of 100 points were randomly selected across 

the spatial and temporal domains to represent the deflection 

solution. However, SHM data often contain noise due to 

environmental and operational factors, such as temperature 

fluctuations, variable live loads, and sensor inaccuracies. To 

reflect these real-world conditions, we introduced white 

Gaussian noise into the simulated data. Incorporating this noise 

increases the fidelity of the synthetic data, making it more 

representative of the challenges encountered in real-world SHM 

data analysis. In addition to estimating the girder’s stiffness and 

deflection, another objective of this study was to assess the 

adaptability and performance of PINNs when trained with and 

without noise. 

Various noise levels are evaluated by considering different 

signal-to-noise ratios (SNRs). White Gaussian noise is added to 

the deflection data generated by the finite element (FE) model, 

as defined by Equation (17): 

𝑢𝑛𝑜𝑖𝑠𝑒 = 𝑢 + 𝒩(0, 𝜎2) (17) 

Where 𝑢 is the true deflection predicted by the FE model, 

and 𝒩(0, 𝜎2) represents white Gaussian noise with a mean of 

zero and a standard deviation 𝜎 determined by the target SNR. 

The SNR in decibels (dB), is given by Equation (18): 

𝑆𝑁𝑅(𝑑𝐵)   =  10 𝑙𝑜𝑔10 (
𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
) 

(18 ) 

In this study, four SNR levels—10, 20, 30, and 40 dB—are 

considered and are illustrated in Figure 3. A lower SNR, such 

as 10 dB, indicates significant noise levels, making the 

prediction task more challenging. In contrast, a higher SNR, like 

40 dB, suggests that noise has only a minor effect. 

 

Figure 3. Influence of signal-to-noise ratio (SNR) on 

deflection data quality.  

 Results and discussion of Case Study 1 

The results presented in Tables 4 and 5 highlight the 

performance of the PINNs in predicting the flexural rigidity (EI) 

and internal forces (deflection and moment) of a Bascule bridge 

girder under various signal-to-noise ratio (SNR) conditions. The 

analysis assesses prediction accuracy using relative error 

percentages (Re%) for EI, as well as Root Mean Square Error 

(RMSE), Coefficient of Variation (CV%), and Normalised 

Mean Bias (NMB%) metrics for deflection (u) and moment 

(Mx) at different time instances.  Table 4 indicates that PINNs 

can provide accurate estimates of EI even in noisy conditions. 

When using clean data, the relative error is only 0.24%. As 

noise increases, the error rises slightly, reaching 0.96% at 10dB. 

However, the PINNs still demonstrate strong robustness, with 

errors staying below 1% even under the lowest SNR conditions. 

For higher SNR levels, such as 30dB and 40dB, the errors drop 
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to 0.34% and 0.29%, respectively. This trend confirms that the 

PINNs can effectively handle varying noise levels, maintaining 

a high degree of accuracy in estimating the bridge girder’s 

flexural rigidity.  

Table 5 examines deflection and moment predictions at 

different time instances under varying SNR conditions. As 

expected, lower SNR values lead to higher RMSE, CV, and 

NMB percentages, reflecting the impact of noise on prediction 

accuracy. For instance, at 10dB, deflection RMSE ranges from 

0.161 mm to 0.178 mm, and CV percentages are as high as 

8.26%. In contrast, under a better condition (30dB and 40dB), 

these values are significantly reduced, with RMSE as low as 

0.036 mm and CV percentages dropping to around 1.45%–

2.05%. The moment prediction metrics follow a similar pattern, 

showing that as SNR improves, RMSE and CV percentages 

consistently decrease. The results of this case study demonstrate 

that PINNs can accurately predict both flexural rigidity and 

internal forces in a bridge girder, showing robustness against 

noise and the potential for practical application in SHM tasks.  

Furthermore, Figure 4 illustrates the ability of the PINN 

trained with data of 40 dB SNR to accurately predict both the 

beam’s deflection and its internal forces, including moments. 

The data presented in the figure corresponds to a specific time 

instance, t = 1.22 seconds. Although this example focuses on a 

single time point for demonstration purposes, the PINN 

methodology can similarly generate deflection and its 

derivatives at any chosen moment. 

The results displayed in the figure highlight an agreement 

between the PINN predictions and the FE results. The PINN 

accurately reproduces the deflection and moment profiles along 

the beam, aligning closely with the established FE data. This 

consistent match provides further validation of the PINN’s 

reliability and effectiveness. 

Table 4.  PINNs predictions of flexural rigidity (EI) for a 

Bascule bridge girder across varying SNR. 

