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Abstract: Specially, when it comes to such risky construction projects as the Changshui Airport Railway Tunnel, the ground 

settlements surrounding the structure will be observed and evaluated. This case study is a combination of advanced machine learning 

algorithms, which are augmented with MATLAB to reinterpret, visualize and analyze settlement trends based on real – world tunnel 

monitoring data. The research starts with some of the time – series data that had been registered in the tunnel (settlement, factors 

that impact settlement, temperature, etc.). K – means clustering and hierarchical clustering are used to classify the settlement patterns 

and the clustering result indicates the difference in settlement monitoring points. Finally, we have used the feature importance 

analysis to explore the most significant factors that affect settlement decisions and to know more about the settlement processes in 

tunnels. The discussion of the Random Forests, Gradient Boosting and Artificial Neural Networks regression models is provided to 

predict settlement patterns to enable predictive risk. Heatmaps, time – series graphs and scatter plots are some of the comprehensive 

visualizations constructed to convey the discovery and help in decision making. The indicators to assess the model performance are 

R2, RMSE, MAE and the findings show how to forecast settlements in the most optimal manner. Besides presenting the utility of 

machine learning tunnel surveillance, the case study also provides data driven decision making framework in underground 

engineering projects. 

Keywords: Tunnel Monitoring, Ground Settlements, Machine Learning, Data Visualization, Changshui Airport Tunnel, 

Underground Infrastructure 

1. Introduction 

Tunnel monitoring is a highly significant element of safety 

and life of underground infrastructure, especially in high – 

stakes projects, like airport tunnels(Bao et al., 2018). The 

geotechnical and environmental forces that control the 

settlement behavior of these structures are complex and may 

undermine the structural integrity of these 

structures(Muhammed et al., 2019). Monitoring is thus 

essential in the realization of the impacts and of the 

excavation works on the surrounding ground and structural 

stability. The conventional approaches, however, despite 

their usefulness, are time – consuming and prone to errors 

because they involve a lot of manual analysis that may need 

human interpretation(Hua et al., 2021). Monitoring systems 

generate a lot of data in the course of a tunnel project life 

cycle because of the technology development(Wang et al., 

2020). It is also difficult to analyze such datasets to draw 

conclusions, identify trends and discover impact factors. 

Nevertheless, the existing practices fail to capture this 

information in a manner that would allow proactive 

maintenance and safety decision – making. 

The given Case study examines the application of machine 

learning approaches that have been adopted in the MATLAB 

environment to solve the above – mentioned issues. Using the 

data of Changshui Airport Tunnel Monitoring, it aims to 

interpret, visualize and analyze settlement behavior using 

clustering algorithms, feature importance analysis and 

regression models, thus determining patterns, whether to fill 

or settle and which factors have a significant impact on 

ground activity. The introduction of machine learning based 

systems into the tunnel monitoring process is a paradigm 

shift, since such methods enable quicker and more precise 

analyses due to automation of the extraction of complex 

datasets(Jin-miao et al., 2022). The results of the study can 

thus be used to make improved decisions, improve predictive 

maintenance and support the safety and efficiency of 

underground structures. The power of this study shows its 

ability to use the existing computational tools to produce 

engineering solutions that can have a significant real – life 

effect. 

2. Settlement Monitoring and Prediction 

Figure 1 is a summary of the settlement monitoring and 

prediction process, its challenges and developments. 

Settlement monitoring is an important aspect of safety and 

life of underground infrastructure in high-risk projects like 

airport tunnels(Jin-miao et al., 2022). The construction 

induced behaviors such as boring induced stresses, change in 

ground water level and geological heterogeneities are some 

of the causes of ground settlement(Ayasrah et al., 2020). 

These deformations can be hazardous and in case they are not 

identified or misinterpreted, they can result in structural 

instability, which can result in catastrophic failures(Ayasrah 

et al., 2020). Monitoring of landslides is achieved by surface 

and subsurface movements which are traditionally monitored 

by geodetic surveys, inclinometers and extensometers.  

