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ABSTRACT: This work presents an evaluation of promising 

sub-structuring and machine learning SHM approaches suitable 

for high-rise buildings, based on real data from an 18-story 

steel-moment resisting framing building, tested at an E-

Defense facility in Japan. This building is instrumented with a 

relatively dense set of sensor arrays and is subjected to different 

excitation levels until full collapse. The main contribution of 

this study is to demonstrate the practical feasibility of the 

proposed sub-structuring approach in conjunction with 

machine learning when relying on different levels of response 

measurements. The study assesses the accuracy and reliability 

of the estimates of the dominant modal features of the structure 

and can subsequently provide a probabilistic measure of 

confidence in the extent and location of changes/damage if an 

anomaly is detected, as well as the propagation of damage 

throughout the structure's life span. Due to the minimal 

computational resources needed to implement the sub-

structuring approach, it is shown to be quite efficient for near-

real-time applications where important structures need to be 

continuously monitored for sustainability as well as resiliency 

requirements. 

KEY WORDS: Parametric identification; Nonparametric 

identification; Damage detection; Structural health monitoring; 

Condition assessment; High-rise building. 

1 INTRODUCTION 

Structural Health Monitoring (SHM) and condition 

assessment of high-rise buildings through vibration signature 

analysis have been extensively studied over time. SHM 

approaches for damage detection and condition assessment are 

generally classified into two main categories: local and global 

methods. Local methods focus on analyzing specific, limited 

areas of a structure using localized measurements. In contrast, 

global methods provide a comprehensive understanding of the 

system's condition by utilizing data from a distributed network 

of sensors. The selection of an appropriate method depends on 

several factors, including the problem's scope, the sensor 

network's configuration, the structural topology, and the level 

of detail required for the assessment. 

 

Recent advancements in dense sensor networks, capable of 

collecting extensive data, have enabled the application of 

advanced data processing algorithms. These algorithms can 

effectively identify, localize, classify, and quantify changes or 

damages in civil infrastructure, including high-rise buildings, 

which are the primary focus of this study. 

Prior to utilizing the identified vibrational signature of a 

structure for health monitoring, it is essential to comprehend 

the dynamic behavior modeling of high-rise buildings. This 

modeling is inherently complex due to various factors, 

including uncertainties in geometrical characteristics, material 

properties, nonlinear material behavior, foundation modeling, 

and soil effects. Therefore, integrating experimental and 

numerical data analysis enhances methods for identifying and 

localizing damage or changes within structural systems. 

 

Extensive research in damage and change detection, as well 

as system identification for linear structural systems, has 

yielded numerous sophisticated global approaches based on 

vibration data analysis in both the time and frequency domains 

[13-15]. However, there is a notable lack of studies that 

leverage the topological features of the target structure to 

improve the detectability of minor changes. By employing 

appropriate substructuring techniques, these methods 

demonstrate superior sensitivity to small variations in the 

structural characteristics of the system under observation 

compared to global system identification methods. 

 

In this study, one-third full-scale 18-story high-rise building 

was developed and instrumented with state-of-the-art 

instrumentation, installed on each floor and operated by E-

Defense in Japan. This detailed testbed facilitated the creation 

of various data-driven, input-output, reduced-order models 

based on nonparametric identification approaches presented in 

[1-6], which have been successfully applied to both analytical 

and experimental data [7-8]. The approach discussed here does 

not require prior knowledge of the system characteristics (i.e., 

linear versus nonlinear) and is applicable to linear, nonlinear 

nonhysteretic, and hysteretic systems, without restrictions on 

the type of probing signal used for identification. However, it 

is limited to structures with chain-like topology, as will be 

subsequently explained in the study. 

 

Several damage configurations in the building's lateral load-

resisting system were investigated using data from base 

excitation dynamic tests performed on the building. The 

processes of damage detection, localization, and quantification 

were conducted by examining the variability in the primary 

features of the developed reduced-order models. It is important 

to note that in this study, the identification approaches were 

applied deterministically. The effects of variability in 

environmental or operational conditions, as well as 

uncertainties in modeling, measurement, and data analysis 
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processes, were not considered in the identified change-

sensitive features (i.e., stiffness-like parameters and modal 

parameters) of the structures.  