SNR EI Actual 

(N.m2) 

EI predicted 

(N.m2) 

Re% 

Clean 1,033,610 1,036,091 0.24 

10dB === 1,043,533 0.96 

20dB === 1,041,879 0.80 

30dB === 1,037,124 0.34 

40dB === 1,036,607 0.29 

 

 Case Study 2  

In this case study, a PINN model is used to predict the flexural 

rigidity and structural behaviour of a girder, informed by strain 

measurements from sensors installed on the bridge’s main 

girder during a truck crossing. The objective is twofold: to 

examine the PINN’s ability to represent real-world structural 

behaviour and to assess how measurement data influences its 

accuracy and generalisation. Four weldable strain gauges were 

installed, two on the top flange (S1 and S2) and two on the 

bottom flange (S3 and S4), to measure bending strains along the 

girder’s longitudinal axis as shown in Figure 5. These sensors, 

featuring a 5.84 mm active grid length and a resistance of 120 

Ω, were deployed and documented as detailed in [12]. The 

strain data were collected at 2000 Hz, then baseline-adjusted 

and smoothed. Figure 6 illustrates the strain time histories 

recorded by sensors S1 to S4, confirming that the truck took 

approximately 3.342 seconds to cross, consistent with Case 

Study 1.[22].  

Table 5. PINNs predictions metric errors of deflection and 

moment for a Bascule bridge girder across varying SNR and 

different time instances. 

SNR 
Time 

(Sec) 

Deflection (u) Moment (Mx) 

RMSE 

(mm) 

CV 

% 

NBM 

% 

RMSE 

(kN.m) 

CV

% 

NBM 

 % 

Clean 

0.60 0.013 0.62 -0.02 3.06 4.07 -0.89 

1.22 0.017 0.57 -0.27 2.94 2.94 -0.18 

1.82 0.014 0.67 -0.32 3.19 4.30 0.37 

10dB 

0.60 0.161 7.51 7.52 2.75 3.66 -0.13 

1.22 0.178 5.91 5.90 2.90 2.91 0.56 

1.82 0.175 8.26 8.24 3.09 4.16 0.99 

20dB 

0.60 0.055 2.56 2.13 3.83 5.10 -2.35 

1.22 0.050 1.67 1.09 3.50 3.51 -1.13 

1.82 0.038 1.81 1.51 3.42 4.62 -1.12 

30dB 

0.60 0.096 4.49 4.44 3.16 4.21 -1.00 

1.22 0.087 2.91 2.84 3.12 3.12 -0.24 

1.82 0.059 2.80 2.74 3.29 4.44 -0.28 

40dB 

0.60 0.036 1.67 1.52 2.97 3.96 -0.57 

1.22 0.044 1.45 1.29 2.88 2.89 0.25 

1.82 0.044 2.05 1.98 3.29 4.43 0.81 

 

 
 

 

 
 

Figure 4: Case Study 1 – comparing PINNs predictions to finite 

element (FE) results: (a) beam deflection and (b) moment 

distribution at t = 1.22 seconds. 

(a) Beam deflection (u, mm) 

(b) Moment distribution (Mx, kN.m) 
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Unlike Case Study 1, which trained the PINN on a single axle 

load, this case study models the effect of the entire truck. The 

truck is represented as four axle loads, spaced at known 

intervals. The combined load function is approximated as a sum 

of Dirac delta functions, 𝛿𝑗, which are expressed in Equations 

(19) and (20). The load (P) due to all axles is formulated as: 

𝑃 = ∑ 𝑝𝑗

4

𝑗=1

∙  𝛿𝑗(𝑡𝑗, 𝑣, 𝐿)         
(19) 

 

Where 𝛿𝑗(𝑡𝑗 , 𝑣, 𝐿) is defined as:  

𝛿𝑗(𝑡𝑗, 𝑣, 𝐿)  =  
1

𝛽√𝜋
𝑒

−
(𝑥−𝑣(𝑡−𝑡𝑗))

2

𝛽2
 

(20) 

      

The parameters are: 𝐿, the beam length; 𝑣, the vehicle speed; 

𝑝𝑗, the load for the j-th axle; 𝛽, the regularisation parameter of 

the Gaussian approximation for 𝛿𝑗; and 𝑡𝑗, the time lag for the 

j-th axle relative to the first. Incorporating this Dirac delta 

approximation into the governing PDE yields Equation (21):  

𝐸𝐼
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= ∑ 𝑝𝑗

4

𝑗=1

∙  𝛿𝑗(𝑡𝑗, 𝑣, 𝐿) (21) 

In addition, the PINN training process includes a data loss 

term, ℒ𝐷 as defined in Equation (15), which quantifies the 

discrepancy between sensor measurements and the PINN’s 

predicted strains.  The strain 𝜀 is linked to the beam’s 

curvature  
𝑑2𝑢(𝑥,𝑡)

𝑑𝑥2 , as shown in Equation (22):   

𝜀 =  −𝑦
𝑑2𝑢(𝑥, 𝑡)

𝑑𝑥2
          

(22) 