Figure 1 represents the key areas of monitoring of 

settlements, including the traditional and contemporary 

approaches, and the utilization of the advanced instruments 

like machine learning and visualizations, to analyze large 

amount of data. It has been increasingly possible to obtain 

continuous deformation data, as newer forms of 

instrumentation have been developed well, including 

automated total stations, satellite-based InSAR 

(interferometric synthetic aperture radar) and fiber optic 

sensors, all modern(Karamvasis & Karathanassi, 2020). 
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Monitoring therefore plays a role beyond detection to 

mechanisms of settlement(Martins et al., 2020). 

2.1. Machine Learning in Civil Engineering 

Machine learning (ML) is easy to use and understand 

complex data and predict structural behaviors in civil 

engineering(Marsella & Scaioni, 2018). Various clustering 

techniques (E.g.: K-means clustering, hierarchical clustering, 

etc.) are increasingly being used in settlement monitoring to 

classify settlement patterns as well as to detect spatially 

heterogeneous risks(Vadyala et al., 2021). To illustrate, 

showed that clustering had the potential to significantly 

increase the ability to distinguish settlement behavior at up to 

eight monitoring sites and could be applicable in the 

implementation of sector-specific mitigation measures(Zhou 

et al., 2020).  The most important machine learning 

techniques of settlement monitoring are clustering and 

regression models, which allow identifying patterns and 

predicting trends in ground deformation, as illustrated in 

Figure 1. All regression models, including RF, GB, and ANN, 

had better predictive performance and modeled settlement 

trend than statistical methods(Jin-miao et al., 2022). This type 

of models is particularly applicable when there are non-linear 

relationships and high dimensional data as is the case in 

geotechnical applications. Other related fields where ML can 

be applied, i.e. SHM and anomaly detection(Mousavi & 

Beroza, 2022). The former includes clustering methods which 

have been applied to identify deformation anomalies in 

bridge structures and regression models are widely applied to 

predict loads in buildings(Jasmine & Arun, 2021). 

2.2. Advanced Data Integration and Visualization 

The capability to successfully integrate the heterogeneous 

data, which are position, deformation, temperature and 

environmental parameters in a single effective mechanism 

has been one of the most remarkable issues in tunnel 

monitoring(Zhao et al., 2021). MATLAB, which has a vast 

array of tools to conduct machine learning and visualization, 

is a perfect candidate to conduct such workflows(Ma et al., 

2021). Settlement dynamics can be shown in time-series 

plots, and areas with high-risk levels can be shown in 

heatmaps(Yan et al., 2019). Together with clustering and 

regression analyses, these visualizations may give a complete 

image of the behavior of ground and in responsivity. 

2.3. Research Gap and Addressing 

Although the ML techniques have shown promising progress 

in geotechnical engineering, studies have been mainly 

focused on specific tasks(Marcher et al., 2020). As far as the 

authors are aware, few studies have attempted to develop a 

coherent framework to interpret and visualize settlement data 

that include clustering, feature importance analysis, and 

regression modeling(Chen et al., 2022). The literature also 

shows evidence of the need of domain-specific adaptations in 

ML algorithms. Or, feature engineering based on site 

condition, geological and environmental driven feature 

engineering could be used in settlement prediction 

models(Fan et al., 2019). These methods, however, offer 

more access and utility of data, yet there is no standard 

workflow to those adjustments, and thus, the overall use of 

these models becomes cumbersome(Merghadi et al., 2020). 

We suggested a machine learning pipeline that included 

clustering, feature importance, regression, and application of 

that regression with clustering to provide a general analysis 

framework (as illustrated in Figure 1) to be used in tunnel 

monitoring. 

3. Data Preprocessing 

Monitoring of settlement is an important process in the safety 

of high-risk infrastructure projects like tunnels during 

construction and long-term prevention and remedial 

maintenance of the infrastructure after construction(Tan et 

al., 2019). These techniques offer optimal solutions to capture 

high-resolution spatial-temporal trends but the traditional 

settlement monitoring methods (geodetic surveys, 

inclinometers) are time-consuming, subject to human error, 

and do not capture such trends(Wang et al., 2020). In this 

section, a step-by-step data-driven framework of the analysis 

of the settlement behavior in the Changshui Airport Tunnel 

will be discussed. Figure 2 gives a general description of the 

proposed framework. 