2 FORMULATION CHAIN-ID 

Consider a multi-degree-of-freedom (MDOF) system with a 

chain-like topology, as illustrated in Figure 1. This system 

comprises n lumped masses, each with a magnitude mi, 

subjected to base excitation and/or directly applied forces Fi. 

The lumped masses are interconnected by linear elements, 

whose restoring forces are primarily dependent on the relative 

displacement and velocity between the masses. The equations 

of motion for this system can be expressed as described by [9]. 

 
where G(i)(zi,𝑧𝑖

.̇ ) is the mass-normalized restoring force function 

of the element connecting mi and mi-1; xi is the absolute 

acceleration of the mass mi; zi the relative displacement 

between two consecutive masses; and 𝑧𝑖̇ the relative velocity 

between two consecutive masses. Equation (1) can be rewritten 

in more compact form as follows: 

 

 

where 𝑚𝑖𝑗 =  
𝑚𝑗

𝑚𝑖
 represents the ratio between the lumped 

masses mj and mi. This approach assumes that the acceleration 

time responses 𝑥𝑖̈ are available from observations, along with 

the applied forces Fi and/or the base excitation, as well as the 

values of the lumped masses mi. 

In addition, each of the estimated restoring force functions 

can be converted to a power series of the form 

 

 

(3) 

 

3 BUILDING DESCRIPTION AND 

CONFIGURATION 

To evaluate the fundamental characteristics and validate the 

proposed methodology for earthquake responses and damage 

assessment in high-rise buildings, the data obtained from the 

shaking table test conducted at E-Defense in Japan are 

analyzed. E-Defense, operated by the National Research 

Institute for Earth Science and Disaster Resilience (NIED), is a 

3D full-scale earthquake testing facility featuring the world's 

largest shaking table. The testbed is an 18-story moment-

resisting frame structure, measuring 25.3 meters in height and 

weighing approximately 4179 kN, scaled down to one-third of 

a full-scale building [12]. Figure 2 and Figure 3 provide an 

overview and outline of the test specimen, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a) (b) 

 

Figure 1. Modeling of the 18-story building used in this 

study: (a) reduced order representation (mathematical model), 

and (b) experimental setup. 
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Figure 2. Overview of testbed. 

 
(a) 

 
(b) 

Figure 3. Outline of test specimen (a) floor plan and (b) 

structural framing elevation. 

The floor plan measures 2000 mm by 3 spans in the 

longitudinal X-direction and 5000 mm by 1 span in the 

transverse Y-direction. The structure consists of moment-

resisting frames with box-shaped steel columns measuring 200 

mm by 200 mm, and H-shaped steel beams measuring 270 mm 

by 85-95 mm in the X-direction and 250 mm by 125 mm in the 

Y-direction. Servo-type three-axis accelerometers are installed 

at the corners of the X1 and Y1 bay on each floor of the test 

building. Measurement records from all floors and roof, 

totaling 18 accelerometers, are utilized for response estimation 

and damage evaluation in this study. The sensor signals are 

sampled at 200 Hz. The test specimen was subjected to a 

uniaxial excitation in the X-direction, with a first natural period 

of approximately 1.15 seconds in the X-direction. 

 

The earthquake input motion is an artificially created Tokai, 

Nankai, and Tonankai consolidated-type earthquake occurring 

at the Nankai Trough, assumed to be recorded at Tsushima, 

Aichi Prefecture, Japan (Takahashi et al., 2013). Its peak 

ground acceleration (PGA) is about 300 cm/s², with a velocity 

response spectrum value (pSv) of approximately 110 cm/s for 

periods between 0.8 and 10 seconds, and a duration of about 

460 seconds. In the shaking table test, the input motion was 

scaled down to one-third of the original form to match the scale 

of the test specimen. The maximum excitation levels are set to 

various levels and applied to the test specimen multiple times.  