Here, 𝑦 is the distance from the neutral axis. This relationship 

allows ℒ𝐷 to be computed by comparing measured and 

predicted strains. The formulation of ℒ𝐷 is given in Equation 

(23):  

ℒ𝑑(𝜃) =
1

𝑁𝑑

∑ ‖−𝑦
𝑑2𝑢(𝑥𝑖 , 𝑡𝑖;  𝜃)

𝑑𝑥2
− 𝜀(𝑥𝑖 , 𝑡𝑖; 𝜃)‖

2𝑁𝑑

𝑖=1

 (23) 

ℒD is then incorporated into the overall loss function 

(Equation 10) to guide the PINN’s training and improve its 

alignment with the observed data.  

 

Figure 5. Illustration depicting the positions of weldable strain 

gauges on the main girder (side view) of a bascule bridge. 

 

Figure 6. Raw strain measurements from sensors S1 to S4 on 

the main girder of a bascule bridge as a truck crossed. 

 Results and discussion of Case Study 2 

The results presented in Table 6 highlight the impact of 

incorporating real-world strain measurements on the accuracy 

of PINN predictions for the bridge girder’s flexural rigidity (EI). 

When trained without sensor data, the PINN predicted an EI 

value that deviated from the actual parameter by over 14%, 

underscoring the limitations of relying solely on physics-

informed constraints. In contrast, the inclusion of strain data 

from only one sensor S2 reduced the relative error to 

approximately 1.6%, demonstrating a substantial improvement 

in predictive performance. This outcome suggests that 

integrating field measurements enables the PINN to capture the 

structural behaviour more effectively, enhancing its 

generalisation and reliability. The ability of PINNs to leverage 

sparse sensor data offers advantages for SHM applications, 

providing engineers with more precise estimates of key 

structural parameters. Additionally, Figure 7 demonstrates the 

predictive efficacy of the PINN trained with measured data. The 

model was trained utilising strain data from sensor S2, with the 

sensor’s location and strain time profile shown in Figures 5 and 

6, respectively. The displayed results indicate the model’s 

prediction at the position of sensor S4.  Accordingly, the results 

underline the potential for PINNs, when combined with real-

world data, to serve as robust tools for both assessing current 

structural performance.  

Table 6.  PINN predictions of flexural rigidity (EI) for a 

Bascule bridge girder with and without sensor Data. 

Strain data EI Actual 

(N.m2) 

EI predicted 

(N.m2) 

Re% 

No 1,033,610 1,178,315 14.16 

Yes === 1,050,458 1.63 
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Figure 7. Comparison of strain time history predicted by PINN 

and measurements from sensor S4.  

4 CONCLUSIONS 

This study demonstrates the application of a physics-informed 

neural network (PINN) framework to accurately predict both 

structural parameters — flexural rigidity (EI) — and structural 

responses (e.g., deflections and moments) of a bridge girder 

under a moving load. The investigation is based on two case 

studies that evaluate the PINN’s performance, accuracy, and 

generalisability, offering valuable insights into its practical 

application for SHM.  In Case Study 1, the PINN was trained 

under varying levels of synthetic noise to assess its robustness. 

In Case Study 2, the PINN’s ability to integrate real-world strain 

measurements was explored. Using field measurements, the 

model achieved significant improvement in prediction 

accuracy. 

The following points summarise the key outcomes from this 

study: 

1. The PINN maintained reasonable accuracy even at low 

signal-to-noise ratios (SNRs), with predictions 

becoming increasingly reliable as noise levels 

decreased. The study revealed that at higher SNRs, the 

PINN effectively captured the bridge’s flexural 

rigidity, achieving relative errors below 1% and 

confirming its capacity for precise parameter 

estimation. 

2. In Case Study 2, the PINN trained without sensor data 

overestimated the girder’s flexural rigidity. 

Incorporating field measurements reduced the relative 

error from 14% to approximately 1.6%. This 

demonstrates the value of integrating field data into the 

PINN framework, enabling more accurate reflection of 

real-world structural behaviour. 

3. The study showed that even a limited number of strain 

sensors could provide sufficient constraints to enhance 

the PINN’s generalisation and performance, 

reinforcing its practical utility. 

4. The findings show that integrating field measurements 

not only enhances the accuracy of the flexural rigidity 

estimation but also allows the model to reflect actual 

structural behaviour. This demonstrates the PINNs’ 

potential as a practical tool for SHM.  

 

Overall, this research illustrates a novel application of PINNs 

and contributes to the existing body of knowledge in structural 

health monitoring (SHM) by introducing a PINN-based 

approach for estimating the structural parameters of bridge 

girders. Future work will focus on extending the use of PINNs 

to damage detection scenarios and integrating multiple PINNs 

to model more complex structural systems comprising 

assemblies of discrete elements. 
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