3.1. Data Preprocessing 

The pre-processing of data is performed to clean, standardize 

and prepare the data to be utilized in future machine learning 

activities. Using MATLAB workspace, we can see that our 

original data has 13 columns and 10,704 rows. The notable 

variables are dated Measurement Time, Cumulative 

Settlement, Relative Settlement, Settlement Rate, Geological 

Grade, and Distance from Start. The selection of these 

variables reflects the time and space aspects of the settlement 

monitoring which constitutes the basis analysis of any type of 

settlement monitoring. 

a. Standardization of Time Intervals: The time interval of 

data collection is not of regular nature (Time Interval 

Days) and is recorded in Measurement Time. Time 

matching functions in MATLAB where timestamps are 

converted to fixed equidistant time (e.g. 0.5 days, 1 day) 

to provide uniform time-based monitoring of settlement 

patterns. 

b. Missing Values: Handling Missing Values in Missing 

Values: Interpolated Settlement Rate and Relative 

Settlement with the fill missing () function in MATLAB. 

Linear interpolation maintained the trends of time in the 

data to avoid bias. 

c. Normalization of Variables: Cumulative Settlement, 

Settlement Rate, and Geological grade were normalized 

by the min-max scaling by using the normalize () 

function of MATLAB. This process minimizes the 

differences between the applications of different systems 

that improve the performance of the machine learning 

models. 

d. Detect and Remove Outliers: The sensor errors and 

environmental disturbances that caused the sudden 

anomalies in the settlement rates were detected by using 

the Z-scores to detect statistical outliers and examine 

sudden spikes by plotting time-series data. 
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3.2. Clustering Analysis 

Settlement behaviors were used to mine, which was done 

through clustering analysis. This step exposes spatial 

settlement patterns and points out areas of intervention. 

Clustering Techniques: 

a. K-Means Clustering: The variables such as Settlement 

Rate, Cumulative Settlement, Geological Grade were 

used as inputs. Elbow Method was used to determine the 

best number of clusters using within-cluster sum of 

squares (WCSS). The MATLAB assigned the 

monitoring points to various clusters using the K – means 

() function. 

b. Hierarchical Clustering: The results of K-means were 

confirmed through the hierarchical clustering which 

provided a hierarchical view of settlement behaviors. 

The hierarchical relationships between the settlement 

points were visualized with the help of the linkage () 

function in MATLAB that produced a dendrogram. 

c. Clustering Results: Cluster 1: Monitoring points outside 

structural elements (i.e. tunnel border), i.e. the address 

which was above the maximum settlement value; Cluster 

2: intermediate settlement rates -> transitional zones; 

Cluster 3: Stable regions with thin layers. 

3.3. Feature Importance Analysis 

The feature importance analysis shows the most important 

factors in the determination of settlement behavior(Oh et al., 

2021). This procedure increases the interpretability of the 

predictive models and follows the geotechnical principles. 

The following is the outline of feature importance analysis: 

a. Supervised Learning Models: To rank predictor variables 

Random Forest (RF) and Gradient Boosting (GB) 

models were applied. Dependent Variables: Settlement 

Rate, Cumulative Settlement Predictor variables: 

Geological Grade, Distance from Start, Monitoring Point 

Elevation and Time Interval Days 

b. Feature Importance Ranking: The RF and GB models 

provided feature importance scores of all the predictors. 

The strongest features were: Geological Grade: The main 

factor that affects settlement, which means the effect of 

soil properties; Distance from Start: Settlement is not 

evenly distributed along the length of the tunnel; Time 

Interval Days: Settlement behavior varied greatly 

depending on the time of year. 