 

Figure 4 shows the acceleration time history of the input 

motion to the testbed. Figure 5 illustrates the root mean square 

(RMS) for absolute acceleration, velocity, and displacement 

time-history for all floors in x- direction for the testbed.  Figure 

6 shows computed for relative displacement, relative velocity, 

and restoring force time-history for all floors in x-direction 

based on Equations 1 and 2.   

 

 

Figure 4. Acceleration time history of input motion for 

pSv=110cm/s.  
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Figure 5. Computed RMS for absolute acceleration, velocity, 

and displacement time-history for all floors in x- direction. 

4 DAMAGE IDENTIFICATION  

 Sample Data Processing 

The acceleration responses were acquired from each floor of 

the testbed at a sampling frequency of 200 Hz. Corresponding 

velocity and displacement time histories were obtained through 

digital signal processing and numerical integration. 

Additionally, it was assumed that the building slabs were rigid; 

therefore, the available acceleration measurements 

corresponded to the acceleration response of the structure at 

each slab's geometric center. It is important to note that the 

experimental data contains all sources of measured uncertainty 

as the data was recorded from a real physical structure. To 

create a set of data, the time-history record for each structural 

state/configuration was partitioned into 40 ensembles with 20% 

overlap (i.e., in a sliding window of 30-second duration). Each 

ensemble includes more than five fundamental periods of the 

system.  

 Decomposition Approach  

The building structure was utilized to demonstrate the results 

of implementing the proposed approach detailed in the second 

section of the paper, aimed at constructing a reduced-order 

model for the building structure. The decomposition approach 

for restoring force identification was executed using a third-

order polynomial in both normalized variables zi and 𝑧𝑖
.̇   for all 

floors in the building structure. The selection of a third-order 

polynomial was intentional to illustrate that the nonparametric 

identification approach discussed is capable of autonomously 

detecting whether the system is linear or nonlinear. 

 

Once the relative displacements and velocities were 

computed, the ChainID identification approach was applied to 

develop the associated nonparametric representation for each 

floor in the 18-story building structure by calculating the 

corresponding restoring force coefficients for each floor in the 

reference structural configuration. Figure 7 illustrates sample 

time-history plots for the relative displacement zi, relative 

velocity 𝑧𝑖
.̇   and measured mass normalized restoring force G(14)  

between the 14th and 13th floors, in the x-directions. 

 

 

Figure 6. Computed RMS for relative displacement, relative 

velocity, and restoring force time-history for all floors in x-

direction.  

 

The analysis of the identified restoring force 

coefficients (i.e., power series coefficients 𝑎𝑞𝑟
(𝑖)

 for all building 

floors indicated that the linear term associated with relative 

displacements in the nonparametric representation (i.e., 𝑎10
(𝑖)

) 

had the most significant contribution to the restoring force G(i), 

while the nonlinear terms were negligible. Figure 8 summarizes 

the identified mean of mass-normalized stiffness-like 

coefficient (𝑎10
(𝑖)

 ) for all floors in x-direction.  

 

For brevity, only the identification results computed for the 

14th floor will be presented and discussed in this section. The 

power series coefficients 𝑎𝑞𝑟
(14)

 of the nonparametric 

representation for the 14th floor are summarized in Table 1. It 

is evident that the mass-normalized stiffness-like 

coefficient 𝑎10
(14)

   was the dominant term in the nonparametric 

representation.  