3.4. Predictive Modeling 

Predictive modeling was also carried out to forecast 

settlement patterns in order to carry out proactive 

maintenance. It entailed a split of the data into 80 percent 

training and 20 percent test and the models were ranked based 

on their capacity to predict Cumulative Settlement. 

a. Training and Testing: Single supervised machine 

learning models were trained and tested: Random Forest 

(RF): It is interpretable and robust; Gradient Boosting 

(GB): Very accurate iterative model; ANNs: Can capture 

potential non-linear relationships and required tuning up; 

The robustness was achieved by cross-validation. 

b. Evaluation Metrics: Models were tested on R2: R2 is a 

measure that compares the predicted values with the 

actual values in the training data; RMSE (Root Mean 

Square Error): How large is the error of the prediction; 

MAE (Mean Absolute Error): A measure to normalize 

the error of the prediction. 

4. Graphical Analysis and Data Interpretation 

Some of the visual outputs and the interpretation applied in 

this section include Feature Importance, Predictive Modeling, 

and other statistics that are used to monitor and predict on 

settlements. Dataset Summary: The target variable 

Cumulative Settlement was initially analyzed statistically and 

then feature importance analysis was done. The most 

important statistics are: 

Rows in Dataset: 10,704; Missing Values: 841 (preprocessing 

step); Minimum Settlement Value: 0; Median Vela Value: 

14.1412; Settlement Value Max: 2,064.6; Average 

Settlement Value: 940.1619; Standard Deviation: 1,019.7 

Following data cleaning, 9863 rows remained to be used in 

train and evaluation. Such preprocessing steps were followed 

to ensure data reliability in the execution of the following 

model. 

4.1. Analysis of Feature Importance 

The results are displayed graphically with measures Table 1. 

Numerical Insights from ANN Feature Importance.. Figure 3 

below is a bar chart that indicates the importance of each 

feature (e.g. Time Interval Days, Distance from Start, 

Monitoring Point Elevation, Relative Settlement) to the 

prediction of settlement rates using Random Forest (RF) 

model. As we observe, Monitoring Point Elevation is the 

most influential predictor with an importance of 50, which 

dwarfs the other features. Monitoring Point Elevation 

remains the most influential predictor in the List of Features 

in Gradient Boosting with an importance by value of more 

than 10,000 as in Figure 4. With the permutation-based 

importance, the ANN indicates that the most important 

predictor of settlement rates is Monitoring Point Elevation 

with an importance score of approximately 1,000 as indicated 

in Figure 5. The importance score of Monitoring Point 

Elevation is overwhelmingly high (1,028.8246). The 

architecture of ANN employed in the prediction of settlement 

in Changshui Airport Tunnel is shown in Figure 6. The model 

has an input layer that has the four main predictors of interest, 

which are Time Interval Days, Distance from Start, 

Monitoring Point Elevation, and Relative Settlement, which 

cover the effects of time, distance, and elevation on 

settlement, and the effects of relative settlement. 

Random Forest Figure 3 – Monitoring Point Elevation is the 

most important, and all others (Time Interval Days, Distance 

from Start, Relative Settlement) are practically 0. Gradient 

Boosting Figure 4 - The importance score of Monitoring 

Point Elevation is about 10,000, which again confirms its 

importance. ANN Figure 5 The permutation-based analysis 

of ANN shows that Monitoring Point Elevation has an 

extremely high importance score of 1,028.8246, which is far 

higher than any other feature. Temporal (Time Interval Days) 

and spatial (Distance from Start) features were of moderate 
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importance in all models: Random Forest Figure 3 – Time 

Interval Days and Distance from Start are rather 

insignificantly contributing yet still distinguishable compared 

to Relative Settlement. Gradient boosting Figure 4 in this 

case, these features have small but distinctly visible impact. 

4.2. Analysis of Model Performance Metrics 

Figure 7 shows that the random forest (RF) model possesses 

a good prediction power (R2 close to 0.90). Similarly, the 

Root Mean Square Error (RMSE) is also very small, implying 

that the difference between the actual value and the predicted 

value is less. Thus, we can say that RF is very efficient when 

it comes to this dataset. The MAE (Mean Absolute Error) 

indicates the average absolute error between the predicted 

and actual values and as it can be seen, it is very low and 

hence RF can make accurate predictions. In Figure 8, 

Gradient Boosting (GB) has similar R2 values (~0.90) to RF, 

which means that it performs well in predicting. 

In Figure 9 it reflects the data non-linearities more than RF 

and GB since the third ANN model has the greatest degree of 

accuracy in the terms of R2. RMSE of ANN is slightly greater 

than GB but in general ANN is more able to capture the 

patterns but that can also be a sign of ANN overfitting or high 

variance in localized predictions. The grouped bar chart 

Figure 10 in Figure 7, Figure 8, Figure 9 gives a summary of 

the performances of the model in terms of R2, RMSE, and 

MAE of the RF, GB, and ANN. The three models are 

remarkable in accuracy (R2 close to 0.90). However: ANN 

does get a bit better in R2, so it is now the most successful 

model in the sense of understanding complex interactions. 

The RMSE of GB is lower than other models, which means 

that the predictions of GB are better in magnitude, especially 

in the pleasant regions. These results in Figure 10 showed that 

the choice of the model depends on the application, ANN is 

better to work with highly non-linear data, GB is the preferred 

method to minimize catastrophic errors, and that RF is a 

universal and interpretable solution. 

4.3. Residual Analysis 

The residual plot of RF Figure 11 indicates that the residuals 

are between -60 and +60. The majority of them are clustered 

at the zero line, which shows that the accuracy of many of the 

predictions was reasonable, but the dispersion of residuals, 

particularly at higher values, provides a clue as to how this 

model performed poorly on some of the cases where the 

predictions were relatively too distant to the actual value. 

Figure 12 The range of residuals is -2 to +2 in Gradient 

Boosting, which is much narrower, showing much higher 

precision compared to RF. The Figure 13 ANN shows the 

least range of residuals, -1.2 to +0.2 residuals that are tightly 

clustered around zero. This means that it is the most accurate 

in predicting among the models, and it has the fewest errors 

and excellent generalization abilities. Based on Figure 14 

these findings are pointing out that ANN is the most effective 

in capturing complex relationships in the data and therefore it 

would emerge as the most accurate model in predicting 

settlement. Combined Residual Plot - RF, GB and ANN The 

combined residual plot displays residuals of RF, GB, and 

ANN. RF has the broadest scope of residuals between -60 and 

+60, thus performing the worst in the minimization of 

prediction error. ANN residuals are the closest to each other, 

and they are well within the range of -1.2 to +0.2, which is 

exceptionally precise. 

4.4. Settlement Risk Analysis 

The Actual Settlement and the RF, GB, and ANN model 

predictions of spatial settlement risks are shown in Figure 15 

below. Actual Settlement (Top Left) The baseline 

comparison is provided by this heat map because it indicates 

the settlement values that actually took place. It demonstrates 

the actual pattern of settlement risk by subterrains as reflected 

by the data recorded in Figure 15. However, at the higher risk 

regions at Figure 15, there are minute differences. This means 

that RF will only capture the overall trend and will not be in 

a position to follow the minor details, particularly in cases 

where the values of settlements are extreme. GB Predicted 

Settlement (Bottom Left) The gradient boosting heat map 

would see it to be in good fitness to real settlement. ANN 

Predicted Settlement (Bottom Right): ANN is the most 

accurate model among RF and GB and it gives the closest 

resemblance to the actual settlement. All the heatmaps show 

that ANN gives the most accurate approximation of spatial 

settlement risks, then Gradient Boosting, and then Random 

Forest. It also agrees with the results that were obtained 

previously that ANN is more accurate overall, especially on 

complex data, GB is moderately accurate; RF is less accurate 

in extreme cases as indicated in Figure 15. 