 

It can be seen from Table 1 that only the linear terms in the 

identified model are found to be dominant. However, for the 1st 

floor, nonlinear terms had more contribution due to the 

presence of plastic hinges at the damaged location, as will be 

discussed in the upcoming section. It is important to mention 

that the same control parameters were used to perform the 

analysis without making any assumptions regarding the 

presence or absence of nonlinear response features. Figure 9 

illustrates the time-history of the measured (experimental data) 

and reconstructed (after the application of ChainID approach) 

mass-normalized restoring forces for the 14th floor in the 

reference configuration in the x-direction. The two curves are 

essentially identical, indicating that the reduced-order model 

was able to replicate the dominant behavior of the 14th floor.  
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Figure 7. Sample relative displacement zi and relative velocity 

𝑧𝑖
.̇  computed between the 14th and 13th floors. The third row 

presents the measured restoring force time-history for 

element G(14). 

  

 

Figure 8. Identified mean of mass-normalized stiffness-like 

coefficient (𝑎10
(𝑖)

 ) for all floors in x-direction.  

 

Table 1. Identified mass-normalized restoring force 

coefficients 𝑎𝑞𝑟
(14)

 for the 14th floor.  

q\r 
X-direction 

0 1 2 3 

0 0.00 2.10 -0.13 0.00 

1 2276 0.90 0.20 0.00 

2 12.30 3.20 0.00 0.00 

3 78.00 0.00 0.00 0.00 

 

 

Figure 9. Comparison of measured and estimated restoring 

forces G(i) for 14th floor in x-direction. Solid lines correspond 

to measured restoring force time-history; and dotted lines 

correspond to reconstructed restoring force time-history.  

 Damage Detection 

To visualize the primary dynamic features of the system, the 

experimental phase plots (blue line) and the reduced-order 

representation using the ChainID approach (dotted red line) as 

well as the restoring force surface, are compared for the 14th 

and 1st floors, as shown in Figure 10. 

 

It can be seen from Figure 10 (a), the reconstructed reduced-

order model successfully captured the dominant linear dynamic 

characteristics of the 14th floor. Similarly, the reconstructed 

restoring force surface is planar, despite the use of a third-order 

expansion in both state variables (i.e., relative displacement and 

relative velocity) to characterize the dynamics of the 14th  floor. 

The actual restoring force measurements are plotted as a point 

cloud, as shown in the second row of Figure 10 (a). 

 

It is important to note that the data set under discussion was 

obtained from the testbed, where significant damage was 

observed on the 1st floor. This damage was characterized by 

the formation of plastic hinges at several columns, indicating a 

localized failure mechanism. The presence of plastic hinges 

suggests that the columns experienced substantial stress and 

deformation, leading to a reduction in their load-bearing 

capacity. This observation is crucial for understanding the 

structural behavior and integrity of the building under dynamic 

loading conditions. 

 

The presence of plastic hinges and damage in the columns of 

the 1st floor led to the anticipated nonlinear behavior of the 

floor. This nonlinear response is indicative of the significant 

stress and deformation experienced by the columns, restoring 

forces G(i) versus relative displacements zi for the 1st floor and 

corresponding estimated restoring force surface for the 1st floor 

in the x-direction. In the first row, solid lines correspond to 

phase plot for the measured restoring force, and dotted lines 

correspond to reconstructed restoring force. In second row, 

actual restoring force measurements were plotted as a point 

cloud. which compromised their structural integrity and load-

bearing capacity. The formation of plastic hinges is a critical 

factor in understanding the overall dynamic performance and 

failure mechanisms of the building under applied loads. 
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Figure 10(b) illustrates that the presence of nonlinearity can 

be visually inspected from the reconstructed restoring force for 

the 1st floor (G(1)), compared to the restoring force plot for the 

14th (G(14)) floor under the same excitation. The effects of the 

nonlinear element in the response of the 1st floor are evident in 

both phase plots of the restoring force when compared to the 

reference condition, as shown in Figure 10 (b). In the phase plot 

of restoring force and relative displacement, the change in the 

restoring force slope indicates a pinching effect in the 

introduced nonlinearity. This pinching effect is observed on 

both sides of the restoring force, as the introduced damage is 

symmetric.  