4.5. Error Distribution Analysis 

Figure 16 Error Histogram (RF, GB, ANN) The histograms 

of RF, GB, and ANN give a detailed statistic of the accuracy 

errors of the three models. The Errors variance is very broad 

in RF & a range of approximately -60 ~ +60 is essentially 

eminent. When the value of minimum is high, it means that 

the model is not as precise as other models. The GB histogram 

range is lower, with a range of mostly between -2 and + 2, 

which means that it minimizes errors and is more stable in 

performance. The distribution of errors is the most 

concentrated in ANN and the errors are near -0.01 and +0.01 

and this indicates that ANN predicts settlement values more 

accurately than other networks. Figure 17 Grid density plot 

of Errors RF, GB and ANN The mixed density plot indicates 

the variations in the distribution of the various errors of these 

three models to indicate the difference in performance. This 

Figure 17 graph therefore reinstates the ability of ANN to 

generalize complex patterns and to be highly accurate in the 

predictions. 

4.6. Clustering Analysis 

The Elbow Method to validate the number of the optimal 

clusters in the K-Means clustering analysis(Schubert, 2023). 

The y-axis indicates the within-cluster sum of squares that is 

an indicator of the compactness of the clusters and the x-axis 

indicates the number of clusters. Figure 18, The decrease in 

WCSS as k = 1 to k = 2 means that the variance can be 

explained by two clusters only to a reasonable extent. WCSS 

begins to flatten out after k=2, the returns to adding more 

clusters are getting small. K mean clustering k=2, frequencies 

of prevailing settlement patterns in the data set. X: The 

following scatter plot presents the outcome of K-Means 

clustering of the settlement data. The data are shown as color-
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coded clusters: red = Cluster 1, green = Cluster 2, blue = 

Cluster 3. In these two axes, the x-axis (Feature 1) would 

show something like Time Interval Days and the y-axis 

(Feature 2) could show Distance from Start. The clusters 

indicate spatial settlement patterns: Cluster 1 (red): The 

regions of maximum movement, most probably in the area of 

structural features or ground disturbance. 4465 points, Cluster 

2 (green): The regions of transition with average settlement 

rates and medium stability. 1341 points, Cluster 3 (blue): 

Stable areas, where there are few changes in the settlement, 

corresponding to less vulnerable areas. 4057 points. The 

Euclidean distances between clusters are plotted on the y-axis 

and the data points (e.g., monitoring locations) on the x-axis 

Figure 20. The vertical lines are also branched vertically on 

the height of the dendrogram where the significant 

differences are found and this is another evidence that there 

are three main groups that are identified in the hierarchy. 

Table 4. Feature Importance of Each Cluster Model. 

5. Results 

A detailed analysis of the Changshui Airport Tunnel based on 

various state-of-the-art machine learning algorithms- 

Random Forest (RF), Gradient Boosting (GB), and Artificial 

Neural Networks (ANN) was conducted to analyze and 

predict the settlement behaviors. we are presenting the results 

with performance metrics and feature importance of all the 

models. Model Performance Metrics Table 2. Model 

Performance Metrics for Each Model summarizes 

quantitative performance metrics of each model, presented in 

Figure 7. Performance Metrics – RF.. These results indicate 

that ANN model is more accurate in predicting the settlement 

behavior, which proves its strength and reliability in 

predicting the settlement behavior more accurately than the 

other models. Table 3. Feature Importance of Each Model 

below shows the importance of each feature to the respective 

models. The importance scores enable us to know the values 

of features that are most closely associated with model 

predictions. In addition, the significance scores are also 

graphically illustrated in Figure 3, Figure 4, Figure 5, which 

indicates that Feature 3 is dominant in all models, which is a 

significant environmental or geotechnical factor. The total 

residuals are presented in Figure 14, which indicates that 

ANN has predicted very little wrong. The heatmap plots of 

the actual and predicted settlement were very similar, and this 

fact proved that the ANN predictions are the closest to the 

actual ones, and the predictions of GB and RF were the 

second. This spatial disaggregation plays an important role in 

the proper depiction of risk distribution. The error distribution 

in each model is described and shown in Figure 16, which 

shows the frequency of the prediction errors that have been 

observed in some ranges. Elbow Method determines the 

number of clusters as illustrated in Figure 18. In order to get 

a meaningful segmentation of settlement patterns the elbow 

plot indicates that the optimal number of clusters is three. The 

outcome of the clustering can still be visualized, which is K-

means clustering of data points in Figure 19 and the 

dendrogram of hierarchical clustering in Figure 20, which 

confirm the segmentation results based on hierarchical 

relationships between individual points of settlement. 

6. Discussion 

The study demonstrates that geotechnical monitoring can be 

enhanced considerably with the assistance of deep analysis 

based on ML to process complicated data sets(Ritter & 

Frauenfelder, 2021). The concentration of monitor location to 

some clusters that depict characteristics assists in the 

development of particular place of resident behaviors. In 

general, Cluster 1 had 4,465 points (marked as RESILIENT / 

STABLE on the map) and we can use these areas as reference 

areas, or even a baseline of comparison of how we can 

improve and others areas came out as Cluster 2, which had 

1,341 points and marked as THREATENED on the maps, 

which are transitional or Undeveloped areas, which need 

more care and attention with interventions more proactive. 

These clusters are consistent with the predictive data of 

machine learning models (ANN, GB, etc.) that showed 

Monitoring Point Elevation as the most correlated parameter, 

which confirms that the higher settlement was observed in the 

sites of well locations that were in Cluster 2. The clustering 

results give the necessary information and confirmations to 

help in maintenance planning and resources allocation 

besides confirming the model predictions. 

6.1. Analysis of Improved Model Effectiveness, 

Interpretation and Consequences 

The ANN is the solution to risk prediction and mitigation in 

tunnel scenarios because of its excellent capacity to 

comprehend complex, non-linear relationships in 

geotechnical data(Ramezanshirazi et al., 2019). On the other 

hand, GB and RF were good alternatives, and GB reduced 

prediction errors by iterative refinement and RF was easy to 

interpret. The elevation of the monitoring point was also 

identified as a critical factor in all the models since the feature 

significance analysis revealed the critical importance of the 

elevation changes in influencing the tunnel settlements(Apoji 

et al., 2022). According to this conclusion, the influence of 

the elevation changes on the stress distribution and the 

following settlement patterns is considerable, which is 

consistent with the geotechnical principles (Figure 3, Figure 

4, and Figure 5). 

Both models possessed some advantages within the context 

of geotechnical data, Random Forest: It was very robust and 

provided interpretable results and therefore it can be applied 

to problems where the impact of a specific feature is of 

interest. Gradient boosting was very good in minimizing the 

prediction error and managing the interaction between 

features. This meant that it was suitable in the modeling of 

the non-linear dynamics of the settlement data. Artificial 

Neural Networks: Have proven to be very accurate in 

handling complex data structure, but they are very demanding 

in terms of processing power and they need to be fine-tuned 

to avoid overfitting. 

6.2. Prospective Research Directions 

The proactive management of infrastructure is being 

embraced by integrating machine learning (ML) in tunnel 

monitoring(Plevris & Papazafeiropoulos, 2024). Machine 

learning enhances tunnel safety and life by identifying 

potential danger zones early enough due to its ability to 

process and analyze large volumes of data. Nevertheless, the 
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indictment also points to areas that should be further 

investigated, to enhance the effectiveness of machine 

learning in the area of tunnel monitoring: These are the 

incorporation of real-time data inputs to enable adaptive 

responses to environmental deviations, and a data-driven 

dynamic update of predicted models as part of a real-time 

processing solution(Zhang et al., 2020). Cross-Project 

Validation: experiments are conducted on a number of tunnel 

projects to determine the generalizability of the models to 

standardize ML applications in civil engineering. 