 

Additionally, a nonlinear effect in the restoring force surface 

can be seen in the plot of restoring force versus relative 

displacement and relative velocity, which is a typical signature 

of damage features. It is important to note that the 

nonparametric reduced-order representation using the ChainID 

approach successfully captured the dominant features of the 

dynamics at the correct location within the modules where the 

damage elements occurred. This demonstrates the effectiveness 

of the ChainID approach in accurately identifying and 

characterizing the nonlinear dynamic behavior resulting from 

structural damage. 

5 MODAL IDENTIFICATION USING GLOBAL 

IDENTIFICATION  

In addition to the local identification of the dynamic 

properties of each floor in the building, the modal identification 

(i.e., modal parameters) of the building was accomplished 

using the identified restoring force coefficients, as detailed in 

[10]. The estimated modal parameters were compared to those 

directly identified by implementing the natural excitation 

technique (NExT) in combination with the eigensystem 

realization algorithm (ERA) [11] a global identification 

technique. 

 

The estimated values for the modal parameters (i.e., natural 

frequencies and damping ratios) for the first four mode shapes 

in x- directions are summarized in Table 2. It is noteworthy that 

the natural frequencies estimated from the reduced-order 

models developed in this study closely align with those 

computed using the NExT/ERA approach. As shown in Table 

2, the estimated damping ratios computed using the two 

different approaches are similar for the first mode shape; 

however, damping was not identified for the remaining modes. 

This discrepancy is attributed to the varying contributions of 

the different modal constituents in characterizing the restoring 

forces. 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 10. Phase plot of (a) restoring forces G(i) versus relative 

displacements zi for 14th floor and corresponding estimated 

restoring force surface for 14th floor in x-direction; and (b) 

restoring forces G(i) versus relative displacements zi for the 1st 

floor and corresponding estimated restoring force surface for 

the 1st floor in x-direction. In first row, solid lines correspond 

to phase plot for measured restoring force, and dotted lines 

correspond to reconstructed restoring force. In second row, 

actual restoring force measurements were plotted as a point 

cloud.  
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Table 2. Summary of natural frequencies and damping ratios 

for the first four lateral modes in the x-directions of the 18-story 

building structure, identified from the reduced-order model 

developed using ChainID and NExT/ERA approaches.  

Mode 
Chain ID NExT/ERA 

ω [Hz] ζ [%] ω [Hz] ζ [%] 

1st mode 0.38 1.78 0.48 1.75 

2nd mode 0.81 - 0.82 0.40 

3rd mode 1.19 - 1.16 0.20 

4th mode  1.65 - 1.79 1.00 

 

6 SUMMARY AND CONCLUSIONS 

In this study, a one-third full-scale model of an 18-story high-

rise building, developed under the E-Defense project, was 

constructed and instrumented to investigate the damage on 

individual floors. Sample results from these damage scenario 

models were used to evaluate the effectiveness and reliability 

of employing reduced-order models to detect, locate, and 

quantify changes or damages in a physical building structure. 

 

Input-output data from the 18-story building under base 

excitation were used to develop reduced-order models for 

different floors. Two approaches were implemented: the 

nonparametric chain-like system identification approach 

(ChainID), which is the focus of this study, and a global 

identification approach (NExT/ERA). The results 

demonstrated that significant changes identified in the 

reconstructed restoring forces of the reduced-order models built 

using the ChainID approach could be correlated to the presence 

and location of the actual physical changes or damages, even in 

the presence of modeling, measurement, and data processing 

errors. 

 

The initial findings of this study demonstrate that the 

structural health monitoring methodology presented is capable 

of accurately detecting, locating, and quantifying structural 

changes or damage in monitored systems, provided the 

necessary data set is available. 

The presented work is part of an ongoing effort. Future 

developments will focus on evaluating the algorithm's 

sensitivity and effectiveness by analyzing multiple earthquake 

events with varying magnitudes. This will help assess the 

approach's capability in detecting, locating, and quantifying 

different levels of structural damage. Additionally, further 

studies aim to enhance the model's ability to predict potential 

structural failures under diverse seismic conditions. 
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