7. Conclusion 

Further use of machine learning methods in this field may 

assist us in getting nearer to the realization of the role of 

different parameters in the monitoring of tunnel (as a part of 

Geotechnical Engineering) and the qualitative side of 

Geotechnical engineering as perceived through the eyes of a 

geotechnical engineer. This paper was restricted to the 

monitoring of tunnel in Changshui and the monitoring system 

is comprehensive to monitor the deformation patterns of 

Changshui. Security aspects of Geotechnical Engineering 

Which are likely to be messages of improved predicting 

performances and functional profitability of the Geologist 

economical relevant hazard mapping linked with geological 

changes(Wu et al., 2021). Therefore, Random Forests, 

Gradient Boosting Machines, and Artificial Neural Networks 

have been applied effectively in enhancing the accuracy and 

reliability of settlement predictions, which is essential to the 

stability, as well as sustainability, of tunnel 

infrastructures(Yan et al., 2019). This was the main area/work 

in the investigation of the possibilities of these models, 

where, as they have a good understanding of complex and 

nonlinear data interactions, in the sense of the higher R2 and 

lower RMSE and MAE on the Artificial Neural Network, the 

best results were obtained. These excellent results 

demonstrate the potential of sophisticated ML models to 

become a disruptive technology to traditional geotechnical 

monitoring practices that allow the risk assessment and 

mitigation plans to go much deeper than ever before. The 

effective use of these technologies can also be extended to 

other geotechnical events that are high risk(Wang et al., 

2021). Moreover, the use of machine learning methods must 

be applied to various project scenarios in other studies, which 

will allow a better idea of whether/what algorithms can be 

used in different construction conditions in real time. 

8. Mind Maps, Figures and Tables 

 

Figure 1. Mind map of settlement monitoring in high-risk 

tunnels. 

 

Figure 2. Mind Map of Proposed Data-Driven Framework 

for Settlement Monitoring and Prediction 

 

Figure 3. Feature Importance – RF. 
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Figure 4. Feature Importance– GB. 

 

Figure 5. Feature Importance – ANN. 

 

Figure 6. Architecture of ANN. 

 

Figure 7. Performance Metrics – RF. 

 

Figure 8. Performance Metrics – GB. 

 

Figure 9. Performance Metrics – ANN. 
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Figure 10. Performance Metrics – RF, GB, ANN. 

 

Figure 11. Residual Plot – RF. 

 

Figure 12. Residual Plot – GB. 

 

Figure 13. Residual Plot – ANN. 

 

Figure 14. Residual Plot – Rf, GB, ANN. 

 

Figure 15. Spatial Settlement Risk – Combined Heatmaps of 

RF, GB, ANN. 
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Figure 16. Error (Actual – Predicted) RF, GB, ANN. 

 

Figure 17. Density Combined Error (Actual – Predicted) 

RF, GB, ANN. 

 

Figure 18. Elbow Method for Optimal k. 

 

Figure 19. K-Means Clustering Results. 

 

Figure 20. Hierarchical Clustering Dendrogram. 

Table 1. Numerical Insights from ANN Feature Importance. 

Feature Permuted 

MAE 

Importance 

Score 

Interpretation 

Time 

Interval 

Days 

0.0038008 0.0016423 Temporal 

variations 

moderately 

affect 

settlement. 

Distance 

From Start 

0.003671 0.0015125 Distance 

influences 

settlement 

slightly 

Monitoring 

Point 

Elevation 

1028.8267 1028.8246 Elevation 

dominates as 

the most 

critical factor 

Relative 

Settlement 

0.0021976 0.00003908 Minor impact 

on model 

predictions 

Table 2. Model Performance Metrics for Each Model 

Model R² MAE RMSE 

RF 0.92 0.002 0.031 

GB 0.94 0.0015 0.025 
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ANN 0.96 0.001 0.02 

Table 3. Feature Importance of Each Model 

Feature RF 

Importance 

GB 

Importanc

e 

ANN 

Importance 

1 0.23432 0 0.0078671 

2 0.24303 0 0.004688 

3 50.255 10396 987.70 

4 0.085561 0 0.00029713 

Table 4. Feature Importance of Each Cluster Model 

Cluste

r 

Point

s 

Featur

e 1 

Featur

e 2 

Featur

e 3 

Featur

e 4 

Cluster 

1 

4465 0.0018 0.0249 2.0613 0.0004 

Cluster 

2 

1341 4.6088 60.327

0 

12.856

8 

0.3447 

Cluster 

3 

4057 1.4209 11.926

7 

12.834

6 

0.4621 
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